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Spread Spectrum Communications uses m-sequences (sometimes referred to as Pseudo 

Noise or PN sequences) modulated with a data signal to create a transmission signal that 

takes up more bandwidth than the original information signal.  Self-Encoded Spread 

Spectrum (SESS) uses spreading codes generated by the transmitted signal, eliminating 

the need to synchronize m-sequences between the transmitter and receiver, thus making 

the channel more secure.  This paper will discuss the performance of SESS system in 

Additive White Gaussian Noise (AWGN) and Rayleigh fading channels, as well as the 

use of an iterative detection to increase the performance of the system.  Introduced in this 

paper is pulsed noise jammer (PNJ) to a SESS system, which is the worst-case jamming 

scenario for a SESS system, and possible ways to overcome these jamming conditions.  

The performance of the SESS system in this paper is analyzed using simulations that 

measure the probability of error (sometimes called Bit Error Rate or BER) vs signal-to-

noise ratio (also called SNR or Eb/No). 
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CHAPTER 1 – Introduction 
 

1.1  History of Spread Spectrum Communications 

 

Spread spectrum communications refer to any modulation scheme that creates a much wider 

bandwidth for the transmitted signal than the information bandwidth.  At first glance, it would 

appear spread spectrum systems are wasteful as they require more bandwidth to transmit a 

signal.  However, there are several benefits to spread spectrum systems including:  

 

1 Rejects hostile jamming, as well as unintentional interference. 

2 Lowers probability of intercept because its spread over larger bandwidth, making 

detection harder because signal is likely below the noise level.   

3 Provides message privacy because any unauthorized listener who lacks prior knowledge 

of the system and the timing cannot demodulate the signal. 

4 Provides a good resistance from multipath signals. 

5 Offers a high degree for accuracy for measuring distance. 

6 Like in Code Division Multiple Access (CDMA), it allows simultaneous signaling on the 

same frequency. 

 

Although there is no real clear inventor of spread spectrum communication, all sources agree 

that the majority of advancement and research came from efforts during World War II to provide 

secure means of communication in hostile environments [1].  One of the most interesting and 
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important milestones in the development of spread spectrum communications came from a patent 

filed in mid 1941 by Hedy Lamarr and George Antheil.  Hedy, who move to the United States 

from Austria and later became a well-known movie star, help George developed a method for 

controlling a torpedo that implemented a frequency-hopping guidance system.    The transmitter 

carrier would change frequency according to a randomized non-repeating code [2].   In 1948, the 

U.S. mathematician Claude Shannon published a Mathematical Theory of Communication as a 

monograph in the Bell System Technical. This paper is remarkable because of its elegant 

theorems, derived from statistical characterizations of both the information source and the 

channel effects [3].  This includes the theorem for perhaps which he is most well known, the 

communication capacity of the band-limited additive Gaussian noise channel. His theorem is:   

(1) 

𝐶 = 𝑊 ∗ 𝑙𝑜𝑔2  1 +
𝑆

𝑁
  𝑏𝑖𝑡𝑠/𝑠 

 

where the W is the channel bandwidth in Hz, S is the signal power in watts, and N is the total 

noise power of the channel in Watts [4].  

 

 One of the early adoptions of direct sequences occurred for the purpose of ranging for 

the tracking-range radar systems at the Jet Propulsion Laboratory (JPL) for use in the Corporal 

guidance system link.  Frank Lehan of JPL noted that radar signal correlation function was of 

prime importance in determining the accuracy of the range estimate.  The pseudo-noise codes 

(sometime called m-sequence) were investigated starting around the 1950‟s.  Also in the 1950‟s, 

Robert Price and Paul Green of Lincoln Laboratory developed a signal processing technique 
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called Rake. The Rake processor uses the fine time-resolution capability of wideband signals to 

resolve signals arriving over different propagation paths, and inserts them into a diversity 

combiner to coherently construct a stronger received signal [3].   These ideas lead to 

developments in Code Division Multiple Access (CDMA) systems that would allow multiple 

users to gain access to the channel.   

 

Up until the 1970's spread spectrum systems where mainly military developed and 

controlled. It was primarily used for satellite communications, and was developed by both the 

Western and Russian military forces. The first major spin off for commercial applications was 

the Global Positioning System (GPS) which uses CDMA based satellite technology.  Before 

CDMA was used in mobile phones in the late 1980‟s to early 1990‟s, traditional mobile phones 

used FM and tone signaling with newly perfected microprocessor to enable automated calling by 

a few select users in a given city.  The Improved Mobile Telephone Service (IMTS) allowed 10 

to 25 channels for a given region, with mobile transmit powers running nearly 100 Watts ERP.  

This paved the way for a system developed at Bell Labs called Advanced Mobile Phone System 

(AMPS), which shifted the channel control and call processing to land-side process and divided 

coverage area into smaller cells, to increase coverage area [5].  

 

 In 1989, the first experiments using cellular CDMA at 800 MHz were conducted by 

Qualcom Inc.  CDMA system could provide high quality and a capacity greater than ten times 

the capacity of the existing AMPS cellular system[6].  This lead to the development of the 2G 

standard called IS-95 wideband for 800 MHz cellular radio systems, which rested fully on the 

spread spectrum CDMA platform.  This 2G standard was widely accepted throughout the 1990‟s 
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and helped set the platform for the major 3G mobile radio specifications UMTS and 

CDMA2000, whose variations are still used in modern cell phone networks [7].  The 

development of CDMA was pioneered at about the same time as other spread spectrum 

technologies like Time Division Multiple Access (TDMA) and Frequency Division Multiple 

Access (FDMA). The main drawback in developing spread spectrum technologies for non-

military use before the 1990‟s was the lack of enabling technologies.  When high speed Digital 

Signal Processing (DSP) chips became readily available, there was a rapid acceleration in the 

development of spread spectrum based systems [8].  These rapid developments have led to the 

adoption of spread spectrum technologies into everyday life.   Hybrid systems (systems that 

combine a few different spreading techniques) can be found in the ubiquitous IEEE 802.11 

standard, hand held and car GPS navigation system, and virtually any other modern wireless 

communication device.   

 

Spread spectrum refers to a telecommunications technique in which a signal is 

transmitted in a bandwidth considerably greater than the frequency content of the original 

information.  The main signal structuring techniques are frequency hopping and direct sequence, 

but there are also many different forms of each as well as hybrids that combine multiple 

techniques.  These techniques can be used for multiple access and offer multiple functions. First, 

they decrease the potential interference to other receivers while achieving privacy.  Second, they 

increase the immunity of spread spectrum receivers to noise and interference.  Lastly, spread 

spectrum makes use of a sequential noise-like signal structure to spread the normally narrowband 

information signal over a relatively wide band of frequencies. The receiver correlates the signals 

to retrieve the original information signal.  In frequency hopping the signal power is spread over 
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a wide band sequentially in time.  This is accomplished by randomly hopping the carrier from 

one frequency to the next.  In direct sequence, the signal power is instantaneously over a wider 

bandwidth.  SESS is based off of direct sequence due to the ease of simulating in digital 

communications, but both direct sequence and frequency hopping techniques benefit from being 

able to use many different types of modulation techniques [7].   

 

There are many different types of modulation schemes that can be used in conjunction 

with spreading techniques.  The three main digital modulation methods are Amplitude-shift 

keying (ASK), Frequency-shift keying (FSK), and Phase-shift keying (PSK).  ASK is a form of 

modulation that represents digital data as variations in the amplitude of a carrier wave. The 

amplitude of an analog carrier signal varies in accordance with the bit stream (modulating 

signal), keeping frequency and phase constant. The level of amplitude can be used to represent 

binary logic 0s and 1s.The ASK technique is also commonly used as the basic system behind 

digital data transmitted over optical fiber (light pulses).  In FSK digital information is transmitted 

through discrete frequency changes of a carrier wave. An example of the simplest FSK would be 

binary FSK (BFSK).  BFSK uses a couple of discrete frequencies to transmit binary information.   

Multiple frequency-shift keying (MFSK) is a more advanced form of FSK, and is used for VHF 

& UHF communications (radio and over the air television).  PSK conveys data by changing, or 

modulating, the phase of a reference signal.  Although frequency modulation and phase 

modulation are very similar, in practical signals, phase modulation is often considered superior 

[9].  As with any digital modulation scheme, it uses distinct signals to represent digital data.  In 

PSK a finite number of phases are each assigned a unique pattern of binary bits.  The 

demodulator determines the phase of the received signal and maps it back to the symbol it 
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represents, and thus receiver is able to recover the original data.  A convenient way to represent 

PSK schemes is on a constellation diagram, seen in Figure 1 below.   

 

Figure 1 - Constellation Diagram of QPSK 

 

Figure 1 represents the possible symbols that may be selected by a given modulation 

scheme as points in the complex plane for Quadrature PSK  (QPSK), which is a variant of PSK 

modulation that uses 4 different values of the phase to transmit data.  Variations of PSK can be 

found in numerous communications standards from 802.11 wireless standards (OFDM with 

QPSK) to cell phones (CDMA), digital television and modems (QAM) [10].   Binary PSK 

(BPSK), the simplest form of PSK, uses two phases which are separated by 180 degrees.  Since 

BPSK is only able to modulate at one bit per symbol, it is unsuitable for high data-rate 

applications when bandwidth is limited.  However, this modulation is considered the most robust 

of all the PSKs since it takes the highest level of noise, jamming, or distortion, when coupled 

with a correlation detector or matched filter, to make the demodulator reach an incorrect decision 

(QPSK has the same BER, but requires twice the energy since two bits are transmitted). Because 

BPSK does best in probability of error, it is the de facto standard in testing performance of 

spread spectrum systems and modulation techniques.  Generally speaking, the transmission of a 
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signal in digital form come much closer to the realization of the limit in Shannon‟s equation (1) 

han the transmission of signals in analog form [9].  For these reason, digital BPSK is used in this 

thesis as a control in order to measure the performance of SESS, which is based off of a direct 

sequence spreading technique with a digital BPSK modulation.  

 

1.2  Motivation and Scope of Research 

  

This thesis research is the extended work of the self-encoded spread spectrum (SESS) 

which is first proposed in [11].  Since their existence, spread spectrum techniques have used 

some variation of pseudo-noise (PN) or predetermined codes to achieve spreading.  SESS 

eliminates this need by using spreading codes generated by the transmitted signal, thus also 

eliminating the need to synchronize PN codes between the transmitter and receiver.  This makes 

the channel more secure, because PN codes both at the transmitter and receiver can be 

deterministic.  

 

SESS system with iterative detector has been shown to have a 3 db performance gain 

over BPSK modulation in an Additive White Gaussian Noise (AWGN) channel.  In a Rayleigh 

fading channel, it achieves a performance gain of 15 db with just the iterative detector and even 

greater when other methods are applied additionally increase the performance.    

 

 To facilitate future improvements SESS and its use for security in hostile environments it 

must be studied in jamming channels. Jamming in a communication channel makes the 
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probability of error far worse than that of the standard noise or fading channel.  So much, that the 

noise is often ignored as it is insignificant compared to the jamming.  The worst method of 

jamming to any time varying spread spectrum system is known pulsed-noise jamming.   

Examining the performance of a SESS system under these conditions can help to show the 

versatility of SESS.  As well as, give possible insight to future improvements that could add to 

the security and performance of SESS.   

 

This thesis will provide a background, as well as, performance measures for binary PN 

sequences in chapter two.  Then chapter three will outline the SESS system, that uses the no PN 

sequences, and analyze the performance SESS system in AWGN and Rayleigh fading channels.  

Also, introduced and analyzed in this chapter is an iterative detector that is used to help increase 

the performance of SESS.  Chapter four establishes the jamming channel and sets up the worst-

case jamming model.  While chapter five analyzes effects of worst-case jamming on SESS, 

chapter five focuses on the effects of worst-case jamming on the iterative detector.  Finally, 

chapter seven looks at possible solutions to help the worst-case jamming and examines the 

effects of jamming inside of AWGN and Rayleigh fading channels. 
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Chapter 2 – Binary PN Sequences 
 

2.1  Introduction 

 

By far the most widely known binary PN sequences are the maximum-length shift-

register sequences.  A maximum-length shift-register sequence, or m-sequence, has a length of 

n= 2
n
 – 1 bits, where m is the number stages in a shift register with linear feedback (as seen in 

Figure 2 below). 

 

 

Figure 2 - M-stage Binary Sequence Generator [12] 

 

2.2  Analysis Method – Autocorrelation 

 

An important characteristic of a periodic PN sequence is the periodic autocorrelation function.  

Correlation refers to the relation is the mutual relationship between two or more random 

variables. Thus, autocorrelation is the correlation of a signal with itself.  Autocorrelation is 

useful for finding repeating patterns in a signal, such as determining the presence of a periodic 
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signal which has been buried under noise.  Ideally, a pseudorandom sequence should have an 

autocorrelation function with the property that for ϕ(n) = 0 and ϕ(j) = 0 for 1 ≤ j ≤  n-1.  For m-

sequences the autocorrelation function is written as:  

(2) 

 𝜙 𝑗 =   
 𝑛          𝑗 = 0             
−1  (1 ≤ 𝑗 ≤ 𝑛 − 1)   

  

 

For large m-sequences, the size of the off-peak values of the autocorrelation are relative to the 

peak value 𝜙 𝑗  / 𝜙 0  = -1/n , which becomes small and irrelevant.  Therefore, m-sequences are 

almost ideal when viewed in terms of autocorrelation function [12].  

 

In anti-jamming applications of PN spread spectrum signals, the period of the sequence 

must be large in order to prevent the jammer from learning the feedback connections of the PN 

generator.  However, this requirement is impractical in most cases because the jammer can 

determine the feedback connections by observing only 2n-1 chips from the PN sequence.  This 

vulnerability of the PN sequence is due to the linearity property of the generator.  To solve this, 

output sequences from several stages of the shift register or outputs from several distinct m-

sequences are combined in a non-linear way to produce a non-linear sequence that is 

considerably more difficult for the jammer to learn.   

 

The periodic autocorrelations functions for most of the Gold sequences are not as good as 

the periodic autocorrelations functions for m-sequences.  Also, Gold sequences of period 2
n
-1 

can be generated by linear feedback shift registers with 2n storage elements, and so their periods 

are approximately the square root of the maximum periods for linear sequences generated with 
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the same number of storage elements.  However, if a large number of sequences is required for a 

given application, and if the cross correlation function is more important than the autocorrelation 

function, then the Gold and Kasami sequences are much better than m-sequences [13].   

 

Gold sequences take a pair of m-sequences with sequences of length n are generated by taking 

the modulo-2 sum of one (called a) with the n cyclical shifted version of the other (called b).  

This generates 2
n
 + 1 different sequences each period 2

n
 - 1 and such that the cross-correlation 

function ϕ(a,b) of any pair of such sequences satisfies the equation [14]: 

(3) 

 𝜙(𝑎, 𝑏) =   
2 𝑛+1 /2 +  1 , 𝑓𝑜𝑟 𝑜𝑑𝑑 𝑛

2 𝑛+2 /2 +  1 ,        𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑛
  

 

Welsh showed that the maximum cross-correlation between any two sequences in a set length N 

sequences of cardinality M is lower bounded [15].  Specifically, he showed that the maximum 

cross-correlation between two sequences is lower bounded by   M − 1 / MN− 1  , where M is 

the number of codes in the set.  For relatively large sets it can be concluded that the maximum 

cross-correlation is greater than  1/N.  By applying these bounds to Gold sequences (M = 2
n 

+ 

1, N = 2
n
 – 1), it can be seen that the max cross-correlation is [16]: 

 

(4) 

𝜙𝑚𝑎𝑥 ≈   
 2/𝑁  ,          𝑓𝑜𝑟 𝑜𝑑𝑑 𝑛  

 4/𝑁  , 𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑛
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Gold codes obviously do not meet the meet the lower bound of  1/N derived by Welch.  

Kasami sequences use a similar method of to generate a smaller set of M = 2
n/2

 binary sequences 

of period N = 2
n
 -1 (for even n).  Kasami sequences do so by taking a m-seqeunce (called c) and 

forming a second binary sequence from it by taking every 2
n/2

 + 1 bit (called d).  Then c is added 

with a time shifted version of d using modulo two. The set which is created by taking all Kasami 

sequences generated by different time shifts of d, as well as the original c and d sequences, form 

the Kasami set of sequences. This set has is known to have 2
N/2

(M) different sequences of length 

2
n
-1 (N).  Thus, the 𝜙𝑚𝑎𝑥 = 2𝑛/2 +  1 , which satisfies the Welsh lower bound, making Kasami 

sequences optimal for cross-correlation [17]. 

 

2.3 Analysis Method – Merit Factor 

 

A classical problem of digital sequence design is to determine those binary sequences 

whose aperiodic autocorrelations are collectively small according to some suitable measure. This 

is achieved by what is called the merit factor.  It is used to determine whether coded signal is a 

good or poor spreading signal.  For example, let a real sequence of length N be represented by S 

=  𝑥0 , 𝑥1,… , 𝑥𝑁−1 .  The aperiodic autocorrelation function of sequence S of length N is: 

 

(5) 

𝐴 𝑘 =  

 
 
 

 
 
 𝑆𝑛𝑆𝑛+𝑘

𝑁−𝑘−1

𝑛=0

;         0 ≤ 𝑘 ≤ 𝑁 − 1

 𝑆𝑛𝑆𝑛−𝑘  ;      −𝑁 + 1 ≤ 𝑘 ≤ 0

𝑁+𝑘−1

𝑛=0
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Golay in [18] defined the merit factor as the ratio of main lobe energy to side lobes energy of 

autocorrelation function of sequence S. The merit factor can be mathematically is defined as, 

 

(6) 

𝑀𝑒𝑟𝑖𝑡 𝐹𝑎𝑐𝑡𝑜𝑟 =  
𝐴 0 2

2  𝐴 𝑘  2𝑁−1
𝑘≠0

 

 

the denominator term represents the energy in the side lobes.  The merit factor must be as large 

as possible for good sequences [19].   The larger the merit factor of a binary sequence that is 

used to transmit information by modulating a carrier signal, the more uniformly the signal energy 

is distributed over the frequency range; this is particularly important in spread-spectrum 

communication.   

 

When the merit factor is applied to m-sequence, Gold, and Kasami sequences found in 

the previous section, [20] concluded that, through simulation, when the sequence length becomes 

large, the merit factors of the of the Gold sequence and Kasami sequence converge to a value of 

one.  In fact, there have been studies that show the asymptotic merit factor of any maximal 

length shift register sequence is three and the asymptotic merit factor of a twin-prime, Legendre, 

and Jacobi (modified or not) sequences is six for the optimal shift [21].  So, from the standpoint 

of the merit factor, the Gold and Kasami sequences seem less appealing than m-sequence or 

other methods.   
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A merit factor of around six seems to, arguably, be the highest achievable value.   Hodeln 

and Jensen in [21] even went as far as making the conjecture “that asymptotically the maximum 

value of the merit factor is and hence that offset Legendre sequences are optimal.”  There has 

been some promising work done to show that merit factors slightly greater than six exists in  

binary sequences [22] but they are still far from the theoretical largest merit factor, found by 

Golay in [18], of approximately 12.32.  

 

2.4  Summary 

 

Factors like autocorrelation, cross correlation, and merit factor should be taken into 

consideration when developing a communication system that requires the use of binary PN 

sequences.  PN sequences are still far from reaching the theoretical maximum that was once 

proposed.   However, as discussed in the next section, SESS binary spreading system does not 

use PN sequences, it uses the randomness of the data being sent.  Therefore each transmission 

would have different auto correlations and merit factors based of the data that is sent.  There it 

does not apply to these complex factors by which conventional spreading system are judged.   
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Chapter 3 - Self Encoded Spread Spectrum 
 

3.1  Introduction to Spread Spectrum Systems 

 

 

 

 

 

 

 

  

 

A conventional spread spectrum system, like in Figure 3 above, employs Pseudorandom 

Noise (PN) code generators (or similar methods like m-sequence, Gold, Walsh codes, etc.) to 

spread the signal across a wider bandwidth.  A visual on how the PN codes are used to spread a 

signal can be seen in Figure 4 on the next page.  They present a practical implementation 

problem because data recovery by the intended receiver requires prior knowledge of the codes 

for signal detection.  So, the PN codes have to be pre-assigned or be transmitted through the 

channel to the receiver.  This brings up security issues as the PN codes may have pseudo-random 

properties; they also possess spectral lines and can be duplicated, thus potentially compromising 

the transmission security.   

 

Figure 3 – Conventional Spread Spectrum System 
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Self-Encoded Spread Spectrum is very similar to BPSK spread spectrum in that it uses a 

sequence of bits to encode the data before it is sent over the channel.  The initial encoding and 

decoding sequences are the same as in BPSK, but there is one key difference, which impacts the 

design, reliability, and performance of the system.   The encoding sequence is updated after the 

transmission of each bit to include the transmitted bit.  Each time a bit is transmitted the 

encoding sequence is shifted and the previously sent bit is added to the sequence.  So, in SSES 

the randomness of the current spreading sequence comes from previous bits transmitted.  If the 

appropriate data compression methods are used to remove any redundant data, the binary data 

can be modeled as independent and identically distributed Bernoulli random variables. This 

smoothes out the spectrum of the signals and eliminates the spectral lines associated with PN 

sequences.  As a result of not using PN codes, the detection of the digital data by an unintended 

receiver is practically impossible, resulting in ideally secure transmissions.  The SESS provides a 

real world implementation of random-coded spread spectrum systems that previously have been 

thought to be impractical [11].     

 

 

 

Figure 4 - How Pseudorandom Code is Used 
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3.2 Self Encoded Spread Spectrum Model 

 

In a Self Encoded Spread Spectrum (SESS) system the traditional PN codes needed for 

transmitting and receiving are not required.  Instead, the spreading codes are generated from the 

information being transmitted.  SESS was first proposed in [23], and a figure of the system can 

be seen in Figure 5 below.   At the transmitter, the delay registers are constantly updated from an 

N-tap delay of the data, where N is the code length. Thus each bit is modulated at a chip rate of 

N/T using the past N bits from the shift registers.         

 

 

Figure 5 - Encoded Spread Spectrum System [11] 

 

At the receiver, the feedback demodulator performs the reverse operation for symbol 

recovery by means of a correlation detector.  The recovered symbols are fed back to the delay 
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shift registers of N taps, where N is the number of bits in the decoding sequence, to provide an 

estimate of the spreading sequence required for signal de-spreading.  The shift register contents 

at the transmitter and the receiver should be set initially to be identical. 

3.3  SESS Performance Analysis 

 

The issue with SESS is that the performance is impacted at low signal to noise ratios by 

error propagation.  When the receiver detects a bit incorrectly that error is inserted into the 

decoding sequence and it continues to affect the decoding process until it is shifted out of the 

sequence N bits later.  The signal attenuation depends on the chip length.  This means for large 

N, a chip error would remain in the register longer, but would contribute to a smaller attenuation.  

Inversely, for a small N value a chip error would rotate out of the register quickly, but would 

contribute to a larger attenuation.  Figure 6 below shows the effects of the sequence length. 

 

 

 

 

 

 

 

 

Figure 6 – Effects of Chip Length on SESS 
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Notice that the greater the sequence length the quicker the SESS system converges to 

BPSK in an Additive White Gaussian Noise (AWGN) channel.  Conversely, for lower N values 

the BER stays closer to 0.5 longer. 

 

This makes sense when you consider that if there is an error for a small N of 1 or 2, the 

next bit will be demodulated with the wrong spreading code leaving with either 100 or 50 

percent of the wrong bits in the demodulating spreading sequence.  This leads to the 50 percent 

error rate that can been seen in these two values on Figure 5.  The chip errors in the receiver 

registers attenuate the de-spreaded signal strength. This can be regarded as a form of self 

interference introduced by self encoding.  Let X be the random variable denoting the number of 

chip errors within the receiver register of length N.  For l  chip errors, the amplitude attenuation 

can be expressed as: 

(7) 

𝐴|𝑋=𝑙 =  1 −   
2𝑙

𝑁
    

Then the conditional probability of error becomes: 

(8) 

𝑃𝑒|𝑙 = 𝑄   1 −  
2𝑙

𝑁
    

2𝐸𝑏
𝑁𝑜

  

 

The probability of error will be greater than 0.5 if the argument of the Q-function is 

negative; this corresponds to the situation that X > N/2 [24]. This suggests that there exists an 

undesirable situation caused by error propagation: a sufficient number of chip errors may 
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accumulate in the receiver registers that exceed N/2.  So, as N→∞ the probability for error 

approaches that of a BPSK system which is confirmed in Figure 6 on page 18 and with Equation 

(8 on the previous page. 

 

 The SESS system behaves similarly in a Rayleigh Fading channel as the AWGN channel 

as seen in Figure 6 below.   

 

Figure 7 – SESS Performance in Rayleigh Fading Channel 

 

Observe how when N gets bigger, the simulation converges toward the theoretical 

Rayleigh Fading Channel line.  This is the same behavior as is see in the AWGN channel, in that, 

as N→∞ the probability of error approaches that of a BPSK system in that channel.    
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3.4  Introduction to Iterative Detectors 

 

Iterative decoding can be described as a decoding technique utilizing a soft-output 

decoding algorithm that is iterated several times to improve the bit error performance of a coding 

scheme, with the goal of obtaining true maximum-likelihood decoding, with less decoder 

complexity [4].  Because there is memory within the SESS modulation, it is a natural candidate 

for the Maximum Likelihood Sequence Estimation (MLSE) detection based on the Viterbi 

algorithm.  MLSE detection improves the system performance by estimating the sequence of the 

received signals.  However, the number of states in the Viterbi algorithm decoder grows 

exponentially with the spreading factor, as can be seen in the trellis diagram of SESS when N = 4 

in Figure 8 on the next page [24].   An iterative detection scheme can be used instead to reduce 

the complexity to a linear order of the spreading factor, which achieves performance very close 

to that of the MLSE detector.  The iterative detector is also able to be improved in fading 

channels by adding a chip-interleaver as discussed in [25].   

 

3.5  Iterative Detector Design 

 

As describe in the previous section, the iterative decoder has a complexity linear to that 

of the spreading code.  The design used requires N+1 storage of the received data bits.   The 

definition of a SESS systems states that the spreading codes are generated from the information 

being transmitted. If we view the first bit after the encoder (called Bit 1), then we can write the 
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future N+1 bits (N is the length of the spreading code) as the part of the Bit 1 at the receiver (see 

Figure 9 on the next page).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 8 - Trellis Diagram of the Viterbi Algorithm for SESS of N=4 [24] 
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𝐵𝑖𝑡1 =   𝑒1𝑒0 ,   𝑒1𝑒−1 ,… ,   𝑒1𝑒−𝑁 , 𝑒1𝑒−(𝑁+1)     

𝐵𝑖𝑡2 =   𝑒2𝑒1 ,   𝑒2𝑒0 ,… ,   𝑒2𝑒−(𝑁+1), 𝑒2𝑒−(𝑁+2)   

𝐵𝑖𝑡3 =   𝑒3𝑒2 ,   𝑒3𝑒1 ,… ,   𝑒3𝑒−(𝑁+2), 𝑒3𝑒−(𝑁+3)   

⋮ 

𝐵𝑖𝑡𝑁 =   𝑒𝑁𝑒𝑁−1 ,   𝑒𝑁𝑒𝑁−2 ,… ,   𝑒𝑁𝑒1, 𝑒𝑁𝑒0   

𝐵𝑖𝑡𝑁+1 =   𝑒𝑁+1𝑒𝑁  ,   𝑒𝑁+1𝑒𝑁−1 ,… ,   𝑒𝑁+1𝑒2, 𝑒𝑁+1𝑒1)   

 

Figure 9 - Iterative Detector Signals in SESS 

 

From Figure 9 above, it is easy to see that 𝑒1 is not only related to the previous N+1 bits, 

but also related to N future transmitted bits.  This means that N future bits contain information 

about 𝑒1 , that can be used to help make the final decision on Bit1 should there be excessive 

channel noise or jamming on Bit1 that would normally cause an error.  So by incorporating 

future transmitted signals together with previous detected bits, we expect to improve the 

performance over the feedback detector, which only estimates the current bits by correlating with 

N previous detected bits.  How these future transmitted signals are incorporated into the final 

decision can be seen in Figure 10 on the next page.  Also, for a step by step run through of the 

iterative detector see Appendix A on page 54.  It should be noted that additional iterations are 

able to be run through this detector.  Each additional iteration requires N more chips, so if there 

are M iterations then the storage of roughly N*M transmissions is required.  The effect of the 

number of iterations can be seen in Figure 11 on page 25.  Despite the number of iterations, the 
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BER eventually converges to a max.  So, for simplicity reasons the detector in this paper only 

uses one iteration. 

 

 

 

 

  

 

 

 

 

 

 

3.6  Iterative Detector Performance 

 

The performance of the iterative detector can be seen in Figure 11 and Figure 12 on the 

next page.  Figure 11 shows that the detector in an AWGN channel performs at a BER of 10
-4

 

nets a 3 db gain over the BPSK system.  The real surprise comes from the performance in a 

Rayleigh fading channel, in Figure 12.   It shows that at a lower 10
-3

 BER, the detector is able to 

improve by over the BPSK system by about 15db.  In fact, it is almost able to achieve the 

Figure 10 - Iterative Detector Model in SESS 

𝐵𝑖𝑡𝑁+1 =   …  , 𝑒𝑁+1𝑒1 ∗ 𝑒 𝑁+1

𝑦𝑖𝑒𝑙𝑑𝑠
     𝑒1  

Feedback 

0<
>  

   

 

 

Dot Product of Bit1 and Spread1 

𝐵𝑖𝑡2 =  𝑒2𝑒1,…  ∗ 𝑒 2
𝑦𝑖𝑒𝑙𝑑𝑠
     𝑒1  

𝐵𝑖𝑡𝑁 =   …  , 𝑒𝑁𝑒1 ∗ 𝑒 𝑁
𝑦𝑖𝑒𝑙𝑑𝑠
     𝑒1  

⋮ 

N number of T Delays  

Bit 
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AWGN performance of BPSK in the Rayleigh fading channel.  Further performance gains in the 

fading channel can be achieved by implementing a form of interleaving.   
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Figure 12 - Iterative Detector Performance in Rayleigh Fading Channel 
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Chapter 4 – Concept of Jamming 

 

4.1  Introduction to Jamming 

 

There are various different jamming models that can be seen in Figure 13 below.  Figure 

13a depicts the most benign jammer known as a barrage noise jammer.  This type of jammer 

transmits band limited white Gaussian noise across the power spectrum that covers the same 

frequency range as the spreading signal.  Figure 13c shows a single-tone jammer, which 

transmits an unmodulated carrier in the spread signal bandwidth.  This jammer is quite effective 

and easy to implement in DSSS systems, however requires the tone to be placed at the center of 

the spread signal bandwidth to achieve maximum effectiveness. 

 

 

 

 

 

 

 

 

 

 

Figure 13- Jamming Models [26] 
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 Figure 13d is a multi-tone jammer, which poses a better strategy against frequency 

hoping systems than the single-tone jamming.  This jammer selects the number of tones so that 

the optimum degradation occurs when the spread signal hops to a tone frequency.  The type of 

jammer that is used in this paper is known as the partial-band jammer for frequency hoping 

systems, and in time varying systems it is called a pulsed noise jammer.  It can be seen in Figure 

13b, and is talked about more in depth in the next section.   

 

4.2  Pulsed Noise Jamming Introduction 

 

Instead of just continuously jamming a communication channel, a pulsed noise jammer 

(PNJ) can be used to jam the channel at chosen times with a greater power.  This proves to be a 

more effective way of jamming a spread spectrum system and is often used in electronic counter 

measure operations.  A PNJ can be defined as a jammer that turns “on” with just sufficient power 

to degrade spread spectrum system  performance significantly, but does not totally annihilate 

system performance when “on”.  The PNJ transmits a pulsed band-limited white Gaussian noise 

signal whose power spectral density (PSD) just covers the spread spectrum system‟s bandwidth 

(W).  The duty factor for the jammer (ρ) is the fraction of time during which the jammer is “on”.  

When the jammer is “on,” the one-sided received jammer power spectral density can be 

expressed by 𝑁 𝑗 = 𝐽/𝜌𝑊 , where J is the jammer power, ρ is jammer duty cycle, and  W is the 

bandwidth [26].    So, during the time that the jammer is “on”, the jammer voltage is   1/  𝜌  

and when the jammer is “off” the voltage is zero.  PNJ in these simulations assumes a jammer 

power amplifier is average-power limited rather than peak-power limited to simplify calculations 
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and implementation.    Note that in practice, the peak power would have limitations; this would 

affect the lower ρ in the simulations.   

 

4.3  Pulsed Noised Jamming BER Analysis for DSSS 

 

In coherent systems direct-sequence spread spectrum (DSSS) systems, the bit error rate is: 

(9) 

𝑃𝐸𝑏 = 𝑄  
2𝐸𝑏
𝑁𝑜

  

Where PEb is the probability for error or BER, Q( ) is the Q-function, Eb is the energy of each 

bit, and No is the one-sided noise spectral density.  When the PNJ is added to the system the 

equation becomes the following: 

(10) 

𝑃𝐸𝑏     =  1− 𝜌 𝑄   
2𝐸𝑏
𝑁𝑜

 +  𝜌𝑄   
2𝐸𝑏

𝑁𝑜 +  𝑁𝑗/𝜌
  

 

Where (1 –ρ) represents the time that the jammer is “off”.  If it is assumed that the noise is 

negligible with respect to the jamming level, this equation can be simplified to: 

(11) 

𝑃𝐸𝑏     ≈  𝜌𝑄   
2𝐸𝑏

 𝑁𝑗/𝜌
   𝑜𝑟 𝑐𝑎𝑛 𝑤𝑒 𝑟𝑒𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑎𝑠, 𝑃𝐸𝑏     ≈  𝜌𝑄  

2𝜌𝑃𝑊

 𝐽𝑅𝑏
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It can be rewritten because  Eb = P / Rb where Rb= bit rate and Nj = J/W.  This can be tested by  

running a simulation and calculating the BER for various ρ against Eb/Nj.  This can be seen in 

Figure 14 below: 

 

Figure 14 – Worst-Case Jamming for Pulsed Noise in DSSS 

 

The worst-case can be approximated by the think black line is tangent to the curves of the 

various ρ values.  Figure 14 shows that the optimal jamming duty cycle is dependent on the Eb/Nj 

of the transmitted signal.  Assuming the Eb/Nj  is at least 0.709, the worst-case line can be 

approximated by the following equation (see [26] for math): 
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(12) 

 𝑃𝑏       
𝑚𝑎𝑥 ≈

0.083

 𝑃/ 𝐽  (𝑊/ 𝑅) 
 

 

4.4  Summary 

 

This chapter introduced the various jamming models and established that worst-case 

jamming in SESS is pulsed noise.  The probability of error of a DSSS system is used to derive 

the worst-case jamming equations for various ρ.  By confirming these numeric results with the 

simulation, the results of the simulation can be used to generate a worst-case jamming line.   

From the worst-case jamming line, the equation for worst-case jamming (Equation (12) can be 

found from the inverse linear relationship of the envelope of the curves. 
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Chapter 5 – Worst-Case Jamming in SESS 
 

5.1  Introduction  

 

SESS has been shown to achieve same performance as DSSS in AWGN and Rayleigh 

fading channels.  This chapter sets out to show through mathematical analysis and simulation 

that SESS remains the same as DSSS in worst-case jamming.  

 

 5.2  Analysis 

 

As stated in Chapter 3.3 in Equation (8), the probability for error in a SESS system can 

be expressed as: 𝑃𝑒|𝑙 = 𝑄   1 −  
2𝑙

𝑁
    

2𝐸𝑏

𝑁𝑜
 .  Where 𝑙 refers to the number of errors in the 

receiver code, and N is the chip length.  In order to find the worst case jamming, this probability 

for error must be used, in a similar fashion to DSSS, to the PNJ model. Equation 8 shows the 

probability of error of SESS in the pulse noise jamming model. 

(13) 

 𝑃𝑒|𝑙𝐸𝑏                =  1− 𝜌 𝑄   1 −  
2𝑙

𝑁
    

2𝐸𝑏
𝑁𝑜

 +    𝜌𝑄   1 −  
2𝑙

𝑁
    

2𝐸𝑏
𝑁𝑜 + 𝑁𝑗/𝜌

  

 

In the DSSS model, the assumption was made that the probability of error is dominated 

by the jamming.   By making the same assumptions in the SESS model, the (1 – ρ) Q-function 
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can be ignored as it represents the noise of the channel when the jammer is off, and getting rid of 

the conditional probability, the theoretical probability of error for the SESS becomes: 

(14) 

𝑃𝑏 =  𝜌𝑄   1− 2𝑃𝑏  
2𝐸𝑏
𝑁𝑗/𝜌

  

By using the upper bound of the Q-function. 

(15) 

𝑃𝑏 ≤  
𝜌

𝑌 4𝜋𝜌𝑋
∗ 𝑒(−𝜌𝑋𝑌2) 

Where X = Eb/ Nj and Y=(1-2*Pb).   By setting the first derivative of equation (15)  with 

respect to ρ equal to zero and solving for ρ, the worst-case jamming line can be found.    

(16) 

0 =  
𝑒−𝑝𝑋𝑌

2

𝑌 4𝜋𝜌𝑋
−  

1

2

𝜌𝑒−𝜌𝑋𝑌
2

𝑌 4𝜋𝜌𝑋
−  
−𝑋 𝜌𝑒−𝜌𝑥𝑌

2

𝑌 4𝜋𝜌𝑋
  
𝑦𝑖𝑒𝑙𝑑𝑠
       𝜌 =

1

2𝑋𝑌2
  

 

By substituting this back into the equation (14) and assuming a large N:  

(17) 

𝑃𝑏 =  
𝑄 1 

2𝑋𝑌2
  𝑜𝑟  𝑃𝑏(1− 2𝑃𝑏)2 =

𝑄 1 

2𝐸𝑏/𝑁𝑗
  ≅  

0.083

 𝑃/ 𝐽  (𝑊/ 𝑅) 
 

 

It was shown in [24], and explained earlier in section 3.3, that as N approaches infinity Y 

approaches one and drops out and it becomes the same as Equation (12).   Also note that under 

normal conditions Pb is very small and leads to Pb = Q(1)/(2Eb/Nj). 
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5.3  Results 

 

Figure 15 on the next page shows that the optimal jamming duty cycle is dependent on 

the Eb/Nj of the transmitted signal.  In Figure 15 on the next page the worst-case is approximated 

by the think black line, which is the tangent to the curves of the various ρ values.  By 

recognizing the inverse linear relationship of the worst-case jamming line, it can be 

approximated by trail and error.  When this approximation method is applied to the worst-case 

jamming to Figure 15 on the next page is the result: 

(18) 

0.083

 𝑃/ 𝐽  (𝑊/ 𝑅) 
 

 

Notice that equation of the worst-case jamming line in equation (18) and theoretical line in 

equation (17) are the same.  Figure 15 also matches up with the DSSS figure in the previous 

chapter.  The effects of error propagation in the SESS explain the deviation from the worst case 

jamming line when the SNR values are below 2.5 db.   
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Chapter 6 – Worst-Case Jamming in SESS w/ Iterative 

Detector 
 

 

6.1  Introduction  

 

 In chapter three, the performance of the SESS in a noise or fading channel was improved 

by adding an iterative detector.  In this chapter, an iterative detector was adding to the worst-case 

jamming of SESS proposed in chapter four in hopes to achieve similar performance gains.   

 

6.2  Analysis 

 

In the previous chapter, the worst-case jamming was found by taking the differentiating 

Equation (16) with respect to ρ and setting the result equal to zero.  The derivative of the Q-

function is not easily calculated when an iterative detector is attached to a SESS system. The 

worst-case can be calculated from the same method used to find Equation (18) on page 33, which 

is, using envelope of the family of curves to represent the worst-case for the probability of error.   

 

6.3  Results 

 

Taking the model used to generate Figure 15 on the previous page, we can apply SESS 

with the iterative detector to help achieve an improvement on the worst-case scenario.  Figure 16 
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below, shows the effects of SESS with an iterative detector in the worst-case jamming 

conditions.  This simulation assumes that the initial spreading sequences are synchronized and 

that noise of the channel is negligible. 

 

 

Figure 16 - Worst-Case Jamming SESS Simulation 

 

As the same in DSSS, the envelope of the family of curves exhibits an inverse linear 

relation between Pbmax and the Eb/Nj can be seen.  This makes Equation (19), the worst-case 

jamming in SESS with iterative detector, easily calculated by finding of the equation of the line 

in Figure 16. 

(19) 

 𝑃𝑏       
𝑚𝑎𝑥 ≈

0.022

 𝑃/ 𝐽  (𝑊/ 𝑅) 
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Notice the performance in relation to the AWGN line in Figure 16.  With the jamming 

duty cycle at 100 percent, the performance is the same as in an AWGN channel (See Figure 10 

on page 24).  The improvement of the system can be seen when comparing Figure 16 against 

Figure 14.  The SESS with the iterative detector improves the worst-case jamming by 6 db at a 

BER of 10
-3

 (difference can also be seen in Equations 12 and Equation 13).   

  

6.3  Discussion 

 

The Rayleigh fading of SESS and the worst-case jamming are very close in terms of 

channel performance.  The 6 db improvement of the iterative detector in worst-case jamming still 

lacks the 15 db improvement that was seen in the Rayleigh fading channel (Figure 12 on page 

25).  At a first glance it appears that since the PNJ uses band-limited white Gaussian noise, the 

performance of the iterative in the presence mocks that of the AWGN as they both use white 

Gaussian noise.  However, by investigating the way the hard bit decision is made in the SESS 

systems can give insight to the possible difference in the BER performance.   

 

In a DSSS system, the data is multiplied with the spreading sequence to effectively 

spread the signal over a larger bandwidth.  To retrieve the data on the receiver side, the dot 

product, or summing the products of their respective components (For example if  𝑢  = (𝑎, 𝑏) and 

𝑣 = (𝑐, 𝑑), the dot product is represented as:  𝑢  ∙ 𝑣 =  𝑎 ∗ 𝑐 + 𝑏 ∗ 𝑑), is taken from the received 

signal and the spreading code.  An example of this can be found by letting  𝑥  = -1 stand for the 

bit to be transmitted and letting  𝑦 = (1,−1,1,1) represent the spreading sequence.  In order to 
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spread the transmitted bit it is multiplied by the spreading sequence.  So the transmitted signal 

through the communication channel becomes  𝑥  ∗ 𝑦 = (−1, 1,−1,−1).  Assuming the spreading 

sequence at the receiver is the same as the transmitter, the dot product of the transmitted data and 

the spreading sequence can be taken  −1, 1,−1,−1 ∙ 𝑦 =  −1 ∗ 1 + 1 ∗ −1 + −1 ∗ 1 +  −1 ∗

1 = −4.  .  The next step is to make a hard decision based on the dot product of the received 

signal and spread sequence.  Since the dot product equals -4 and -4 is less than zero, the despread 

bit is -1, which matches the original bit we transmitted.  The iterative detector model makes 

decisions in a similar matter, however, in addition the N components that are used in the dot 

product, it incorporates N more components from the SESS signal (as explained in section 2.4-

2.6).   

 

The difference between the channel performance of Rayleigh fading and worst-case 

channel when an iterative detector is present, can most likely be attributed to the difference in the 

channel that lead to the hard decision that is made.  In the jamming channel for low ρ values, a 

single chip value may be jammed with a very large amount.   This single chip is weighted on the 

hard bit decision so much that it dominates the decision.   For instance, in the example in the 

previous paragraph, if one chip of the data at the receiver is heavily jammed the dot product can 

be represented as (where the 20 represents the jammed chip, as it changed from -1 to 20):  

 −1, 1,−1, 20 ∙ 𝑦 =  −1 ∗ 1 + 1 ∗ −1 +  −1 ∗ 1 +  20 ∗ 1 = 17 

This shows how the worst-case jamming can effect on a spreading system.  Adding an iterative 

detector is certainly going to help by adding more chips to the hard decision, and it does by 6 db, 

but it does not come close the 15 db in a Rayleigh fading channel.  It would appear that a greater 

the N, the greater the chance that the jamming will not affect the system.  However, it has been 
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shown that the length of the N, does not improve performance of the system without an iterative 

detectors, it just helps it converge to a max faster (see Figure 6 on page 18).  By varying the N 

from 2 to up the 32 used in Figure 16 on page 36, the only change found was the lower SNR at 

values when they are beginning to that if N was very large.  The likely reason that the increase N 

does not help the performance is that it also increases the chances that one of the chips in the 

sequence is going be jammed. 

 

6.4  Summary 

 

This chapter examined the worst-case jamming of a SESS system with an iterative 

detector.  It achieved a performance gain of 6 db over the SESS system without the detector.  

The worst-case jamming line of a SESS without detector is close to that of Rayleigh fading, so 

the 6 db improvement of the iterative detector falls short of the 15 db it adds to Rayleigh fading.  

The difference in the performance can likely be attributed to the differences in jamming and 

fading models.  The effects of jamming can be seen in the hard decision made on the receiver 

side.  To help combat the worst-case jamming that occurs at low ρ, a method needs to be 

investigated that stops the jammed chip from heavily contributing to the final bit decision. 
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Chapter 7 – Jamming with Noise and Fading Channels 

 

7.1  Introduction 

 

This chapter investigates a sub-optimal method to improve the SESS under the jamming 

conditions.  The method makes a soft decision on the chip values rather than the bit values 

like the systems in the pervious chapters.  The only problem with this system is that in 

previous simulations, the noise of the channel was assumed to be irrelivate.  By adding the 

noise and fading into the jamming channel the flaws in the new sub-optimal method are 

exposed.   

7.2  Analysis 

 

By looking at the way the PNJ works, we can develop methods to defeat the jammer.  

The method that proposed in this section makes decisions on each chip rather than each bit.  

Looking at the jammer at the lower jamming duty cycles, it is effective because it is jamming 

one chip a large amount, which then gets factored into the decision of the bit.  If a decision is 

made at the chip level, then each chip is weighed evenly at the bit level.  This means that when 

the jammer heavily jams one chip, the chip decision will be made and it will only effect the bit 

decision by the change on that one chip.  In other words, only 1 of the N chips is going to be 

wrong.  The final bit decision has a better chance of correcting the jammed chip since the 

jammed chip contributes a value of 1/N to the final bit decision, rather than the actual jammed 

amount.  So, the chip values get changed from the receiver voltage to either  -1 or 1. Normally 
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this would happen at the bit level, however this lets the jamming have a greater effect on the 

system.  Figure 17 shows how the decisions placed on the chip can improve the worst-case 

jamming of the SESS system with iterative detector when the noise of the channel is negligible.   

 

 

Figure 17 - Worst-Case Jamming SESS Chip Decision 

 

It should be noted that the chip decision improves the worst-case jamming, and that the 

worst-case is when the jamming duty cycle is 100 percent (every bit is jammed or ρ =1).  As the 

jamming duty cycle gets lower, the BER gets better, proving that it works.  In fact, it improves 

the worst-case jamming by 6 db at a BER of 10
-3

 over the bit decision, which is 12 db over 

DSSS.   
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The success of the chip decision in the worst-case scenario can be attributed to the way it 

handles jamming at low ρ values.  At the lower ρ values, chips have a lower chance of being 

jammed.  When the decision is made at the chip level it weighs out effects of higher power 

jamming, as the jammed chip only attributes 1/N of the final hard decision (1/2N with iterative 

detector).  Thus, at the lowest level of ρ, the majority of the data being sent is not jammed and 

sent through a noiseless channel.  The noiseless channel makes it easy for the chip decision 

detector to recover from errors at lower ρ.  This being the case, the jamming over the channel no 

longer dominates the noise of the channel.   This reveals the need to add noise or fading back to 

the channel during the jamming simulations. 

 

7.3  Results 

 

There remain problems with the chip decision approach in the assumptions made of the 

simulations used thus far in the paper.  The first problem is that the chip decision is actually 

lower performance under the standard AWGN channel and in a Rayleigh fading channel (can be 

seen in Figure 16 on the next page) 

 

With ρ equal to one, chip decision is about 2.5 db worse than in the bit decision on both 

the AWGN and Rayleigh fading channels.  Figure 17 shows that under jamming the chip 

decision does better, but Figure 17 shows in noise channels without jamming bit decision is 

better.  This brings rise to the second problem; when jamming the assumption is that the noise of 

the channel is negligible.  
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This performance hit in chip decision can be described by the model being fundamentally 

suboptimal and goes against the of correlation detection.  However, it does offer a potential 

solution to improve the worst-case jamming.  

 

If bit decision works better in noise channels and chip decisions work better in the worst-

case jamming scenario, then what if there is a noise channel with jamming?  Figure 19 and 

Figure 20 on the next page show the effects of jamming in AWGN and Rayleigh fading channels 

with bit decisions and chip decision respectively.   

 

From these figures it can be seen that there are a few things about the differences between 

chip and bit decisions.  The first is that the ρ in an AWGN channel doesn‟t affect the chip 

decision. It suffers from the 2.5 db worse performance than the bit decision when the ρ is one.  

The second is that it becomes advantageous to use the chip decision when ρ is less than 0.08.  

The results in the Rayleigh channel show similar results, that right around a ρ of 0.08 chip 
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decisions become the better system.  The channel noise was ignored in previous simulations 

because the jamming dominated the noise.  This appears to remain the case for the higher SNR 

as the values for the worst-case jamming remain close to the same.  The only part of the graphs 

where the channel noise or fading had any effect was the SNR values from zero to ten.   
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Figure 19 and Figure 20 shows that chip decision does improve the worst-case scenario 

by as much as 8 db over bit decision (at BER of 10
-4

) in a noise or fading channel with jamming.  

However, just like as the worst-case jamming depends on prior knowledge of the system to 

achieve the best jamming, the decision to use chip based decisions requires knowledge of the 

jamming.  With knowledge of the ρ, a decision could be made to switch to chip based decision to 

help improve performance.    

 

The final problem affects both systems and it is that in the simulations we assumed that 

the jammer had a limited average power and unlimited peak-power.  With the ρ values low, the 

peak-power is affected because the voltage of the jammer is increased by 1/  𝜌.  The voltage 

cannot be expected to continuously increase at this rate, as there will be a physical limit to the 

system and it would eventually begin to decline.  It is especially bad for the chip decision, as it 

has been shown that the ρ values where the chip decision becomes most valuable is at the lower 

values.   

7.4  Discussion 

 

Perhaps, using a hybrid system of both bit and chip decision could help alleviate the 

problems that the bit decision system has at low duty cycles, while giving the performance of the 

bit decision at higher duty cycles.  More performance could potentially utilized from the chip 

base decisions by adding weights to each chip decision.  The way the system in the simulation 

runs is it changes the chips values of -1 or 1.  By adjusting the values based on the original 

voltages, it could bridge the gap in performance between the chip and bit decision system.  This 
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sort of method that uses these weight adjustments that could incorporate the iterative detector can 

be looked as an iterative least mean square algorithm.  In a least mean square algorithm the 

equalizer weighs by observing the error between the desired pulse shape and the observed pulse 

shape at the equalizer output.  This error is based on the observing the sampling instants and then 

processing the error to determine the direction that the chip weights should be changed to obtain 

the optimum values [27].  Figure 21 below shows a least mean square algorithm for a baseband 

adaptive equalizer, that uses a line delay filter similar to that used on the iterative detector in the 

SESS system.  It assumes that some form of pulse shaping has been utilized in the design, so it 

could be used in the SESS system.  The equalizer weight adjustments may be achieved by 

observing the error between the desired pulse shape and the observed pulse shape at the equalizer 

output.  There is many different ways that an error can be defined, and there are many papers that 

discuss the possibilities.   

 

 

 

 

 

 

 

 

 

There has been work done with a similar weighting system in RAKE receivers in [28].  It 

concludes that by the maximum-likelihood RAKE receiver limits the effect of pulse jamming by 
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Figure 21 - Least Mean Square with Baseband Adaptive Equalization [4]  



47 

 

 

weighting each bit by the inverse of the variance.  This requires the variance to be measured on a 

bit by bit basis, which significantly complicates the receiver. This is similar to the chip decision 

used in SESS because a rake receiver uses a sequence of soft decision receiver outputs to make a 

bit decision. If any of these soft decision receiver outputs have a large variance, much like the bit 

decision used in SESS, it will greatly affect the output of the bit.   

 

7.5  Summary 

 

 From this chapter it can be seen that noise or fading in a channel with jamming affects 

the BER at lower SNR greatly.  The effect at high SNR is less seen, which skews the worst-case 

jamming, making it no longer an inverse relationship with the envelope of the curves.  Chip 

decision is a sub-optimal way that can be used to help fight the worst-case jamming conditions. 

It does not always outperform bit decision, as in many conditions the bit decision remains the 

better system.   The worst-case jamming depends on prior knowledge of the system, the decision 

to use chip based decisions requires knowledge of the jamming.  With knowledge of the duty 

cycle, a decision could be made to switch to chip based decision to help improve performance.  

Another method employs using algorithms that readjust the weight of the chips at the equalizer, 

known as least mean square algorithms.  If the peak power of the jammer is limited it is going to 

affect the jamming performance at low ρ in both chip and bit decision.  The bottom line is that 

without knowing the specifics of a jamming channel (i.e. capabilities of jammer, current jammer 

state, etc.), it is very difficult to determine which model is superior.   
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Chapter 8 – Conclusions / Future Work 
 

 

Self-Encode Spread Spectrum eliminates the need to synchronize m-sequences between 

transmitter and receiver, because it uses spreading codes generated by the transmitted signal.  

This also eliminates the security flaws associated with m-sequences, thus making the channel 

more secure.  This paper discussed the performance of SESS system with an iterative detector in 

AWGN and Rayleigh fading channels.  Introduced was the worst-case pulsed-noise jamming to a 

SESS, as well as, a potential solution for the jamming.  The performance of the SESS system 

with the iterative detector outperformed the standard DSSS system by 6 db at a BER of 10
-3

.  

This performance is great, but fails to come close to the performance of improvement seen in the 

Rayleigh fading channel.  In an attempt to increase the performance of the worst-case jamming, 

modification of the SESS system was made.  By making decisions based on the chips instead of 

the bit, the worst case performance can be increased dramatically.  However, by looking into the 

performance of chip based decisions in noise and fading channels, then introducing noise into the 

jamming simulation made chip decisions less desirable.  When taking physical limitations of 

jamming systems into consideration, the chip decision based system performance suffers more, 

but under absolute worst-case jamming conditions it could still offer improvement over the bit 

based decisions.  Future work needs to be done to explain why the performance of the iterative 

detector in jamming differs from that in a fading channel.  More work is also needed to improve 

the worst-case jamming in SESS with iterative detector by a defeating jamming by implementing 

an advanced form chip decision or other method.  
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Appendix A – Iterative Detector Run Through 
 

Overview of the detector looks like this: 

𝐵𝑖𝑡1 =   𝑒1𝑒0 ,   𝑒1𝑒−1 ,… ,   𝑒1𝑒−𝑁 , 𝑒1𝑒−(𝑁+1)     

𝐵𝑖𝑡2 =   𝑒2𝑒1 ,   𝑒2𝑒0 ,… ,   𝑒2𝑒−(𝑁+1)  𝑒2𝑒−(𝑁+2)   

𝐵𝑖𝑡3 =   𝑒3𝑒2 ,   𝑒3𝑒1 ,… ,   𝑒3𝑒−(𝑁+2), 𝑒3𝑒−(𝑁+3)   

⋮   

𝐵𝑖𝑡𝑁 =   𝑒𝑁𝑒𝑁−1 ,   𝑒𝑁𝑒𝑁−2 ,… ,   𝑒𝑁𝑒1, 𝑒𝑁𝑒0   

𝐵𝑖𝑡𝑁+1 =   𝑒𝑁+1𝑒𝑁  ,   𝑒𝑁+1𝑒𝑁−1 ,… ,   𝑒𝑁+1𝑒2, 𝑒𝑁+1𝑒1)   

 

Step 1: 

Decode Bit 1 using the despreading code, this step is the same as you do in regular SESS or any 

other spreading system.  Take the dot product of the spreading code with the spreading sequence.  

Then as in DSSS system, the sum of the received data times the spreading code.  (Notice the soft 

decision made on 𝑒1, indicated by the 𝑒 1, a final decision isn‟t made till the last step) 

𝐵𝑖𝑡1 =   𝑒1𝑒0 ,   𝑒1𝑒−1 ,… ,   𝑒1𝑒−𝑁 , 𝑒1𝑒−(𝑁+1)   
Decode
        e 1, this is a +1 or -1 

 

Step 2: 

Using the soft decision made in Step1, update the spread sequence used in the 2
nd

 sent Bit, in this 

case Bit 2.  Then, Decode Bit 2 using the updated sequence: 
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𝐵𝑖𝑡2 =   𝑒2𝑒 1 ,   𝑒2𝑒0 ,… ,   𝑒2𝑒−(𝑁+1), 𝑒2𝑒−(𝑁+2)  
𝐷𝑒𝑐𝑜𝑑𝑒
       𝑒 2 , (this is a +1 or -1) 

 

Then update the Bit 2 „s sequence replacing 𝑒2 with the  

 

Step 3: 

Take the soft decision made in step 2 and multiply it with the first chip.  By multiplying the first 

chip by the bit that was sent (𝑒 2), this gives the original value of 𝑒1.  (See below).  This is needed 

to determine if the value 𝑒1 is positive or negative.     

 

𝐵𝑖𝑡2′𝑠  𝑒1 𝑣𝑎𝑙𝑢𝑒 = 

𝑒 2 ∗  𝑒2𝑒1 ,   𝑒2𝑒0 ,… ,   𝑒2𝑒−(𝑁+1), 𝑒2𝑒−(𝑁+2)  =   𝒆𝟏   , 𝑒0 ,   … ,  𝑒−(𝑁+1)𝑒−(𝑁+2)        

 

It should be noted that in Bit 2, 𝑒1 is the first chip.  In proceeding Bits it will be different. 

 

 

Step 4:  

Repeat steps 2 and 3, but use the proceeding Bits (3,4,5…) till Bit N+1. 

𝐵𝑖𝑡3 =   𝑒3𝑒 2 ,   𝑒3𝑒 1 ,… ,   𝑒3𝑒−(𝑁+2), 𝑒3𝑒−(𝑁+3)  
𝐷𝑒𝑐𝑜𝑑𝑒
       𝑒 3 (this is +1 or -1) 

𝐵𝑖𝑡3′𝑠  𝑒1 𝑣𝑎𝑙𝑢𝑒 = 

𝑒 3 ∗    𝑒3𝑒2 ,   𝑒3𝑒1 ,… ,   𝑒3𝑒− 𝑁+2 , 𝑒3𝑒−(𝑁+3)    =   𝑒2
  , 𝒆𝟏  ,…  ,   𝑒−(𝑁+2), 𝑒−(𝑁+3)    

….. 

Through Bit N+1 
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Step 5: 

Take the sum of all the 𝑒1 values from Bits 2 through N+1 and add it to the dot product of Bit 1 

with Bit 1‟s despreading code.   This gives you the final decision for Bit 1, 𝑒1  .   

𝑒1 =    𝐵𝑖𝑡𝑥 ′𝑠 𝑒1

𝑁+1

𝑥=2

 𝑣𝑎𝑙𝑢𝑒 + 𝑑𝑜𝑡(𝐵𝑖𝑡1,𝐵𝑖𝑡1′𝑠 𝑑𝑒𝑠𝑝𝑟𝑒𝑎𝑑𝑖𝑛𝑔 𝑐𝑜𝑑𝑒)  

 

Step 6:  

Update the spread sequence using the final decision for Bit 1.   

 

𝐵𝑖𝑡2 =   𝑒2𝑒1  ,   𝑒2𝑒0 ,… ,   𝑒2𝑒−(𝑁+1), 𝑒2𝑒−(𝑁+2)   

𝐵𝑖𝑡3 =   𝑒3𝑒2 ,   𝑒3𝑒1  ,… ,   𝑒3𝑒−(𝑁+2), 𝑒3𝑒−(𝑁+3)   

⋮   

𝐵𝑖𝑡𝑁 =   𝑒𝑁𝑒𝑁−1 ,   𝑒𝑁𝑒𝑁−2 ,… ,   𝑒𝑁𝑒1 , 𝑒𝑁𝑒0   

𝐵𝑖𝑡𝑁+1 =   𝑒𝑁+1𝑒𝑁  ,   𝑒𝑁+1𝑒𝑁−1 ,… ,   𝑒𝑁+1𝑒2, 𝑒𝑁+1𝑒1    

 

Step 7:  

Receive bit N+2 and repeat by shifting all bits up a spot.  The new received bit N+2 gets moved 

to the Bit N+1 spot (bit 2 becomes bit 1, bit 3 become bit2, …, bit N+1 becomes bit N).  And 

then repeat steps 1-6. 
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Appendix B – Matlab Code 
 

 

%Casey Deyle 

%Version 1 - proving underlying Direct Sequence Spread Spectrum works 

%by comparing to BPSK system 

%Version 2 - Implementing selfencoded spread spectrum on top of Spread 

%Spectrum 

%Version 3 - Adding the Jamming signal 

%Version 4 - Adding selfencoded spread spectrum to jamming and jamming  

%            each chip instead of each bit 

%Version 5 - Adding irative detector to the self-encoded spread spectrum 

%Version 8 - Final 

clear; 

%------------------- Declaring Varibles ----------------------------------- 

figure; 

ch_bt=32; % Set the chips/bit 

increment = 1; %How much you increment the SNR in the loop 

Max_Eb_No_db=20; %Max SNR, changes graph window as well 

Bits2Tx = 100000; %How many Bits to transmit 

BER = zeros(1,floor(Max_Eb_No_db/increment)); %empty BER 

Eb_No = zeros(1,floor(Max_Eb_No_db/increment)); %empty Eb/No 

temp = zeros(1,ch_bt); 

b = zeros(1,ch_bt+1);  

  

jdcnt = [1] ; 

%jdc=.02; % Set the jamming duty cycle (percent) 20% = .2, 100%=1, etc. 

   

for z=1:length(jdcnt) 

    jdc = jdcnt(z); 

     

    %------------------- Setup ------------------------------------------------ 

    %figure; %crates new figure 

  

    arraycounter = 0; %initialize to 0 

   

    %for display in Matlab window 

    fprintf('Chips per bit = %g\tBits Transmitted = %g\n',ch_bt,Bits2Tx);   

    fprintf('Max Eb_No = %gdb\tIncrements = %gdb\n',Max_Eb_No_db,increment);  

    fprintf('Jamming Duty Cycle = %g percent\n',jdc*100); 

  

    for SNR1=0:increment:Max_Eb_No_db 

        arraycounter = arraycounter+1; 

        Eb_No(arraycounter) = SNR1;      

        fprintf('SNR: %g (',SNR1); %for display in Matlab window 

        SNR = 10*log10(ch_bt)-SNR1; %Adjusts for Processing Gain 

        data_reg_ct = ch_bt+1;     

        data_reg = zeros(ch_bt+1, ch_bt); 

        spread_reg = zeros(ch_bt+1, ch_bt); 

        %--------- Generate the initial bit pattern used for spreading ---- 

         s_sig=2.*round(rand(1,ch_bt))-1; %random # 1 or -1 

   

        %------------------  Set the initial despreading signal ----------- 

        ds_sig=s_sig; 

        Errors = 0; 

        BitsTx = 0; 

        hardbit = 0; 

        hardbit1 = 0; 

        %------------------------- Start Transmitting Bits ----------------     

        while (BitsTx<Bits2Tx) 
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            BitsTx=BitsTx+1; %increment bits transmitted 

  

            b(data_reg_ct)=(2*round(rand(1))-1);% Generate the next bit to  

                                                %be transmitted 

            t_sig=[b(data_reg_ct)*s_sig];% Multiply the pattern with the  

            %g_sig = awgn(t_sig,-(SNR-3),0); %with spreading signal 

            %fade=sqrt(randn^2+randn^2)/sqrt(2);    

            %rchan_sig=fade*t_sig+(1/sqrt(2*10^(SNR1/10))*randn(1,ch_bt)*sqrt(ch_bt)); 

             

            j_sig = g_sig; %jamming signal = transmitted signal  

                           %when no jamming present, or chip not jammed          

           

            %------ Adding the jamming signal, jamming done on chip level 

            for i=1:length(j_sig) 

                if (floor(rand(1)+jdc)==1) %jdc percent chance of jamming  

                    j_sig(i) = j_sig(i) + wgn(1,1,(SNR-3))*(1/sqrt(jdc)); 

                end      

            end   

  

            data_reg(data_reg_ct,:) = j_sig; 

            spread_reg(data_reg_ct,:) = ds_sig; 

  

            if data_reg_ct > 1  

                %---------------- Update Spread Sequence ------------------  

                s_sig=circshift(s_sig,[1,1]); %rotates in a 0  

                s_sig(1)=b(data_reg_ct);     %and sets a new 1st bit 

                ds_sig=circshift(ds_sig,[1,1]); %rotates in a 0  

                ds_sig(1)=b(data_reg_ct);   %and sets a new 1st bit 

                data_reg_ct = data_reg_ct - 1;   

                 

            else  

                n= ch_bt+1; 

                %-----------Bit Decision 

                for n=1:ch_bt 

                    if dot(spread_reg((ch_bt+2)-n,:),data_reg((ch_bt+2)-n,:)) < 0 

                        bit = -1; 

                    else 

                        bit = 1; 

                    end %n=1:(4,1),(3,2),(2,3),(1,4) 

                    for p=1:ch_bt+1-n % n=2:(3,1),(2,2),(1,3) 

                        spread_reg((ch_bt+2)-(p+n),p) = bit; 

                    end 

                    if(dot(spread_reg((ch_bt+1)-n,:),data_reg((ch_bt+1-n),:))<0) 

                        bit2 = -1; 

                    else 

                        bit2 = 1; 

                    end 

                    temp(n) = data_reg((ch_bt+1)-n,n) * bit2;                

                end   

  

                d_sig = dot(data_reg(ch_bt+1,:),spread_reg(ch_bt+1,:)) + sum(temp); 

                 

%--------------------------------Chip Decision ---------------------------- 

%                  for n=1:ch_bt 

%                      

%                     if dot2(spread_reg((ch_bt+2)-n,:),data_reg((ch_bt+2)-n,:)) < 0 

%                         bit = -1; 

%                     else 

%                         bit = 1; 

%                     end 
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%                     for p=1:ch_bt+1-n %n=1:(4,1),(3,2),(2,3),(1,4) 

%                            %n=2:(3,1),(2,2),(1,3) 

%                         spread_reg((ch_bt+2)-(p+n),p) = bit; 

%                     end 

%                     if(dot2(spread_reg((ch_bt+1)-n,:),data_reg((ch_bt+1-n),:))<0) 

%                         bit2 = -1; 

%                     else 

%                         bit2 = 1; 

%                     end 

%                      

%                     temp(n) = dot2(bit2,data_reg((ch_bt+1)-n,n));                

%                 end   

%  

%                 d_sig = dot2(spread_reg(ch_bt+1,:),data_reg(ch_bt+1,:)) + sum(temp); 

                 

                if d_sig>0 %gets value for decoded bit 

                    cd_sig=1;  

                else 

                    cd_sig=-1; 

                end 

  

                if(b(ch_bt+1) ~= cd_sig) %bit transmitted is != decoded bit 

                   Errors=Errors+1; 

                end 

  

                %-------------- Progress Bar for Matlab Window ------------ 

  

                if(mod(BitsTx,Bits2Tx/10) == 0) 

                    fprintf('.'); 

                end 

  

                %---------------- Update Spread Sequence ------------------ 

  

                for j=1:ch_bt 

                    spread_reg(j,(ch_bt+1)-j) = cd_sig; 

                end 

  

                s_sig=circshift(s_sig,[1,1]); %rotates in a 0  

                s_sig(1)=b(1);               %bit, and sets a new 1st bit 

                 %change the self encoded part of the spreading codes 

  

                ds_sig=circshift(ds_sig,[1,1]); 

                ds_sig(1)=cd_sig; 

  

                for m=0:ch_bt-1  

                    data_reg(ch_bt-(m-1),:) = data_reg(ch_bt-(m),:); 

                    spread_reg(ch_bt-(m-1),:) = spread_reg(ch_bt-(m),:); 

                    b(ch_bt-(m-1)) = b(ch_bt-m); 

                end 

            end 

        end %----------------- Bits transmitted loop --------------------- 

  

        BER(arraycounter)=(Errors/Bits2Tx); %updates BER for that SNR 

        fprintf(')\n');%prints new line in Matlab window 

  

    end %-------------------- SNR increment loop-------------------------- 

     

    if (z == 1) 

        semilogy(Eb_No,BER,'y'); %sets legend for simulation BER 

    end 

    if (z == 2) 
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        semilogy(Eb_No,BER,'r'); %sets legend for simulation BER 

    end 

    if (z == 3) 

        semilogy(Eb_No,BER,'b'); %sets legend for simulation BER 

    end 

    if (z == 4) 

        semilogy(Eb_No,BER,'g'); %sets legend for simulation BER 

    end 

    if (z == 5) 

        semilogy(Eb_No,BER,'k'); %sets legend for simulation BER 

    end 

    if (z == 6) 

        semilogy(Eb_No,BER,'m'); %sets legend for simulation BER 

    end 

    hold on; 

end 

  

%-------------------- Graph and Graph Titles ----------------------------- 

for i=1:length(Eb_No) 

    EBnotdb = 10^(Eb_No(i)/10); 

    theoryBer(i) = .5*(1-sqrt(EBnotdb/(EBnotdb+1)));%Rayleigh fading 

    theoryBer2(i) = jdc * Q( sqrt(2*jdc*(10^(Eb_No(i)/10))));%AWGN 

end 

semilogy(Eb_No,theoryBer2,'m'); 

hold on; 

semilogy(Eb_No,theoryBer,'mx-'); 

hold on; 

axis([0 Max_Eb_No_db 10^-6 0.5]) %sets vaule of axis 

grid on %sets dB grid 

%these are pretty self explanitory 

xlabel('Eb/No (dB)'); 

ylabel('BER'); 

title('\bf\it BER vs. Eb/No N=32 Tx=100000'); 

%legend('theory', 'simulation'); 

legend('jdc = 1'); 

 

function Qfunc = Q(x) 

 Qfunc = erfc(x/sqrt(2))*.5; 

End 

 

function dotfunc = dot2(y,x) 

tempsum = 0; 

    for i=1:length(x) 

        if x(i) < 0 

            bit = -1; 

        else 

            bit = 1; 

        end 

        tempsum = tempsum + bit*y(i); 

        

    end 

         

 dotfunc = tempsum; 

end 
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