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1. Introduction

Securities with mortality risk as a component have been 
around a long time. These securities arise as securitization 
of portfolios of life insurance or annuity policies. The risks 
underlying a life insurance or annuity portfolio include in-
terest rate risk and policyholder lapse risk, as well as mor-
tality or longevity risk. In these transactions, the posi-
tive future net cash flow from the policies is dedicated to 
pay the bondholders. Therefore, they are similar to asset 
securitization. Cowley and Cummins (2005) surveys recent 
life insurance securitization transactions, including these 
asset-type securities.

However, securitization of pure mortality or longevity 
risk is a recent and potentially important innovation in fi-
nancial markets. Pure mortality or longevity securitization is 
more like property-linked catastrophe bonds than the com-
mon asset-type life insurance securitizations. This is be-
cause, like that of a property-linked catastrophe bond based 
on earthquake or hurricane losses, the payment of a mortal-
ity security is only subject to a well-defined risk. In the case 
of a mortality bond, the event might be a sudden spike in 
death rates, which may be caused by a flu epidemic.

Catastrophes impose a big potential problem for a life 

insurer’s solvency since fatalities from natural and man-
made disasters may be tremendous. For example, the earth-
quake and tsunami in southern Asia and eastern Africa in 
December 2004 killed 182,340 people and made 129,897 
missing (Guy Carpenter, 2005). Although most of the vic-
tims did not purchase life insurance, the life insurance in-
dustry may not have enough capacity to cover this type of 
catastrophe losses if such an event were to occur in a more 
economically developed region where most of people buy 
life insurance. Cummins and Doherty (1997) noted that “a 
closer look at the industry reveals that the capacity to bear 
a large catastrophic loss is actually much more limited than 
the aggregate statistics would suggest.”

Longevity risk is the other side of mortality risk. Al-
though mortality improves over time, future rates of im-
provement are uncertain. At the same time we are seeing, 
especially in the US, a trend to shift longevity risk to indi-
viduals. In the US, defined benefit pension plans are con-
verting to defined contribution plans. Proposed Social Se-
curity reforms further shift mortality risk to individuals. 
Thus, there should be an increased demand for individual 
annuities. As the demand for annuities increases, the annu-
ity insurers’ need for risk management of potential mortal-
ity improvements will increase.

Published in Insurance: Mathematics and Economics 42:2 (April 2008), pp. 628-637; doi 10.1016/j.insmatheco.2007.06.005  
Copyright © 2007 Elsevier Ltd. Used by permission. http://www.elsevier.com/locate/ime  

Submitted March 4, 2006; revised June 13, 2007; accepted June 14, 2007; published online July 18, 2007.1

Securitization of Catastrophe Mortality Risks
Yijia Lin

Department of Finance, University of Nebraska - Lincoln, P.O. Box 880488, Lincoln, NE 68588, USA  
(Corresponding author: tel 402 472-0093, email ylin@unlnotes.unl.edu )

Samuel H. Cox
Dr. L. A. H. Warren Chair Professor of Actuarial Science, University of Manitoba,  

Winnipeg, Manitoba R3T 5V4, Canada (tel 204 474-7426)

Abstract
Securitization with payments linked to explicit mortality events provides a new investment opportunity to investors and financial 
institutions. Moreover, mortality-linked securities provide an alternative risk management tool for insurers. As a step toward un-
derstanding these securities, we develop an asset pricing model for mortality-based securities in an incomplete market framework 
with jump processes. Our model nicely explains opposite market outcomes of two existing pure mortality securities.

628

1 This paper was presented at the 2005 World Risk and Insurance Economics Congress Meeting, the 2006 Asia-Pacific Risk and Insurance Associa-
tion Annual Meeting, the 2006 American Risk and Insurance Association Annual Meeting, and the 2006 Financial Management Association An-
nual Meeting. It won the 2006 Asia-Pacific Risk and Insurance Association Harold D. Skipper Best Paper Award. We appreciate helpful comments 
from Patrick Brockett, Richard MacMinn, Naresh Bansai, and other participants at these meetings. We are especially grateful to detailed and in-
sightful comments from an anonymous referee.



Se c u r i ti z ati o n o f cata S tr o p h e Mo r tal i ty ri S k S   629

As a new risk management tool, mortality securiti-
zation enhances the capacity of the life insurance indus-
try by transferring its catastrophic losses to financial 
markets. Jaffee and Russell (1997) and Froot (2001) argue 
that insurance securitization offers a potentially more effi-
cient mechanism for financing catastrophe losses than con-
ventional insurance and reinsurance. Securitization brings 
more capital and provides innovative contracting features 
for the life insurance industry to bear potential mortal-
ity shocks, thus avoiding the market disruptions caused 
by prohibitive reinsurance prices and availability cycles. 
Moreover, because mortality securities may be uncorre-
lated with financial markets, they provide a valuable new 
source of diversification for market participants (Cox et al., 
2000; Litzenberger et al., 1996; Canter et al., 1997). Finally, 
Cowley and Cummins (2005) categorizes securitization as 
arbitrage opportunities or new classes of risk that enhance 
market efficiency.

The first pure death-risk linked deal was the three-year 
Swiss Re bond issued in December 2003 (Swiss Re, 2003; 
MorganStanley, 2003; The Actuary, 2004). Almost one 
year later, the European Investment Bank (EIB) issued the 
first pure longevity-risk linked deal — a 25-year 540 mil-
lion pound (775 million euro) bond as part of a product de-
signed by BNP Paribas aimed at protecting UK pension 
schemes against longevity risk.2 In 2004, the Swiss Re Com-
pany issued two more mortality bonds. The Swiss Re deal 
is a hedge against catastrophic loss of insured lives that 
might result from natural or man-made disasters in the US 
or Europe. The EIB deal is a security to transfer the other 
tail of mortality risk, longevity risk, to bondholders.

Interestingly, the market outcomes of the first two mor-
tality bonds are opposite. According to MorganStanley, “the 
appetite for this security [the Swiss Re bonds] from inves-
tors was strong.” This is the same reaction investors have 
had to the so-called “catastrophe bonds” based on portfo-
lios of property insurance. The strong appetite for mortality 
securities may indicate a growing potential market for mor-
tality securities (Lin and Cox, 2005). On the other hand, the 
EIB bond has not sold very well at all.

It is important to understand why investors viewed 
the Swiss Re bond price favorably, yet do not buy the EIB 
bond. To evaluate these two bonds, we need a model that 
can capture and price mortality risks. We notice there are 
only a few preliminary papers in this area. Developing as-
set pricing theory in this area is important since it will help 
market participants better understand this new financial 
instruments. Most of the existing mortality securitization 
pricing papers have two major shortcomings. First, they ig-
nore mortality jumps (Lee and Carter, 1992; Lee, 2000; Ren-
shaw et al., 1996; Sithole et al., 2000; Milevsky and Promis-
low, 2001; Olivieri and Pitacco, 2002; Dahl, 2003; Cairns et 
al., 2004) to model death-linked securities. Mortality jumps 
should not be ignored in mortality securitization modeling 
especially on the death side since the rationale behind sell-

ing or buying mortality securities is to hedge or take catas-
trophe risks.3 Second, they use the complete market pric-
ing methodology. At this point, it looks like mortality risk 
bonds cannot be replicated with traded securities. There-
fore, we propose to price mortality bonds with the Wang 
transform, a technique that allows pricing new securities 
relative to securities whose prices are known.

The Wang transform is a market-based equilibrium pric-
ing method that unifies the finance and insurance pricing 
theories (Wang, 2002). Wang (2004) recently applied the 
Wang transform to the property-linked catastrophe securi-
ties. Apparently our application of the Wang transform to 
mortality bonds is new. We also use a jump model for mor-
tality dynamics to price the Swiss Re bond linked to cat-
astrophic death risk. Moreover, we improve the existing 
literature (Lin and Cox, 2005) on pricing longevity risk by 
taking into account parameter uncertainty. Our models en-
able investors to better understand why the Swiss Re deal 
is an attractive investment despite the uncertainty associ-
ated with catastrophic mortality risks while the EIB bond 
has not sold very well.

The paper proceeds as follows. Section 2 describes the 
current mortality securitization market and the designs 
of the first two mortality bonds — the Swiss Re and EIB 
bonds. The two-factor Wang transform as an incomplete 
market pricing method is introduced in Section 3. In Sec-
tion 4, we propose a mortality stochastic model with jumps 
to price the Swiss Re bond linked to catastrophic death risk. 
We show that the jump process plays an important role in 
mortality securitization modeling. We also improve the 
model in Lin and Cox (2005) to price longevity risk imbed-
ded in the EIB bond by taking into account parameter un-
certainty. Our models nicely explain the opposite market 
outcomes of these two bonds. Section 5 is a final discussion 
and conclusion.

2. Mortality securitization markets

Lane and Beckwith (2005) describe recent activity in the 
insurance securitization market. In the past ten years, in-
surance and capital market are converging. Capital mar-
ket investors search for uncorrelated risk for diversification 
and the risk-adjusted excess return “”. Insurance-linked 
securities have low or no correlation with financial mar-
kets, providing diversification. Moreover, the existing in-
surance-linked securities provide high risk-adjusted excess 
return. They attract more and more investors. For exam-
ple, hedge funds increased their investment in insurance-
linked securities. At the same time, insurers are looking for 
new sources of risk financing in the capital markets. Before 
1999, there were only seven insurance-linked securities in 
a total dollar amount of only $886.1 million. However, in-
surance securitization increased in both dollar amounts 
and the number of issues especially in the last two years. 
There are 27 and 21 transactions in 2004 and 2005 with dol-

2 From http://www.IPE.com on November 8, 2004.
3 Catastrophic death events like earthquakes or epidemics, in most cases, occur unanticipatedly and only last a short time period (e.g. one year). 

On the other hand, longevity risk dynamics are a more gradual process and span a long time period. Therefore, modeling mortality jumps 
seems more important for securities linked to death risk.
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lar amounts $1894.60 million and $1803.30 million respec-
tively (Lane and Beckwith, 2005). The insurance securitiza-
tion includes three “pure” mortality bonds in the US and 
one in the Europe since December 2003. The first two pub-
licly known pure mortality securities are the Swiss Re bond 
issued in December 2003 (Swiss Re, 2003; MorganStanley, 
2003; The Actuary, 2004) and the European Investment 
Bank (EIB) longevity risk bond issued in November 2004.

2.1. Design of the Swiss Re bond

The financial capacity of the life insurance industry to 
pay catastrophic death losses from hurricanes, epidem-
ics, earthquakes, and other natural or man-made disasters 
is limited. To expand its capacity to pay catastrophic mor-
tality losses, the Swiss Reinsurance Company, the world’s 
second-largest reinsurance company, obtained $400 million 
in coverage from institutional investors after its first pure 
mortality security. Swiss Re issued the bond in late Decem-
ber 2003. It matured on January 1, 2007. So it is a three-year 
deal. The principal is exposed to mortality risk. The mor-
tality risk is defined in terms of an index qt in year t based 
on the weighted average annual population death rates in 
the US, UK, France, Italy and Switzerland. If the index qt (t 
= 2004, 2005, or 2006) exceeds 130% of the actual 2002 level, 
q0, then the investors will have a reduced principal pay-
ment. The following equation describes the principal loss 
percentage, Xt, in year t: 

                           0                                   if qt ≤ 1.3q0        

losst = { 1 – (1.5q0 – qt)/0.2q0   if 1.3q0 < qt ≤ 1.5q0     (1)

                           1                                    if qt > 1.5q0     

where qt = weighted average population mortality in the 
US, UK, France, Italy, and Switzerland in year t. q0 = Year 
2002 level. Therefore, the payment at maturity is equal to 

Payment at Maturity = 400,000,000

             100% – 
t=
∑

2006

2004
losst   if    

t=
∑

2006

2004
losst < 100%

     ×
 {   0                           if    

t=
∑

2006

2004
losst ≥ 100%                        

(2)

Since the probability of having two mortality catastrophes 
in a row is negligible, Equation (2) approximates to 

Payment at Maturity ≈ 400,000,000

              1                               if q ≤ 1.3q0        

     × { (1.5q0 – q)/0.2q0       if 1.3q0 < q ≤ 1.5q0    

0                               if q > 1.5q0                                   (3)

where q = max(q2004, q2005, q2006).

2.2. Design of the EIB longevity bond

About one year after the Swiss Re bond issue, in No-
vember 2004, the EIB issued a longevity bond to provide a 
solution for financial institutions looking for instruments to 
hedge their long-term systematic longevity risks. This bond 

is the result of the co-operation between the BNP Paribas as 
structurer/manager, the European Investment Bank (EIB) 
as issuer and the PartnerRe as the provider of analysis, ex-
pertise and risk-taking capacity. The total value of the is-
sue was £540 million (775 million euro). It was primarily 
intended for purchase by UK pension plans (Cairns et al., 
2005). The term of the EIB bond is 25 years. Potential buy-
ers of the EIB bond are pension plans, as the bond transfers 
longevity risks to investors.

Here is how the EIB bond works: The bond’s cash flows 
will be based on the actual longevity experience of the Eng-
lish and Welsh male population aged 65 years old, as pub-
lished annually by the Office for National Statistics. The 
future cash flows of the bond will be equal to the amount 
of a fixed annuity, £50 million, multiplied by the percent-
age of the reference population still alive at each anniver-
sary. The cash flows, therefore, decline over time. Figure 1 
shows projected coupons (payable annually) based on the 
projected survival rates produced by the UK Government 
Actuary’s Department (GAD).

3. Incomplete market pricing method—the two-factor 
Wang transform

Pricing derivative securities in complete markets in-
volves replicating portfolios. For example, if we have a 
traded bond and stock index, then options on the stock 
index can be replicated by holding bonds and the index, 
which are priced. The analogy for the Swiss Re bond does 
not work. The bond is a mortality derivative, but we have 
no efficiently traded mortality index with which to create a 
replicating hedge. Situations like this are called incomplete 
markets. Pricing in this situation must rely on some other 
assumption — there is no traded underlying security.

Wang (1996, 2000, 2001, 2002) develop a method of pric-
ing risks that unifies financial and insurance pricing the-
ories. We can apply it to the incomplete market situation. 
Wang’s method transforms the underlying distribution 
in such a way that prices are discounted expected values. 
The transform has many desirable properties. It has a clear 
economic interpretation since it can recover the capital as-
set pricing model (CAPM) for underlying assets and the 
Black–Scholes formula for options.

3.1. The Wang transform

Consider a random payment X paid at time T. If the cu-
mulative density function is F(x), then a transform is called 

Figure 1. Projected coupons of the EIB longevity bond. The vertical 
axis shows projected cash flows (millions of pounds) and time is on 
the horizontal axis.
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the Wang transform if the “distorted” or transformed dis-
tribution F*(x) is determined by the market price of risk λ 
according to the equation 

F*X = Φ[Φ–1(FX(x)) + λ],                                       (4)

where Φ(x) is the standard normal cdf. F*X(x) in Equation 
(4) is called the one-factor Wang transform of FX(x). In the 
insurance world, the market price of risk λ in the Wang 
transform reflects the level of market systematic risk and 
firm-specific unhedgeable risk. The idea is that, after trans-
formation, the fair price of X should be the discounted ex-
pected value using the transformed distribution.

The one-factor Wang transform assumes that the true 
distribution is known. However, in reality, we can at best 
estimate the parameters of a probability density function by 
a sample out of the population. To account for this, Wang 
(2002) suggests the two-factor transform: 

F*X(x) = Q[Φ–1(FX(x)) + λ],                                  (5)

where Q is the t-distribution. As in the one-factor model 
in Equation (4), the discounted expected value under the 
transformed distribution F*X(x) in Equation (5) is the price 
of X.

We can determine λ from the retail market for life in-
surance or annuities by Equation (5) so that at time 0 the 
price of a life insurance or annuity contract with payment 
X at time T is its discounted expected value using the trans-
formed distribution. Therefore the formula for the price is 

vTE*(X) = vT ⌡
⌠xdF*(x)                                         (6)

where vT is the discount factor determined by the market 
for risk-free bonds at time 0. Thus, for an insurer’s given li-
ability X with cumulative density function F(x), the Wang 
transform will produce a “risk-adjusted” density function 
F*(x). The discounted expected value under F*(x), denoted 
by vTE*[X], is the price of X at time 0. Wang (1996, 2000, 
2001, 2002) describe the utility of this approach, showing 
that it generalizes well-known techniques in finance and 
insurance.

Suppose an insurer transfers its longevity risk to the fi-
nancial market by issuing a longevity bond. We can de-
rive the market price of risk λ based on the annuity retail 
market, then use the same λ to price the longevity bond. If 
there are no transaction costs between the insurance mar-
ket and the financial market and annuities were actually 
traded, our method guarantees no arbitrage opportunity 
between these two markets. There is another way to view 
this. Insurers price these life and annuity obligations using 
a distribution (usually privately held) of future life time. 
We get to observe the insurers’ prices and use an industry 
market distribution (known to all) F(x). From the prices, we 
are able to derive the market price of risk λ so that the ob-
served retail life insurance or annuity prices are discounted 
expected values using F*(x). Then we transfer the same λ to 
the bond market and use the F*(x) to price mortality-linked 
bonds. As a result, the insurer uses the same mortality as-
sumptions to price the mortality bond as it uses in pricing 
retail life insurance or annuities.

3.2. Why transform?

According to the classical CAPM with the complete 
market assumption, the risk premium of an asset should be 
zero if its payoffs are uncorrelated with those of the mar-
ket portfolio. The insurance market is an incomplete mar-
ket which violates the complete market assumption in 
the CAPM. Therefore, the CAPM cannot explain the pos-
itive and very high risk premium of insurance-linked se-
curities whose risk has no or low correlation with that of 
financial markets. By maximizing the ex post value of the 
firm, Froot and O’Connel (1997), Froot and Stein (1998) 
and Froot (2007) suggest that the high risk premium of in-
surance-linked securities or reinsurance reflects the risk 
aversion of insurers or investors when they face unhedge-
able insurance risks. Risk aversion of the insurers may arise 
from the fact that the true economic capital requirements 
of insurance/reinsurance business are not straightforward 
and potential financial distress costs are very high (Minton 
et al., 2004). On the other hand, risk aversion of investors 
may arise from their loss aversion and/or default risk, po-
tential moral hazard behavior and basis risk of the insur-
ance-linked security issuing firm (Doherty, 1997). Consis-
tent with the theories of Froot and O’Connel (1997), Froot 
(2007) and Doherty (1997), the transformed distribution in 
the Wang transform reflects the risk aversion of insurers 
and investors to unhedgeable risks. In Section 4, we show 
that the transformed mortality distribution has a longer 
tail (i.e. higher probability of having catastrophes) than the 
physical distribution. Evidently insurers and investors are 
risk averse to catastrophic mortality events.

4. Mortality securitization modeling

Mortality securitization modeling depends on two indis-
pensable parts: (1) the mortality forecasting theory and (2) 
the incomplete market pricing theory. First, the principal or 
coupons of a mortality security are determined by future 
mortality levels. For example, the principal of the Swiss Re 
bond will be reduced if the future population mortality index 
increases by more than 30% relative to the 2002 level. There-
fore we need a model to describe future mortality stochas-
tic processes. Second, the insurance market is an incomplete 
market. If we transfer insurance risks to the financial market 
by selling insurance-linked securities, we should use an in-
complete market pricing method to price these securities.

4.1. Existing mortality securitization modeling

4.1.1. Existing mortality forecasting literature
Mortality securitization modeling is based on the anal-

ysis of future mortality dynamic processes. The mortality 
dynamics include “normal” deviations from the trend and 
“unanticipated” mortality shocks. Since the rationale be-
hind selling or buying mortality securities is to hedge or 
take catastrophe mortality risks, a good mortality stochas-
tic model should take into account mortality jumps—which 
might be caused by epidemics, wars, or natural catastro-
phes such as tsunamis.

Most of the existing mortality forecasting papers do not 
explicitly model mortality jumps when they describe fu-
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ture mortality stochastic processes. Dahl (2003) and Mi-
levsky and Promislow (2001) model the force of mortality 
as an Itô-type stochastic process in continuous time with 
continuous sample paths. Cairns et al. (2004) use a more so-
phisticated approach, but still it is a continuous time model 
with continuous sample paths. Econometric methods, like 
Renshaw’s method (Renshaw et al., 1996; Sithole et al., 
2000) and the Lee–Carter model (Lee and Carter, 1992; Lee, 
2000), do not explicitly take into account mortality jumps 
either. We propose a model with a jump, or regime switch, 
to indicate the presence of an event such as a flu epidemic. 
Our model can be much more simple than those cited here, 
since we need a model of the population mortality, a single 
number each period, rather than an entire mortality table 
in each period. Therefore we choose a simple model, a two-
state regime-switching log-normal model. We estimate the 
model and illustrate it by pricing a death-linked security, 
the Swiss Re bond.

There are only a few papers that show how to price mor-
tality-linked securities. Cairns et al. (2004) price mortal-
ity securities in the context of a complete market measure, 
providing a very important advance in modeling, but we 
do not have enough data to apply it. And we are not sure 
how one would estimate the model. On the other hand, we 
use the Wang transform, which does not require a com-
plete market, only a reference price.

4.2. Our model for Swiss Re bond

The Swiss Re bond links bondholder payoffs to a popu-
lation mortality index. This provides transparency, reduc-
ing moral hazard, since the population index is a weighted 
average of government-produced mortality statistics.

4.2.1. Model
Our approach combines a Brownian motion and a dis-

crete Markov chain with log-normal jump size distribution 
with parameters m and s. Most of mortality jumps, e.g. the 
1918 flu or 2004 earthquake and tsunami, are one-time 
events. It is true for the death side in most cases. However, 
mortality usually improves over a long period. We use an-
other method to price the EIB bond which is discussed in 
Section 4.3. Catastrophes push up the whole population 
death rate just for that bad year. The mortality curve af-
ter the shock is independent of that during the shock. Our 
model takes this into account.

The discrete Markov chain counts the number of events 
Nt during years t = 0, 1, 2, … with N0 = 0 and transition 

                       Nt+1 =
     Nt + 1, with probability p

           { Nt, with probability 1 – p.                 (7)

We describe the US population mortality index ~qt dy-
namics at time t as a geometric Brownian motion qt when 
there are no events: 

dqt/qt = dt + σdWt .                                         (8)

The variable  is the instantaneous expected force of the US 
population mortality index. σ is the instantaneous volatil-

ity of the mortality index, conditional on no jumps. Wt is 
a standard Brownian motion with mean 0 and variance t. 
The equivalent explicit description of the index, assuming 
no events in (t − h, t), is 

qt = qt–he( – σ 2/2)h + σ (Wt – Wt – h) .                         (9)

The percentage change in the mortality rate due to a ran-
dom jump is denoted by Y − 1. The Markov chain and the 
jump size Y distributions are independent (and indepen-
dent of W). A jump event occurs during the period [t − h, t] 
with probability p. When a jump occurs, there is a shock ef-
fect Yt on qt. We express the mortality index, including the 
jump, as ~qt = qtYt for t = 0, h, 2h, 3h, …. Our data consist of 
annual observations so h = 1.

If there is no jump in [t − h, t], then Yt = 1 and ~qt = qt . 
When there is a jump, we assume that Yt is log-normally 
distributed with parameters m and s. That is, Yt = em + sUt 
where the Ut is a standard normal variable. In summary, if 
the index assuming no event is 

                  qt = q0e( – σ 2/2)h + σWt  for t ≥ 0,

then the US population mortality index ~qt can be explicitly 
described as follows:  

                    
  
 ~qt  =

 { qtYt        with probability p

qt            with probability 1 – p           (10)

                                                  for t = h, 2h, 3h, ...            

where Yh, Y2h,… are either 1 (with probability 1 − p) or in-
dependent log-normal variables with parameters m and s.

The mortality index ~qt, independent of previous mortal-
ity jumps, will be continuous most of the time with finite 
jumps of differing signs and amplitudes occurring at dis-
crete points of time. Let t denote the events determined 
by the processes Ws, Ns, and Yt for s ≤ t. We apply Equation 
(10) to get and expression for the index at the end of the pe-
riod [t − h, t] in terms of the index without jumps. 

~qt+h|t = qt exp[( – σ2/2)h + σ (Wt+h –  Wt) ]Yt+h.       (11)

In effect, a jump impulse during [t − h, t] has no effect dur-
ing [t, t + h].

Now we apply the maximum likelihood method to es-
timate the parameters , σ, p, m, and s from the data. The 
term σ (Wt+h − Wt) describes the continuous part of the un-
anticipated “normal” mortality index change and Y − 1 
describes the percentage change due to an “abnormal” 
mortality shock with probability p when Nt+h − Nt = 1. Ap-
pendix shows the derivation of our maximum likelihood 
function from Equation (11).

4.2.2. Data
Our data are obtained from the Vital Statistics of the 

United States (VSUS).4 The VSUS reports the United States 
age-adjusted death rates per 100,000 standard million 

4 Source: http://www.cdc.gov
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population (2000 standard) for selected causes of death. 
Age-adjusted death rates are used to compare relative mor-
tality risks across groups and over time; they are the in-
dexes rather than the direct measures. We plot our data 
from 1900 to 1998 in Figure 2.

Figure 2 shows that the mortality stochastic process 
does not follow a mean-reverting process.5 Moreover, there 
are several jumps in the US population mortality evolution 
which should be captured by a good mortality stochastic 
model. Mortality shocks may cause financial distress or 
bankruptcy of insurers or pension plans and they are also 
the risks underlying the mortality securities.

4.2.3. Estimation results
Based on the US population mortality index qt from 

1900 to 1998 shown in Figure 2, Table 1 reports our maxi-
mum likelihood estimation results. The instantaneous ex-
pected force of mortality index  is equal to −0.0096. The 
negative sign of  suggests the US population mortality im-
proves over time. The instantaneous volatility of the mor-
tality index, conditional on no jumps, σ, is equal to 0.0310. 
The probability of a jump event each year is equal to 1.15%. 
Our likelihood ratio test rejects the model without jumps at 
the significance level of 0.1%.

4.2.4. Market price of risk
In this section, we show how to estimate the market 

price of risk of the Swiss Re bond. First, we simulate Equa-
tion (11) with the estimates shown in Table 1 to get cumula-
tive probabilities F(q), where q is the maximum of the sim-
ulated US population mortality index qt from 2004 to 2006. 
We run 10,000 simulations.

Second, the physical cumulative probabilities F(q) are 
transformed by a starting value of the market price of risk 

λSR (λSR will be solved later) to get the pricing probabilities 
F*(q) as shown in Equation (12): 

F*(q) = Q[Φ–1 F(q) – λSR].                                   (12)

Q is the Student’s t-distribution with six degrees of free-
dom following Wang (2004). The transformed probabili-
ties f *(q) can easily be derived from cumulative probabili-
ties F *(q).

Third, after obtaining simulated q values and their trans-
formed probabilities f *(q), we calculate the payment at ma-
turity following Equation (3). Based on Equations (11) and 
(12), the par spread of the Swiss Re bond 1.35% (Swiss Re, 
2003; MorganStanley, 2003; The Actuary, 2004), the US pop-
ulation mortality index from 1900 to 1998 and the US Trea-
sury yield rates on December 30, 2003, our estimated mar-
ket price of risk λSR of the Swiss Re deal is −1.3603.

In Figure 3, the dashed line denotes the transformed 
probability density function (PDF) of q with λSR = –1.3603 
by using the two-factor Wang transform. It lies on the right 
of the PDF of simulated US population mortality index 
“f (q)”. After transforming the data, we put more weight on 
the right tail. This implies that the market expects a higher 
probability of having a big loss than the actual probability 
suggests.

4.2.5. Is the jump process important?
Most of the existing mortality stochastic models do not 

consider the jump process. In Section 4.2.1, we use Brown-
ian motion and the Markov chain to model the dynamics of 
the US population mortality index. To prove that the jump 
process is important in the mortality securitization model-
ing, we compare the market price of risk without mortality 
jumps with that with jumps.6

The mortality stochastic model without jumps is shown 
as follows: 

dqt/qt = ndt + σndWt ,                                         (13)

where n and σn are the expected force and volatility of the 

Figure 2. 1900–1998 US total population death rate per 100,000 (= 
100,000qt where t = 1900, 1901, …, 1998).

Figure 3. Two-factor Wang transformed probability distribution of q = 
max(q2004, q2005, q2006) with  λSR = –1.3603 and six degrees of freedom 
(shown as a dashed line) and the physical probability distribution of 
q (shown as a solid line). The horizontal axis is the death rate and the 
vertical axis stands for the probability.

Table 1. Maximum likelihood parameter estimates based on the US 
population mortality index 1900–1998

Parameter Estimate Parameter Estimate

 −0.0096 m 0.1492
σ 0.0310 s 0.0404
p 0.0115  

The model without jumps is rejected at the significance level of 0.1%.

5 But it could be a process that is mean reverting around a trend.
6 We thank Patrick Brockett for his suggestion to add this part to the paper.
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US population mortality index with subscript n indicating 
no jumps. Based on the same data shown in Section 4.2.2, 
our maximum likelihood estimate of n is −0.0100 and 
0.0388 for σn. Without jumps, our estimated market price 
of risk for the US-based Swiss Re bond is equal to −1.5545, 
which is 14% higher than the market price of risk −1.3603 
in terms of absolute value when we model the US popu-
lation mortality index with jumps. Moreover, we plot the 
transformed distributions with and without jumps of q in 
Figure 4. Figure 4 shows that the model without jumps un-
derestimates the probability of having a catastrophe death 
event since the model with jumps has a longer tail. Failing 
to model jumps leads to a notable deviation from the right 
market price of risk and the correct transformed distribu-
tion. We conclude that the jump process plays an impor-
tant role in the mortality securitization modeling.

4.2.6. Is the Swiss Re bond a good deal for investors?
Wang (2004) reports that the average market price of risk 

of property catastrophe bonds is about −0.45. Applying the 
two-factor Wang transform with λ = −0.45, our calculated 
par spread for the Swiss Re bond is 0.39%, which is lower 
than that of the Swiss Re bond, 1.35%. The difference may 
arise from the fact that we use the US population index as the 
benchmark while the Swiss Re deal is based on the weighted 
average of five developed countries. If we use the weighted 
index, we expect that our calculated par spread will be even 
lower because of the diversification effect of mortality risks 
among these five countries. Bantwal and Kunreuther (1999) 
found the spread of property catastrophe bonds to be too 
high to be explained by standard financial theory. Here we 
find the market price of risk of the Swiss Re bond, −1.3603, 
is even higher than that of the property catastrophe bonds, 
−0.45 in terms of absolute value. Although the high risk pre-
mium of the Swiss Re deal may suggest high transaction 
costs of the first mortality security, it may also be interpreted 
as the Swiss Re overcompensating the investors for their tak-
ing its mortality risks. So it explains why the “appetite” for 
the Swiss Re bond was strong.

Why did the Swiss Re company pay such a high risk 
premium to the investors? The Swiss Re Company’s life 
reinsurance business accounted for 43% of its group reve-
nues in 2002, up from 38% in 2001 (MorganStanley, 2003). 
Although capital is crucial for a firm to absorb mortality 
shocks, the true economic capital requirements of life re-
insurance business is not straightforward. Moreover, the 
costs of potential financial distress are high. Minton et al. 
(2004) conclude that securitization of financial institutions 
is a contracting innovation aimed at lowering financial dis-
tress costs. Therefore, MorganStanley (2003) concludes that 
Swiss Re must be taking a view that the cost of capital that 
is relieved via this transaction exceeds the effective net cost 
of servicing the bond. Moreover, insurance companies pay 
a high risk premium to develop the mortality securitization 
market. If catastrophes deplete the traditional reinsurance 
risk-taking capacity, the insurers can turn to the mortality 
security market for protection. In all, the Swiss Re mortal-
ity bond is a good deal to the investors.

4.3. Our model for the EIB bond

Compared with mortality deterioration caused by catas-
trophes like epidemics or earthquakes, mortality improve-
ment spans a much longer period. Therefore, we adopt Lin 
and Cox (2005)’s method to price a longevity bond. Two 
differences of our method from Lin and Cox (2005) are as 
follows. First, we use the two-factor Wang transform to ac-
count for parameter uncertainty while Lin and Cox (2005) 
use one-factor model; second, we use the EIB bond price 
to derive the market price of risk while Lin and Cox (2005) 
use the US single premium immediate annuity (SPIA) mar-
ket quotes.

4.3.1. Our model
We show how to estimate the market price of risk of a 

longevity bond based on the two-factor Wang transform. 
We defined our transformed distribution F* for the EIB 
bond in year t as 

F *(tq65) = tq*65 = Q[Φ–1(tq65) – λEIB]                      (14)

where tq65 is the probability that a person aged 65 dies be-
fore age 65 + t and t = 1, 2, …, 25. To calculate the values of 
tq65 for the English and Welsh male population aged 65, we 
use the realized mortality rates of English and Welsh males 
aged 65 and over in 2003. Q is the Student’s t-distribution 
with six degrees of freedom following Wang (2004). The in-
terest rates are the gilt STRIPS on November 18, 2004.

The total value of the EIB bond was £540 million. Its 25-
year bond annual payout is equal to a fixed annuity, £50 
million, multiplied by the percentage of the reference pop-
ulation still alive at each anniversary. Assuming the ex-
pense factor 6%, we solve the market price of risk λEIB for 
the English and Welsh male by the following equation: 

540,000,000 × (1 – 0.06) = 50,000,000 a*65:
―
25|,

where a*65:
―
25|is the present value of a life annuity of 1 per 

year, payable in instalments at the end of each year while 
the annuitant survives for 25 years. The mortality rates in 

Figure 4. Two-factor Wang transformed probability distribution of 
q=max(q2004,q2005,q2006) with λSR = –1.3603 and six degrees of freedom 
(shown as a dashed line) in the jump model and that with λSR = –1.5545 
and six degrees of freedom (shown as a dotted line) in the model with-
out jumps. The x-axis is the death rate and the y-axis stands for the 
probability.
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a*65:
―
25|are the distorted mortality rates based on Equation 

(14).

4.3.2. Market price of risk
Our calculated market price of risk for the EIB bond λEIB 

is equal to 0.2408. It is not surprising that the market price 
of risk of the EIB bond (0.2408) is lower than that of the 
Swiss Re bond (−1.3603) in terms of absolute value since 
longevity risks have much less immediate and dramatic im-
pact on annuity business or pension plans (25 years or lon-
ger) than catastrophic death risks caused by disasters like 
flu (less than a year) on the life insurance business. The in-
teresting question here is whether the market price of risk 
of the EIB bond, λEIB = 0.2408, is too high for the potential 
bond buyers—the UK pension plans.

Let us compare the market price of risk of the EIB bond 
λEIB = 0.2408 with that of private annuities. Based on the 
same idea in Equation (14), our calculated market price of 
risk of the average SPIA for the US male annuitants aged 
65 is only 0.1524.7 The market price of risk reflects the costs 
of adverse selection. Adverse selection is the tendency of 
persons with a higher-than-average chance of loss to seek 
insurance at standard rates, resulting in higher-than-ex-
pected loss levels (Rejda, 2005). For example, healthy peo-
ple purchase more annuities while those in poorer health 
buy more life insurance. Prior literature concludes that pen-
sion plans have much less adverse selection problem than 
commercial annuity insurers because both healthy and less 
healthy employees participate in pension plans. Therefore 
the longevity risk for a pension plan should be lower than 
that for a commercial annuity insurer. Since mortality ex-
periences of US population and English and Welsh pop-
ulation are similar, theoretically, the market price of risk 
for the EIB bond should be lower than that for the annuity 
business, 0.1524. However, this is not true for the EIB bond. 
Therefore, it explains why the UK pension plans, the po-
tential buyers of the EIB bond, are not willing to buy the EIB 
bond since they can get the cheaper protection from the an-
nuity or reinsurance markets.

5. Discussion and conclusions

We are learning every day how important mortality 
forecasts are in the management of life insurers and private 
pension plans. Securitization and development of mortal-
ity bonds can be an important part of capital market solu-
tion to these problems. Before the Swiss Re bond was is-
sued at the end of 2003, life insurance securitization was 
not designed to manage mortality risk; rather they are ex-
actly like asset securitization. In these cases, the insurers 
convert future life insurance profits into cash to increase li-
quidity rather than manage mortality risk. The new securi-
tization we study in this paper focus on the other side of an 
insurer’s balance sheet—liabilities on future mortality pay-

ments. The introduction of mortality securities to transfer 
the insurer’s risks in the liabilities side increases its capac-
ity and maintains its competitiveness.

A market for mortality-based securities will develop if the 
prices and contracting features make the securities attractive 
to potential buyers and sellers. The Swiss Re bond has sold 
well but the EIB bond has not. We explain these opposite 
market outcomes by looking at their risk premiums. To cal-
culate the risk premiums we need models, analogous to the 
term structure on interest rate models. The mortality bond 
market will be richer in that, in addition to default free zero 
coupon bonds, it will have bonds which will be redeemed at 
face value only if a specified number of lives survives or dies 
to the maturity date. We find only a few preliminary papers 
on this topic. Development of the theory in this direction is 
important as an extension of traditional bond market models 
and it would be very useful in explaining mortality market 
risk to potential market participants.

Our model shows that the Swiss Re mortality bond of-
fers a higher risk premium to investors than the property-
linked catastrophe bonds. However, the EIB charges a very 
high risk premium to take longevity risks in the UK pen-
sion plans. Since the price of the EIB bond is not attractive, 
no UK pension plan has bought this bond until now!

Moreover, the EIB bond provides “ground up” protec-
tion, covering the entire annuity payment. But the plan can 
predict the number of survivors to some extent, especially 
in the early contract years. The EIB bond price includes 
coverage the plan does not need (including rates, commis-
sions, etc.). A more attractive contract might cover pay-
ments to survivors in excess of some strike level. The price 
would be much lower, as shown in Lin and Cox (2005).

Someone may argue that the index-linked mortality se-
curities are subject to unacceptable levels of basis risk. The 
basis risk is lower for the Swiss Re bond than for the EIB 
bond. The population index of the Swiss Re bond accounts 
for basis risk by using different weights in five countries 
to match Swiss Re’s business. However, the EIB bond does 
not provide a good hedge for a pension plan: there exists a 
significant basis risk between the reference population mor-
tality and that of an individual pension plan. The EIB deal 
does not allow pension plans to decide their own mortality 
references (e.g. by using different weights in the Swiss Re 
bond) to reduce the basis risk. The basis risk problem fur-
ther reduces the attractiveness of the EIB bond.

In summary, we contribute to the mortality securitiza-
tion literature by proposing a mortality stochastic model 
with jumps for death-linked insurance securities and pric-
ing the Swiss Re and EIB bonds in an incomplete market 
framework. Our models nicely explain the opposite market 
outcomes of these two deals. Finally we comment on the 
structure and basis risk problem of these two bonds. Again, 
it shows the attractiveness of the Swiss Re deal but not for 
the EIB bond.

7 We get the market quotes of the non-qualified SPIA in August 1996 from Kiczek (1996). Kiczek (1996) reports the male and female SPIA monthly 
payout rates of 102 companies with the $100,000 lump-sum premium at the issue age 65. We assume that an insurer sells its SPIA at the market av-
erage payout rates $764 for male. We also assume an expense factor of 6%. Our US Treasury yield rates on August 15, 1996 are obtained from the 
Wall Street Journal. Our mortality rates are from the 1996 Male IAM 2000 Basic Mortality Table.
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APPENDIX. Maximum likelihood estimation of mortality 
Stochastic model with jumps

After taking the logarithm of both sides of Equation (11), 
we obtain 

log ~qt+h = log qt + ( – σ 2/2)h + σ ΔWt + log Yt+h         (15)

where Δ denotes the change over [t, t + h]. Let Zt = Δlog ~qt  so 
that 

          Zt = Δlog ~qt+h – log ~qt  

               = ( – σ 2/2)h + σ ΔWt + log Yt+h – log Yt 

The conditional distribution of Zt, given t, is denoted Zt|t. 
We have observations of the index  ~qt for t = h, 2h, … Kh.

If no mortality jump event occurs during the periods [t − h, 
t] and [t, t + h], then Yt = Yt+h = 1 and Zt|t is normally distrib-
uted with mean Mnn = ( – σ 2/2)h and variance  S 2

nn = σ 2h. If a 
jump event occurs during the period [t − h, t] but not [t, t + h], 
then Yt = exp(m + sUt) and Yt+h = 1. In this case, Zt|t is nor-
mally distributed with mean Myn = ( – ½ σ 2)h – m and vari-
ance S 2

yn =  σ 2h + s2. There are two other possibilities: no mor-
tality jump during the period [t − h, t] but a mortality jump 
during [t, t + h]; a mortality jump during the period [t − h, t] 
and another mortality jump during [t, t + h]. We summarize 
the conditional means and variances of Zt as follows. Given t, 
we will know if jumps occurred in [t − h, t] and [t, t + h]. Let nn 
denote the event “no jumps occurred”; yn the event “a jump 
occurred in [t − h, t] but no jump occurred in [t, t + h],” and so 
on. In summary, the distribution is described as follows:

Jump         E[Zt|t]              Var[Zt|t]       Probability 
events

nn (−σ2/2)h σ2h (1−p)2

yn (−σ2/2)h−m σ2h+s2 p(1−p)
ny (−σ2/2)h+m σ2h+s2 (1−p)p
yy (−σ2/2)h σ2h+2s2 p2

The probability density function of Zt , fZ(z), can be written 
in terms of the conditional density of Zt|t, denoted f z (z|t), 
which has a conditionally normal distribution: 

(16)

We have a time series of K observations of  ~qt, where t = 0, 
1, 2, …, K − 1, so the step size is h = 1. We have K − 1 obser-
vations zt of Z t = log  ~qt+1 – log ~qt. The correlations between 
the zt’s are zero except when jump events occur. The probabil-
ity of having a mortality catastrophe event is very low. Based 
on the historical data, the correlation introduced by mortality 
catastrophes to the likelihood function is only around −0.005. 
Therefore, we use independence as an approximation and es-
timate the parameters p, , σ, m, and s by maximizing the loga-
rithm of the likelihood function (17) based on the observations 
z1, z2, …, zK−1. The likelihood is 
                                                          

K – 1
    L =   ∏  fz(zt)                                                 (17)

                                                          
t = 1

Taking the logarithm of Equation (17), we get 

(18)
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