4-2016

The Function of a Putative SUMO E2 Enzyme in Plant Immunity

Huan Zhang
University of Nebraska-Lincoln, noahzhang53@gmail.com

Follow this and additional works at: http://digitalcommons.unl.edu/ucarereseach
Part of the Plant Pathology Commons


This Poster is brought to you for free and open access by the UCARE: Undergraduate Creative Activities & Research Experiences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in UCARE Research Products by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
The Function of a Putative SUMO E2 Enzyme in Plant Immunity

Huan Zhang

INTRODUCTION
SUMO proteins are small ubiquitin-like modifiers. They can be attached to a target protein through a process called SUMOylation that involves an enzymatic cascade catalyzed by SUMO E1 (activating enzyme), E2 (conjugating enzyme) and E3 (ligation enzyme). Similar to ubiquitination, SUMOylation has been found in recent years to play a role in the regulation of pathogen-host "arms race" (Chen, A.T.J., 2013). However, the molecular mechanism behind the regulation is largely unexplored. To date, only ONE SUMO E2, UBC9 has been identified and confirmed to catalyze SUMOylation in human cell (Motion, G. B. et al., 2015). Nevertheless, recently, FIVE genes were identified by using an array of bioinformatics analysis tools that encoding putative SUMO E2 proteins in tomato. Additionally, a recent study indicated that three of the five putative SUMO E2 genes are induced when plants were infected by pathogen that can trigger plant ETI (effector-triggered immunity) defense response, suggesting that they might be involved in plant immunity (Pombo, M.A., et al., 2014). This research will focus on identifying novel SUMO E2 enzymes and establish the connection of SUMO E2 protein (SlUBC43) to plant immunity, which will lead to a better understanding of how the plants defend themselves against the pathogen

OBJECTIVES
A. Purpose
• This study aims to investigate how the Small Ubiquitin-like Modifier (or SUMO)-conjugating enzymes impact on the plant immune system, especially in tobacco (Nicotiana benthamiana) and tomato (Solanum lycopersicum).

B. Research Questions:
• Is SlUBC43 involved in the regulation of plant pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and/or effector-triggered immunity (ETI)?
• Does the SlUBC43 gene encode an active SUMO-conjugating enzyme (E2)?

MATERIALS & METHODS
A. Methods of data collection
1. SUMO gene cloning
   • Prepare the fragment gene (200-300bp) from tomato cDNA.
   • TOPO reaction to construct rENT vector.
   • LR reaction to construct pTRV2 plasmid for virus-induced gene silencing.
   • LR reaction to build construct for expression and purification of recombinant protein of GST-tagged SlUBC43 (Dinesh-Kumar, S.P., et al., 2003).
2. Transfer the SlUBC43-pTRV2 construct to Agrobacteria Plants inoculation: Inoculate the N. benthamiana with Agrobacteria SlUBC43-pTRV2 construct to silence the SlUBC43 gene.
3. Build the construct (full length) to express and purify SlUBC43 protein, SISUMO E1 and SlSISUMO protein, then perform the in vitro assay to confirm the SUMO E2 activity of SlUBC43.

4. Immunity-related assays and data analysis
1. ROS assay:
   • Definition: ROS (reactive oxygen species) are chemically reactive molecules containing oxygen and have important roles in cell signaling and homeostasis. After the PTI is triggered in plants, there might be the ROS production changes.
   • Analysis: If the gene silencing has an influence on the PTI response, the ROS production might show an induction/reduction change compared to the plants that are not silenced after treated with fig22, a PAMP that can trigger PTI.
2. Cell death suppression assay:
   • Definition: Hypersensitive response (HR) is a mechanism, used by plants ETI response, to prevent the spread of infection by microbial pathogens. The HR is characterized by the rapid death of cells in the local region surrounding an infection.
   • Analysis: After the PTI response is triggered by Pseudomonas fluorescens SS in gene silenced plants, plants are injected with Pseudomonas syringae pv. tomato strain DC3000 in order to trigger the hypersensitive response. The HR on SlUBC43 gene silenced plants and plants where no gene is silenced (EV) can be compared, and the results would indicate whether the silenced gene play an important role in immunity
3. Bacteria growth assay:
   • Definition: bacteria growth describes the bacterium quantity in the plant with the treatment of bacteria.
   • Analysis: The quantity of bacteria in plants 3 to 4 days after inoculation may vary in gene silenced or not silenced ones.

RESULTS
ROS Production Curves and Accumulation Challenged with 2µM Fig22

Figure 1

Cell Death Suppression Assay-EV (7/8)

Figure 2

Cell Death Suppression Assay-Ubc43 (6/8)

Figure 3

Bacteria Growth Assay

Figure 4

Summary
• In Figure 1, it shows that the control plants (non-gene silenced plants, Empty Vector) had a higher ROS production over time compared to Ubc43 gene silenced plants, which indicates that the PTI response is reduced in gene silenced plants.
• In the CDSA assay, at OD level of 0.15, 7 out of 8 injected areas present NO HR in the overlap region of control plants (Figure2), whereas for Ubc43 gene silenced plants showed HR (Figure3), confirming that the PTI response of the silenced plants is reduced.
• Based on Bacterial Growth Assay result (Figure4), at 2DAI, bacteria number of Ubc43 silenced plants is significantly greater than that of EV, suggesting that the ETI response of silenced plants is weaker, even though at 3DAI there was no difference in bacteria number.
• To summarize, silencing Ubc43 gene has a negative role in plant immunity of N. benthamiana. Nonetheless, it is necessary for us to duplicate these experiments for 2 more times to confirm the results.
• Currently the Ubc43 protein purification has been accomplished. By the time of finishing this poster, however, there was no sufficient time to perform in vitro sumolyation assay to answer the second research question.

REFERENCES

ACKNOWLEDGEMENTS
I hereby declare that I carried out the work reported in this poster in the Department of Plant Pathology, University of Nebraska-Lincoln under the supervision of Dr. Lirong, Zeng and PhD student, Dongxue Shi.