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Two-Dimensional Cubic Convolution

Stephen E. Reichenbadiember, IEEEand Frank GengMember, IEEE

Abstract—This paper develops two-dimensional (2-D), nonsep-  In this paper, we develop a two-dimensional (2-D), sym-
arable, piecewise cubic convolution (PCC) for image interpolation. metric, PCC kernel defined oR-2,2] x [—2,2]. The general
Traditionally, PCC has been implemented based on a one- 5 n hiscewise polynomial of degree six is constrained to yield

dimensional (1-D) derivation with a separable generalization to tri bic k | that h i
two dimensions. However, typical scenes and imaging systemsa Symmetric_cubic kernel that ensures smooth, contnuous

are not separable, so the traditional approach is suboptimal. We interpolation. Theoretical analyses and example results both
develop a closed-form derivation for a two-parameter, 2-D PCC show that this 2-D convolution kernel yields slightly better
kernel with support [-2,2] x [—2,2] that is constrained for nterpolation than the traditional separable PCC kernel. Sec-
continuity, smoothness, symmetry, and flat-field response. Our i, | formulates the 2-D, nonseparable convolution kernel
analyses using several image models, including Markov random biect t traints f t tinuit h
fields, demonstrate that the 2-D PCC yields small improvements SUPJECL 1O constraints for symmetry, continuity, Smoothness,
in interpolation fidelity over the traditional, separable approach. ~and flat-field response constraints. Section Il describes math-
The constraints on the derivation can be relaxed to provide greater ematical analyses to determine the best values for the two
flexibility and performance. parameters in the convolution kernel. Section IV presents an
Index Terms—Cubic convolution, image reconstruction, analysis of performance. Section V illustrates an example
image/video processing, interpolation and spatial transformations. image. Section VI summarizes this work and suggests future
directions.

. INTRODUCTION
Il. Two-DIMENSIONAL DERIVATION

MAGE interpolation is the process of defining a spatially . L

continuous image from a set of discrete samples. It S Traditional Separable Derivation
fundamental to many digital image processing operations,ltis useful to review the traditional 1-D derivation of the sep-
such as translation, scaling, rotation, and geometric correcti@nable kernel in order to introduce both concepts and notation.
These general operations require image values at locations@e-dimensional, PCC interpolation is implemented by con-
which no sample is available. Typically, the interpolated valua®lving the samples of a digital imagewith a piecewise-cubic
at these locations are computed as a weighted average kK@imnel f to define the continuous resuit

convolution) of the neighboring image samples. The weighting .
function used in local convolution is called the kernel. Common r(z) = Z p[m]f(z —m) —co<z<oo. (1)
kernels for image reconstruction include nearest neighbor, Mme—oo

bilinear, and piecewise cubic. . . . .
. . . . ._Faor notational convenience, the spatial coordinates are normal-
Piecewise cubic convolution (PCC) has been used for image | . : S
ized in units of the sampling interval.

interpolation since the 1970’s [1]. The traditional PCC kerne . : ) . . .
: o A symmetric kernel is defined piecewise by cubic polyno-
has been defined as the separable generalization of a symmetric, ™ :
. . . - . midls in the intervalge| < 1 andl < |z| < 2. For|z| > 2, the
one-dimensional (1-D) function consisting of cubic polynomi . . :
: . . Kernel is zero. In its most general (symmetric) form, there are
pieces between knots §t+2,—1,0,1,2}. Parametric cubic .
S : . eight degrees of freedom
convolution is a popular approach that imposes constrain

to insure continuity and smoothness leaving one parameter as|z|® + as|z)® + arlz| + ao if 2] < 1
that can be used to tune the kernel for the image [2]. Becausef(z) = bal|® + ol + bule| + by if 1< |z] <2
PCC provides a good compromise between computational 0 otherwise.

complexity and interpolation accuracy, it is used widely in
remote sensing [3] and other applications. However, typichd insure continuous, smooth interpolation and flat-field re-
scenes and imaging systems are not separable and sosp@nse, it is necessary to impose constraints at the knots. A

separable derivation is suboptimal. smooth function is continuous
lim f(z) = lim f(z) 3)
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A flat-field response means that if the digital image has coB®. Nonseparable Derivation
stant pixel values, then the interpolated image will have constantry,o general, 2-D, symmetric, piecewise polynomial with
value. For unity response, this requires that for any degree six on the intervd-2,2] x [~2,2] is defined by the

g function in the first quadrant as
Vz, z—m)=1. 8
m;ooﬂ ) (8) , e
fal@,y)=>" Y agaly® 0<z<1,0<y<1
Interpolation requires that the function value be 0 for integer Jj=0k=0
; i 6 6-—j ,
abscissa except at the origin @y =3 S bpeiyt 1<z<2,0<y<l
f(1)=o. ©)  flz,y)= e :
— . j .k
The seven constraints in (3)—(9) leave one degree of freedom fe(z,y) —];0 kgﬂ cierly”  1<wz<2,1<y<2
which can be identified with the slope of the kernekat 1. 6 6—j _
The resulting 1-D PCC kernel is fa(z,y)=> > dpaiy® 0<2<1,1<y<2
\ j=0k=0
(a+2)z]® = (a+ 3|z +1 if |z] <1 17)
f(@) =9 alz)® = 50l + 8alz| — 4o if 1< || <2 This general form hasl2 = 28 x 4 parameters.
0 otherwise We enforce the following constraints to ensure symmetry,

_ _ o (10)  continuity, smoothness, flat-field response, and interpolation
where is the first derivative or slope of the kermelat= 1. and to reduce the number of parameters. For symmetry of the
The kernel function can be written as the sum of a componegtes

independent ofe and a component weighted by

Y(z, = ,T). 18
f(@) = fo(z) + afi(z) (11) (z.y), f(z,y) = f(y, @) (18)
where , , For continuity between pieces
€Tr) =
fola) {0 otherwise (12) Vo, lim f(z,y) = lim (z,y) 19)
jof* — Jac? if | < 1 v I _
y, lim f(z,y) = lim f(z,y) (20)
(@)= Q2> = 5|z)> +8lz| —4 if1<|z| <2 (13) a—1- a1+
0 otherwise. Vr, f(2,2) =0 (21)
The slopex = —1 has been used and matches the slope of vy, f(2,y) =0. (22)
the sinc functioh atz = 1 [1]. The slopea = —(1/2) of- E i first-derivative bet :
fers third-order convergence [4] and guaranteed superiority {g" @ continuous first-derivative between pieces
nearest-neighbor (first-order convergence) and linear interpola- of
tion (second-order convergence) with respect to sampling-and- Vi, dy =0 (23)
interpolation error for sufficiently sampled scenes. Interestingly, 71,0
1-D PCC witha = —1 does not provide that guarantee [2]. Yy, of -0 (24)
Finally, if the autocorrelation (or power-spectrum) of the image Iz (0,y)
is known, the slope can be set to optimize expected performance . Of . Of
2 Vz, lim — = lim — (25)
[21. , , : v 0Y |y v Oy
The Fourier transforms of the kernel function components in of ’ of ’
(12) and (13) are Vy, lim —— = lim — (26)
3 r—1— ax <m7y) r—1+ ax <m7y)
f = sinc? (u) —sinc(2 14 o
fo(w) = 5 (sine® (u) ~sinc(2u)) (14) " 8_f L o
7 2 . 2 . . y ($’2)
fi(u) = —— (3sinc®(2u) — 2sinc(2u) —sinc(4u)) . (15) af
(mu) Yy, oo =0. (28)
xr
The 2-D separable generalization of the 1-D PCC kernel is 2y)
. For a flat-field response and interpolation
Ful.y) = F(2) f () P P
= (folz) + afi(z)) (fo(y) + afi(y)) — -
= fol@)folw) + o (o) u(w) + 11(x) o) @) 2, 2 S )
+a® fi(2) f1(y). (16) Vo, f(r,1) =0  (30)
1The sinc function is the interpolation function (or point-spread function) of Yy, f(L y) =0. (31)
the ideal low-pass filter for images sampled at the Nyquist rate or higher
_ (sin(ru))/(ru), if w0 Equa_tions (30) and (31) _actually c_onstrain the so_lution more
sinc(u) = { 1 if =0 than is necessary for 2-D interpolation, but taken with the other

constraints, reduce the number of free parameters from 112 to 2.
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Fig. 1. Two-dimensional PCC components (spatial-domain left and Fourier-domain right).

With these constraints, the 2-D PCC kernel can be written @éth 5 = 0, (32) is identical to the traditional separable PCC
the sum of the traditional, separable kerifglin (16) and an kernel.

additional term weighted by a new parameter The three components of the kernel are illustrated in
. o, ] Fig. 1(a)-1(c) and the three corresponding Fourier transforms
_)‘(at./y) =fs (377?/) + ﬂfn(l:y) (32) are illustrated in Fig. 1(d)-1(f).
where
fa(z,y) = fi(2) f1(y) (33)

with the kernel componenf; defined in (13). The new term Ill. ANALYSES

in the 2-D filter is the separable product of a component of the Fidelity and Mean-Square-Error
traditional 1-D derivation. The details of this derivation are pro-

vided in Appendix A. Expanding (32) yields This section describes how the values of the parameters
B / andg in (34) (and (35)) can be set to maximize the fidelity [5]
f(z,y) = (fol2) + afi(@)) (foly) + afi(y)) of the output. Fidelity can be analyzed in the Fourier domain
+ Bf1(2) f1(y) (34) using a simple system model with sampling and interpolation.
Flu,v) = (fo(u) 4 afl(u)) (fo(v) n afl(v)) For imagep, formed by sampling a scene
+ Bf1(u) fi(v). (35) p(z,y) = s(z,y) (. y) (36)
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where||| is a uniform lattice with Dirac-delta sampling impulses The optimal value for the kernel parametercan be de-

6 termined by numerical analysis. That is, for a given power-
oo oo spectrum, the value af can be varied to determine the value

Wy)y= > > s@—my—n) (37) that minimizes the expected MSE in (42).

m=—00 n=—00 A similar analysis can be used to derive the least-squares op-
. . . L timal reconstruction function, known as the Wiener filter [6]
the corresponding Fourier-domain equation is )
oo oo A Dy (u,v)
~ _— a fw (u‘/ U) = () ') / . (46)
p(u,v) = E E 8(u—p,v —v). (38) S0 by(u—pv—v)

J=—00 V=—00 p=— 00 v=—00

Spatial sampling causes a folding or aliasing of componentsgfom (42), the expected mean-square error for the Wiener filter

the Fourier domain spectrum as shown in (38). is
The fidelity of the interpolated image formed by spatial oo oo
convolution of the image with the kernelf [as in (1)] 2 — / / (i,s(u.,u) _ @s(u v)fw(u.v)dudv. (47)
r(x,y) = m,n|f(x —m,y—n 39 ) ;Oo_f.oo ) ) )
(@9) m;w n;oop[ i / ) (9 The Wiener filter is an approximator, not an interpolator, and
. R ; its unconstrained spatial support makes it relatively impractical,
#(u,0) = plu, 0) f(u, 0) (40) hata SaPp yimp

. _ but all other filters have greater expected mean-square error. The
is determined by the expected mean-square error (MS&Jer mean-square error for any filter exceeds that of the Wiener filter

sampling and interpolation by its difference with the Wiener filter weighted by the scene
e[ ower-spectrum:
¢ =¢ {/ / Ir(a,y) — s(x,y)[* dwdy} P P o
—o00 J —oo 9
2 _ 2 5 ; ;
- - = Cw + (I)S U, v w\U, V) — u,v dudv. (48
=& {/ / |7 (u,v) — 8(u, v)|? dudv} . (41) S / / (w,0) | fu(t0) = f{u,0) (48)

If the aliased components are uncorrelated [6], then the expected .
MSE can be expressed in terms of the scene power spectrum Bndcene Models and Optimal Parameters

filter transfer function This section considers three simple scene models—a circular
oo oo pulse, a rotated square, and a Markov random field—and illus-
e = / / D (u,v) — 2f(u,v)Ps(u,v) trates the optimal parameters for each model.

Consider a scene that contains a circular pulse. Such a scene
5 0O ) contains an edge point for all orientations. The scene power-
+ | f(u, fu)‘ > Y @u(u—pwv—v)dudy  (42) spectrumis a function of the diameter

H=—00 V=—00

— 00 —00O

2

&, (u,v) = ng(der) (49)

whered, is the scene power-spectrum (the expected power as

a function of frequency) wherer = vu? + 02 andJ; is the first-order Bessel function.

b (u,v) =& {|§(u7v)|2} . (43) The optimal PCC parametersand 3 can be determined for

L . values of the diametetas described in Section IlI-A. In the re-
The kernel parametgt that minimizes expected MSE in (42)sults presented here, (42) is evaluated numerically using a fre-

(and so maximizes fidelity) can be determined by substitutin o -
the expression for the transfer function of 2-D PCC kernel froé‘IenCy space of 16 to 16 cycles/pixel in a 512 512 coeffi

: X : L clent array (yielding 16< 16 pixel space).
S?/%ilﬂt?egngc?rtlgisi(s)I\élc;l?aﬁz \;v:rire the partial derivative of Fig. 2 graphs the optimal parameters for 2-D PCC, given a

) scene with a circular pulse, as a function of the diameter. For a
3i -0 (44) circular pulse with diameted = 2 pixels, the optimal values
B for 2-D PCC are about = —0.29 andg = 0.05. The optimal
The value ofg3 that yields optimal fidelity is (see (45) at theparameters for circular pulses with diameter larger than 2 pixels
bottom of the page). Note that the optimal value foin (45) vary slowly with diameter. For comparison, a separable analysis
is a function of the scene power-spectrum and the kernel cofar this model indicates an optimal value efbetween—0.45
ponents with parameter. and—0.50 for larger diameterg > 1.25 pixels.

=~ (<I><u - S Y buu—po—v)fiu, v>> Fulu, ) dudo
/B _ ;tzfoo Vv=—0oC (45)

[0 5 b mo o) (fuw ) dudo

JH=—00 V=—00
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Optimal PCC Parameters for a Circular Pulse

Optimal PCC Parameters for a Rotated Square Pulse

861
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Fig. 2. Optimal PCC parameters for a circular pulse as a function of pulbég. 3. Optimal PCC parameters for a rotated square pulse (dimension 2
diameter. pixels) as a function of rotation angle.

Optimal PCC Parameters for a Markov Field

Consider a scene that contains a square pulse of dimession 06

and rotated by anglé. The scene power-spectrum is N
&, (u,v) = [sinc(su')sinc(s0") (50) NG T b

whereu’ = u cos(f) +vsin(f) andv’ = —usin(f) + v cos(6). \\‘\\\\
The optimal PCC parametetsand 3 can be determined for 2 sl \‘\\y_un__;
values ofs andé. g v

Fig. 3 graphs the optimal parameters for 2-D PCC, given a g
scene with a square pulse with dimensior= 2 pixels, as a E 00
function of the rotation angle. The figure illustrates that the op- g
timal parameters are different depending on the angle of rota- 8 ol |
tion. The optimal value for the parametein 2-D PCC ranges -
from —0.08 for rotation 0 down te-0.39 for rotationr /4. For
comparison, a separable analysis for this model indicates an op-  -04 1
timal value of betweer-0.16 for rotation 0 down te-0.68 for
rotation /4. 08 . \

Consider a more complex and general scene model—a 2-D, 1 2 A 8
isotropic, Markov random field with mean-spatial-detaill his Mean Spatial Detail of Markov Field (pixels)

power-spectrum is appropriate for modeling both images and ) ) )
. . Fig. 4. Optimal kernel parameters for a Markov random field as a function of
geostatical quantities [7]

mean-spatial-detail.
. 27 d?

O (u,v) = . (51)

(1 + 4n2d?(u? + 02))% component of the filter controlled by the parameter affects
The mean-spatial-detail can be interpreted as the average siz%”orPamy h|gh-frequ_ency S|gnal compon_ents. For comparison,
. . . . separable analysis for this model indicates an optimal value
elements in the scene, i.e., scenes with larger objects (relaﬂa\fe . . . .
L . ) —0.22 for mean-spatial-detail = 1 pixel and the optimal
to the sampling interval) have larger mean-spatial-detail. The : R,
. . value decreasing (and rate of decrease diminishing)Qat4
optimal PCC parameters and3 can be determined for values . ! .
. for mean-spatial-detaidl = 4 pixels.
of the mean-spatial-detail
Fig. 4 graphs the optimal parameters for 2-D PCC, given a
scene thatis a Markov field, as a function of mean-spatial-detail.
For mean-spatial-detail = 1 pixel, the optimal parameters are This section examines three issues of performance: optimal
a = 0.00 andg = 0.59. As the mean-spatial-detallincreases, fidelity, robustness, and computation. Optimal fidelity concerns
the optimal values of botlw and 8 decrease, with the ratehow well the system can achieve the goal of interpolating the
of decrease diminishing, to about= —0.24 and 8 = 0.19 scene. Robustness concerns how well the system performs when
at mean-spatial-detad = 4 pixels. The magnitude of the there is a mismatch between the kernel design and the scene
parameter3 decreases as the mean-spatial-detail increas@s., the kernel is applied to a scene with different characteris-
This is expected, because as can be seen in Fig. 1(f), tles than were assumed in the design). Computation concerns

IV. PERFORMANCE
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Interpolation Fidelity for a Markov Field Interpolation Fidelity for a Markov Field

0.9 T T — 0.9 T T —
= =
= = T
a =
e 08 s
o e 1 ° T
. ' ///‘ v ’ // v
= A Z L
g o7 /i 1 gor7 /74 )
i w
— Wiener — Wiener
—-— 2D PCC (optimized) ——- 2D PCC (d=1)
— — - Separable PCC (optimized) 1 06 f —-— 2D PCC (d=4) 1
------------ Separable PCC (0=-1/2) ’ - 1D PCC (0=-1/2)
— — - Cubic spline interpolation — — - Cubic spline interpolation
0.5 L L 0.5 1 1
1 2 3 4 1 2 3 4
Mean Spatial Detail of Markov Field (pixels) Mean Spatial Detail of Markov Field (pixels)
Fig. 5. Interpolation fidelity for a scene with a Markov random field as a function of mean-spatial-detail.
A. Transfer functions, left-to-right: Wiener, optimal 2D PCC, optimal separable PCC, separable PCC (o = —0.5),

cubic spline interpolation

B. Differences with Wiener transfer function, left-to-right: optimal 2D PCC, optimal separable PCC, separable PCC
(a = —0.5), cubic spline interpolation

Fig. 6. Various filter transfer functions (frequencieg to 2 cycles/pixel for a Markov field with mean-spatial-detait 2) and the differences from the Wiener
transfer function.

how many operations and how much memory are required inFidelity [5] is a normalized measure of image quality as a
the processing. function of the mean-square error
This section employs the 2-D, isotropic, Markov random field 62
scene model described in Section IlI-B, in which Fig. 4 presents F=1-
the optimal parameters for PCC as a function of the mean-spa- f f_
tial-detail. The independent variable in the experiments is thee greatest fidelity possible is 1.0, where the mean-square error
mean-spatial-detail, with valugls= 1 to 4 pixels. The reported g (.
dependent variables are Fig. 5(a) graphs the fidelity for 2-D PCC with the optimal
1) fidelity for the optimal kernel; parameter values and the fidelity for several other filters, in-
2) fidelity for mismatched kernels (derived for one mearcluding: Wiener, separable PCC with optimal parameters (de-
spatial-detail and applied to scenes with another meaermined by separable analysis), separable PCC with a fixed
spatial-detail). parametery = —0.5, and cubic spline interpolation [8]. The

(52)

(u,v) dudv
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A. Infrared scene B. Wiener filter C. Optimal 2D PCC

D. Optimal separable PCC E. Separable PCC (a = —0.5) F. Cubic spline interpolation

Fig. 7. Images produced by various methods.

Wiener filter (46) has the best fidelity that can be expected (47). TABLE |

For the Markov fleld the 2-D PCC Wlth optlmal parameters FIDELITY OF SEVERAL PROCESSINGMETHODS APPLIED TO A SAMPLED
’ . ) M FIELD WITH V. MEAN-SPATIAL -D

out-performs all of the other listed methods, but the differences ARKOV HIELD THITH VARIOUS MEAN-SPATIAL-DETAIL

are relatively small. In particular, the improvement of the op- Processing Method Fidelity
timal 2-D PCC over the optimal separable PCC is smallest of

the methods compared. Table | summarizes the fidelity values Wiener 0.8515
for several levels of mean-spatial-detail. 2D PCC (optimized) 0.8303

The reason for the superior performance of the optimal PCC .
filters in this problem can be understood by examining the filter Separable PCC (optimized) | 0.8300
transfer functions, illustrated in Fig. 6(a) (frequencie? to 2 Separable PCC (o = —0.5) | 0.8297
cycles/pixel for a Markov field with mean-spatial-detdiE= 2
pixels). The Wiener filter achieves the best-possible expected
result for the signal and aliasing present in this example. The
transfer functions of cubic spline interpolation and separal¢arkov field with mean-spatial-detail = 4 both are consid-
PCC witha = —0.5 are much more square than the Wienegred for Markov fields with mean-spatial-detail from 1 to 4. For
transfer function, with the differences illustrated in Fig. 6(bxhe Markov field, even with a design mismatch, the 2-D PCC
The transfer functions of the optimal separable PCC and optinyélds better fidelity than separable PCC with= —0.5 and
2-D PCC are closer to the Wiener transfer function, explainiraybic spline interpolation. Table | includes the fidelity for the
their better performance. This is a single example, but illustratessmatched PCC.
the type of analysis that can be used to understand performanc&€ubic convolution is attractive because the output can be

Fig. 5(b) graphs the fidelity for mismatched 2-D PCC. Miseomputed relatively simply. With the separable kernel, the
match means that the 2-D PCC parameters were derived faraavolution can be performed as two, 1-D operations. As has
scene with a different mean-spatial detail than was actually pteen shown, the 2-D PCC kernel is the sum of two separable
sented. Here, the 2-D PCC designed for a Markov field witfunctions. Therefore, the convolution still can be performed
mean-spatial-detail = 1 and the 2-D PCC designed for aas 1-D operations, with two computations in each dimension.

Cubic spline interpolation 0.8236
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TABLE I APPENDIX
FIDELITY OF SEVERAL PROCESSINGMETHODS APPLIED TO A SAMPLED
INFRARED SCENE
VII. DETAILS OF THE TWO-DIMENSIONAL DERIVATION
Mean-Spatial-Detail The reduction [9] employs two propositions.
Processing Method d=11 d=21| d=4 Proposition_ 1: For P(z,y), a polynomial ofz andy with
degreen > 0, if Vy € R, P(z9,y) = 0, thenP(z, y) must have

Wiener 0.6034 | 0.7935 | 0.8994 factor (z — o).

2D PCC (optimized) 0.5867 | 0.7854 | 0.8954 Proposition 2: For Q(z,y) = (z — zo)P(z,y), with

P(z,y) a polynomials ofz andy with degreen > 0, if

2D PCC (d = 1) 0.5867 | 0.7844 | 0.8945 W R Qe o)/l = 0, thenO(e.q) must have
2D PCC (d = 4) 0.5842 | 0.7852 | 0.8954 factor (z — )2
Separable PCC (optimized) | 0.5846 | 0.7839 | 0.8947 Then, with the constraints in (19)-(22), (27),(28), and

(30),(31), the kernel can be written more simply as:
Separable PCC (a = —0.5) | 0.5747 | 0.7819 | 0.8941
4 4—3

Cubic spline interpolation | 0.5501 | 0.7701 | 0.8885 falz,y) = (@ — 1)(y — 1) Z Z a 'k:l?jyk (53)
a ? - IR
7=0 k=0

2—-j

So, computing output for 2-D PCC requires no more than o
bjkxjy (54)

. 2
twice the number of operations as the separable convolution. folz,y) = (z = 1)(y = D(z = 2)

L]

k=

Two-dimensional PCC is a local operation that requires very 2j ’ 02
little memory. fe(z,y) =(z = 1)(y — 1)(z — 2)"(y — 2) coo (55)
2 2—j )
V. EXAMPLE IMAGE fa(z,y) =@ - 1)y - Dy =2)*> > djpa’y" (56)
=0 k=0

The 2-D PCC is derived based on quantitative optimization of
fidelity (subject to constraints). Many image processing appNote that the coefficients in (53)—(56) are distinct from those in
cations are quantitative, but some applications are visual, so i(13).
worthwhile to also consider the visual quality produced by 2-D Proceeding from (53), the smoothness constraint in (23) on
PCC. Fig. 7(a) presents an infrared scene of an M60 tank. Tlfisaty = 0 requires:
512x 512 scene is sampled to ¥616 and then reconstructed to 4 5
512 x 512 using several filters: Wiener, optimal 2-D PCC, op- z,(z — 1) (as02” + (az0 — az1)z
timal separable PCC, separable PCC wits: —0.5, and cubic ~ + (a2 — aa1)2* 4 (a19 — a11)z + (ago — ap1)) =0. (57)
spline interpolation. The images produced by these methods are
presented in Fig. 7. The fidelity for each of the methods for thig€N:
image are presented in Table Il. Two-dimensional PCC achieves

. A . =0
the highest fidelity of the methods compared. As with the math- 40
ematical expectations, the differences between the methods are @30 = G31
small—both visually and quantitatively. (20 = a1
ajo = ail
VI. CONCLUSION _
ago = ao1-

Emerging technologies such as commercial digital still-cam- )
eras and high-resolution digital television are increasing interd¥th symmetric axes:
in 2-D interpolation algorithms designed to balance computa-
tional complexity and accuracy.

Piecewise cubic convolution (PCC) is a relative efficient @30 = a31 = Go3 = @13
method of interpolation with performance that exceeds 20 = @31 = Q12 = G2
nearest-neighbor and bi-linear methods. The traditional PCC
kernel is derived in one-dimension and the kernel is generalized
to two dimensions by assuming separability. However, mostNext, the smoothness constraint in (23) gnaty = 0
scenes and imaging systems are not separable. requires:

This paper develops a closed-form, 2-D derivation for PCC.

Experiments with image models and actual images indicaté®, (z—1)(2—2) (baoa”+ (bro — b11)z+(boo —bo1)) = 0.
that 2-D PCC produces high-fidelity images, is robust, and is (59)
efficient. However, the improvements over separable PCC at€"
small. Future improvements in 2-D PCC may be realized by
relaxing some of the constraints imposed on the derivation.
More parameters would both improve performance and provide bio =bn
greater flexibility. boo = boy-

agg =apg =0

a10 =a11 = ap1 = apo- (58)

bao =0
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With symmetric axes This formulation can be written using the same slope param-
eter used in the 1-D parametric formulation
bao =do2 =0
bio =b11 = do1 = dn1 a= g—f = ? (70)
boo =bor = doo = dio. (60) lao - Yloy

Next, after simplification using the equalities in (60), th&Vith apz = —(a+2) andas; = B+ (o + 2)”. The formulation
smoothness constraint in (26) gnandf, atz = 1 requires ~ With a and3 is shown in (32).

Yy, (y — D(y — 2)*(=2d11y + coo — 2d10 — dao) = 0. (61) REFERENCES

Then: [1] S. S. Rifman, “Digital rectification of ERTS multispectral imagery,” in
’ Proc. Symp. Significant Results Obtained From BRT®L |, sec. B,
1973, NASA SP-327, pp. 1131-1142.
dip =0 [2] S.K.ParkandR.A. Schowengerdt, “lImage reconstruction by parametric
cubic convolution,"Comput. Vis., Graph., Image Processl. 23, pp.
coo = 2d10 + dxo. (62) 258-272, 1983. P P ’ ° PP
[3] F. C. Billingsley, “Data preprocessing and processing,Manual of

Next, after simplification using the equalities in (58), (60), Remote Sensingnd ed, R. N. Colwell, Ed. Falls Church, VA: Amer.
and (62), the smoothness constraintin (26fpandf, atz = 1 Soc. Photogramm., 1983, pp. 258-272.
requires [4] R. G. Keys, “Cubic convolution interpolation for digital image

processing,”IEEE Trans. Acoust., Speech, Signal Processiva).
ASSP-29, no. 6, pp. 1153-1160, 1981.

vy, (y - 1) (2a13y3 + (2002 + a2 — boz)y2 + [5] E. H. Linfoot, “Transmission factors and optical desigd,"Opt. Soc.
_ Amer, vol. 46, no. 9, pp. 740-752, 1956.
(2a00 + o2 + a13 b01>y+ [6] C. L. Fales, F. O. Huck, J. A. McCormick, and S. K. Park, “Wiener
2a90 + ag2 + a13 — b01) =0. (63) restoration of sampled image data: end-to-end analy3isQpt. Soc.
Amer. Avol. 5, no. 3, pp. 300-314, 1988.
Then [7] R. A. SchowengerdtiRemote Sensing: Models and Methods for Image

Processing2nd ed. Orlando, FL: Academic, 1997.
[8] M. Unser, A. Aldroubi, and M. Eden, “Fast B-spline transforms for con-
aiz =0 tinuous image representation and interpolatid&EE Trans. Pattern
bos = aoe + 2a Anal. Machine Intell.vol. 13, no. 3, pp. 277-285, 1991.
02 — %22 02 [9] F. Geng, “Image Reconstruction with Two-Dimensional Piecewise
bo1 = 2agg + ag2. Pol_ynomial Convol_ution," M.S. thesis, Comput. Sci. Eng. Dept.,
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With symmetric axes

boz = d20 = az2 + 2a02
_ _ Stephen E. Reichenbach(S’85-M'89) received
bo1 =d1o = 2ao + a2 (64) the Ph.D. degree in computer science from the
College of William and Mary, Williamsburg, VA, the
M.S. degree in computer science from Washington
University, St. Louis, MO, and the B.S. degree
from the University of Nebraska—Lincoln (UNL).
He is a Professor in the Computer Science and
Engineering (CSE) Department, UNL. He held a
. .. National Research Council research associateship
leaves only two free parameters in defining the keragl,and in the Visual Information Processing Laboratory at
ao2. the NASA Langley Research Center and an ASEE
: ; ; Research Fellowship in the Landsat 7 Project Science Office. From 1996 to
The function in the two free parameters is 2000, he served as UNL CSE Department Chair. He has authored more than 70
Ja(z,y) =(z - 1)(y - 1)

papers on digital image processing and image information systems.
X (a:y+x+y+1+a02(x2y+ajy2+$2+y2)

Finally, observing that from the constraints related to fla
field response and interpolation

ago =1 (65)

+azr’y?) (66) , . .
9 Frank Geng (M'01) received the B.S. degree in
fo(z,y)=(x -1 (y—1)(z —2) computer science from Northwestern Polytechnic
2 University, Xi'An, China, in 1995, and the M.S.
X ((a02 +2)(y + 1) + (2a02 + a22)y ) (67) degree in computer science from the University of
(o _ _9)2 Nebraska-Lincoln in 1998.
fc(x’ y) B (x 1)(,1/2 1)(x 2) He is currently working as an IT Consultant.
X (y —2)" (4aga + azo + 4) (68)

falw,y) =(z = 1)(y - 1)y —2)°
x ((ag2 + 2)(z + 1) + (2a0s + a22)z?) . (69)
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