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Remote sensing of photosynthetic-light-use efficiency of boreal forest
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Abstract

Using a helicopter-mounted portable spectroradiometer and continuous eddy covariance data we were able to evaluate the
photochemical reflectance index (PRI) as an indicator of canopy photosynthetic light-use efficiency (LUE) in four boreal
forest species during the Boreal Ecosystem Atmosphere experiment (BOREAS). PRI was calculated from narrow waveband
reflectance data and correlated with LUE calculated from eddy covariance data. Significant linear correlations were found
between PRI and LUE when the four species were grouped together and when divided into functional type: coniferous
and deciduous. Data from the helicopter-mounted spectroradiometer were then averaged to represent data generated by the
Airborne Visible Infrared Imaging Spectrometer (AVIRIS). We calculated PRI from these data and relationships with canopy
LUE were investigated. The relationship between PRI and LUE was weakened for deciduous species but strengthened for
the coniferous species. The robust nature of this relationship suggests that relative photosynthetic rates may be derived from
remotely-sensed reflectance measurements. ©2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Remote sensing offers an important landscape and
regional perspective on vegetation structure and func-
tion (Asner et al., 1998). Much remote sensing of veg-
etation has made use of broad band sensors to derive
indices of vegetation cover, such as the normalised
difference vegetation index (NDVI) (Tucker, 1979).
Although NDVI often correlates well with biomass,
leaf area index (LAI) and fraction of absorbed photo-
synthetically active radiation (FAPAR), it often fails
to capture physiological processes that occur on fine
temporal and spectral scales. For example, drought
tolerant evergreens can undergo significant changes
in photosynthetic light-use efficiency (LUE), without

0168-1923/00/$ – see front matter ©2000 Elsevier Science B.V. All rights reserved.
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an equivalent change in NDVI (Running and Nemani,
1988). Photosynthesis can change from day to day or
hour to hour depending on the response of the leaves
to a naturally fluctuating environment, with no signif-
icant changes in canopy architecture or NDVI (Ten-
hunen et al., 1987).

Pioneering work has shown how the reflectance
of leaves may contain a signal for photosynthetic
efficiency, and therefore provide a new method to
detect changes in photosynthesis using remote sens-
ing. Photosynthetic LUE is defined here as CO2
uptake divided by the incident photosynthetic photon
flux density (PPFD) and since the 1930s it has been
known to decline at high PPFD as photosynthesis
becomes light-saturated. More recently it has been
found that when the photosynthetic system receives
excess excitation energy from sunlight, the xantho-
phyll cycle is affected. The carotenoid violaxanthin
is converted to zeaxanthin via de-epoxidase reactions
(Yamamoto, 1979). Recent experimental work has
shown a close correlation between xanthophyll pig-
ment interconversion and the dissipation of excess en-
ergy in the pigment bed associated with photosystem
II (PS II) (for reviews see Pfundel and Bilger, 1994;
Demmig-Adams and Adams, 1994; Demmig-Adams
et al., 1996). Recent evidence indicates that the con-
version of the pigment violaxanthin to the photopro-
tective pigment zeaxanthin acts to lower the energy
level of the lowest excited singlet state below that of
chlorophyll-a, thus providing a sink for the excess
excitation energy (Frank et al., 1994; Owens, 1996).

The interconversion of the xanthophyll cycle pig-
ments can be detected in leaves through a change in
the absorbance at 505–515 nm (Bilger et al., 1989) or
the reflectance at 531 nm (Gamon et al., 1990, 1993).
Because the pigments of the xanthophyll cycle are so
closely linked to the LUE of PS II, a reflectance index
that incorporates reflectance at 531 nm could provide
a remote indicator of photosynthetic function. Gamon
et al. (1990) formulated the photochemical reflectance
index (PRI), incorporating reflectance at 531 nm (the
xanthophyll cycle signal) and a reference wavelength
(Gamon et al., 1992).

A number of studies beginning in the late 1980s
explored the relationships between PRI and photo-
synthetic LUE at the leaf and small plot level. Mea-
surements on individual leaves have demonstrated
that PRI, calculated from narrow waveband data,

was closely related to1F/Fm′, a fluorescence-based
indicator of PSII LUE, as well as LUE calculated
from gas exchange measurements in leaves from a
wide range of species (Penuelas et al., 1995). Fillela
et al. (1996) and Gamon et al. (1997) have further
presented evidence that PRI provided a widely ap-
plicable index of leaf LUE across species, functional
types and nutrient levels.

The only canopy scale measurements that exist are
on small plots (∼2 m2) and single species. Gamon
et al. (1992) measured reflectance of sunflower plants
with a portable spectroradiometer from a height of 4 m
with wide-angle optics, allowing reflectance measure-
ments over an area of diameter 1 m (consisting of 8–10
plants). This work showed that PRI closely tracked di-
urnal changes in photosynthetic LUE in control and
nitrogen stressed canopies, but not in water stressed
canopies that were undergoing severe wilting (Gamon
et al., 1992).

Such observations suggest that measurement of re-
flectance by remote sensing in these spectral regions
should also be useful for inferring canopy-scale LUE
over regional and larger areas. However, at this time
no work has been done to relate canopy PRI to LUE
over areas of tens of meters. We have investigated the
use of PRI as an index of LUE over contrasting canopy
types. Extensive canopy reflectance and eddy covari-
ance measurements of gas exchange were made over
boreal forest during the BOREAS experiment (Boreal
Ecosystem Atmosphere Study, for overview see Sell-
ers et al., 1995) and provided the opportunity to inves-
tigate the PRI:LUE relationship over larger (∼70 m2)
forested areas.

We report in this paper an evaluation of PRI as an
indicator or photosynthetic LUE. We begin by describ-
ing the sites sampled in the boreal forest and the data
set used, then proceed to outline the analysis approach
for PRI:LUE. Finally, we present the results of this
analysis and draw a number of conclusions regarding
future directions.

2. Materials and methods

2.1. Study sites

The BOREAS field experiment took place during
1994 on the northern and southern edges of the Cana-
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dian boreal forest. A Northern Study Area (NSA) was
located near Thomson, Manitoba, and Southern Study
Area (SSA) was located near Candle Lake, Sask. (see
Sellers et al., 1995b for details) and specific sub-sites
within the SSA were intensively studied during the
growing season. A brief outline of the sites used in
this study is included here.

2.2. Old black spruce

The site lies in the southern mixed forest zone about
100 km north of Prince Albert in Sask. (53◦55′N,
105◦5′W, elevation 630 m), and has been described
by Jarvis et al. (1997). The terrain is essentially flat
with pure and mixed stands of black (Picea mariana
(Mill.) BSP) and white spruce (P. glaucaMoench.),
jack pine (Pinus banksianaLamb.), aspen, fen and
lakes. The substratum is peat overlying glacial drift
with an elevated water table so the surface is gener-
ally wet. The understorey is sparse with some low
shrubs reaching∼1.5 m in height.

2.3. Old jack pine

The jack pine forest (Pinus banksianaLamb.)
stand grows in the SSA near Nipawin, Sask., Canada
(53◦54′N, 104◦41′W, elevation 579 m) and has been
described by Baldocchi et al. (1997). The landscape
is relatively flat (slope∼2 and 5%) with pure and
mixed stands of black (P. mariana(Mill.) BSP) and
white spruce (P. glaucaMoench.), aspen, jack pine
and fen. The soil is a coarse textured, well drained
sand. The ground was covered with an optically bright
mat consisting of bearberry (Arctostaphylos uva-ursi),
bog cranberry (Vaccinium vitis-idaea), and lichens
(Cladina spp.).The understorey vegetation is sparse
but there are isolated groups of alder (Alnus crispa).

2.4. Old aspen

The site is located in the SSA within Prince Albert
National Park, Sask. (53◦38′N, 106◦12′W, elevation
600 m) and has been described by Hogg et al. (1997). It
is an extensive, mostly pure, stand of trembling aspen
(Populus tremuloidesMichx.) Orthic gray luvisol with
a loam texture dominates the site. Beaked hazelnut
(Corylus cornuttaMarsh) dominates the understorey

shrub layer and is approximately 2 m in height. Wild
rose (Rosa woodsii) and alder (A. crispa) are found in
intermittently.

2.5. Fen

The fen study site is located in the SSA, 115 km
northeast of Prince Albert, Sask. (53◦57′N, 105◦57′W,
elevation 525 m). The fen study site is a minerotrophic,
patterned fen surrounded by black spruce (P. mariana
(Mill.) BSP)) and jack pine (Pinus banksianaLamb.)
forests and has been described by Sukyer et al. (1997).
Abundant herbaceous species throughout the fen in-
cluded bogbean (Menyanthes trifoliata) and several
sedge species (Carex and Eriophorum spp.). Domi-
nant woody plant species are 0.5–1.5 m tall bog birch
(Betula pumila) and widely scattered, stunted tama-
rack trees (Larix laricina). Mosses whilst present are
not abundant in this fen.

2.6. Canopy spectral reflectance data

The National Aeronautics and Space Admin-
istration (NASA) Goddard Space Flight Center
(GSFC)/Wallops Flight Facility (WFF) helicopter-
based optical remote sensing system (Walthall et al.,
1996) was deployed to acquire canopy multispectral
data with a portable spectroradiometer. A spectro-
radiometer (model SE-590, Spectron Engineering,
Denver, Colorado) was mounted on a steel rack at
nadir orientation and processed to an atmospherically
corrected at-surface reflectance. A 15◦ instantaneous
field of view lens (IFOV) was fitted to yield a ground
resolution of 79 m at the 300 m nominal altitude. The
SE-590 had a spectral range of 362.7–1122.7 nm,
with a usable range of 400–900 nm. Data are reported
at 3 nm intervals calculated at the centre point of a
five 3 nm bin running average.

Data were acquired on clear days (incident
PPFD>900mmol m−2 s−1) whilst the helicopter hov-
ered at each site for 1–2 min for each observation
(consisting of an average of 20–25 scans). Observa-
tions were made in the spring, summer and autumn
(Table 1). Radiometric calibration and spectral cali-
bration procedures were performed before and after
the field season to check for changes in sensor radio-
metric response. The SE-590 data were corrected
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Table 1
Summary of the dates of the reflectance data acquisition with the range of temperature and solar radiation experienced during the observation
periods

Site Instrument Observation date Range of temperature◦C Range of solar
radiationmmol m−2 s−1

Old aspen SE-590 31-May-94 17.7–18.3 992–1129
21-July-94 22.6–23.3 1339–1539
25-July-94 21.5–21.7 1343–1450
13-Sept-94 15.7–16.4 1077–1216

Fen SE-590 01-June-94 20.5–21.0 1043–1352
06-June-94 21.2–21.2 1445–1545
21-July-94 21.3–21.6 1222–1366
13-Sept-94 12.4–12.9 1021–1117

Old jack pine SE-590 31-May-94 15.9–16.7 1022–1192
06-June-94 21.0–21.2 1416–1545
21-July-94 25.4–25.7 1397–1476
24-July-94 21.1–21.4 1382–1498
13-Sept-94 18.9–19.5 1196–1271

Old black spruce SE-590 01-June-94 18.4–18.6 1399–1498
06-June-94 20.4–20.6 1361–1479
21-July-94 24.6–25.3 1500–1579
23-July-94 18.5–18.9 1216–1341
13-Sept-94 18.7–19.1 1177–1236

to at-surface reflectances using the 6S atmospheric
radiative transfer model and sun photometer data.

PRI from the SE-590 data was formulated:

IPR SE−590 = (R569 − R529)/(R569 + R529) (1)

whereR529 indicates the reflectance centred at 529 nm
with upper and lower band limits of 536.5 and
521.5 nm (coinciding with the signal of the xantho-
phyll cycle) andR569 indicates the reflectance centred
at the 569 nm waveband with upper and lower band
limits of 561.5 and 576.5 nm (a reference waveband).
This differs slightly from that used in previous stud-
ies, but still lies within the range of wavelengths
considered applicable for the calculation of PRI
(Gamon et al., 1993). By referencingR529 to R569, this
index normalises for factors which include pigment
content and chloroplast movement both of which can
affect theR529 signal (Gamon et al., 1993).

2.7. A simulation of AVIRIS data

The Airborne Visible Infrared Imaging Spectrom-
eter (AVIRIS) (for details see Green et al., 1998) is
flown aboard the NASA ER-2 aircraft at an altitude of
20 km and acquires data in 224 contiguous channels of

the shortwave spectrum (400–2500 nm). It measures
at a larger spatial scale than the helicopter producing
a ground coverage of∼120 km2 with a 20 m spatial
resolution and spectral resolution of 10 nm. Since this
instrument uses new technology that may be amenable
for measuring the status of the xanthophyll cycle (but
as yet is untested) the data generated by the SE-590
were averaged to those wavebands generated by the
AVIRIS instrument (waveband information supplied
by Green, NASA, JPL). The SE-590 data were thus
averaged to the mid-point of each band, as is standard
practice with hyperspectral sensors. PRI was thus cal-
culated:

IPR AVIRIS = (R570.5 − R530.5)/(R570.5 + R530.5) (2)

whereR570.5 indicates the reflectance over the range of
566–575 nm andR530.5 indicates the reflectance over
the range 526–535 nm.R570.5 was the closest available
reference waveband to that used in the computation of
PRI from the helicopter data (Eq. (1)).

2.8. Eddy covariance measurement of fluxes

Half-hour fluxes of momentum, sensible heat,
water vapour and carbon dioxide (as well as me-
teorological variables) were measured at all sites
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using tower-mounted, eddy covariance systems con-
tinuously from May through September of the 1994
growing season. Full details of the theory and in-
strument set for each site are published elsewhere.
For old black spruce see (Jarvis et al., 1997; old jack
pine, Baldocchi et al., 1997; old aspen, Blanken et al.,
1997; fen, Sukyer et al., 1997).

2.9. Estimates of stand photosynthesis

The CO2 flux was partitioned into photosynthe-
sis and respiration components by estimating day-
time ecosystem respiration as functions of soil tem-
perature. Following Goulden et al. (1997), night-time
half-hour CO2 fluxes at high windspeeds (friction ve-
locity, u*>0.2) were plotted against soil temperature
(at 5 cm) and the usual exponential function fitted, of
the form,

A = cebTs

whereA is carbon dioxide flux ,Ts is soil temperature,
c andb are constants and e is the base of the natural
logarithm. Daytime respiration was then calculated us-
ing this function and daytime soil temperatures. This
was done for each month’s night-time half-hour flux
data from May until September for each of the sites
(data not shown). Photosynthesis was then calculated
as the daytime half-hour CO2 fluxes after the respira-
tion component had been removed (Lloyd and Tay-
lor, 1994). Because the helicopter overpass occurred
on clear bright days (PPFD>900mmol m−2 s−1), the
CO2 flux data for these periods were restricted to
PPFD>900mmol m−2 s−1. Photosynthesis and inci-
dent PPFD were averaged above this PPFD and a
daily LUE value computed from these averages ac-
cording to the following:

Canopy light-use efficiency

= Canopy photosynthesis

Incident photosynthetic photon flux density

3. Data analysis

3.1. Correlating PRI with LUE data

Relationships between PRI and field measured
estimates of photosynthetic LUE were investigated

with linear regression analysis. This was done for the
four sites sampled and then with respect to functional
group. Relationships between the simulated AVIRIS
data and LUE were also investigated with linear re-
gression analysis for all species sampled and with
respect to functional type.

4. Results

Two mean representative reflectance spectra ob-
tained from the SE-590 spectroradiometer, each rep-
resenting coniferous or deciduous forest are shown
in Fig. 1 along with the two wavebands used for the
calculation of PRI.

In the absence of normalisation, the reflectance at
529 nm (R529) yielded no clear correlation with LUE
for the coniferous and deciduous species together (Fig.
2A), or for the deciduous species (Fig. 2B) and conif-
erous species (Fig. 2C). However, after normalisa-
tion midday top canopy PRISE-590 values were signif-
icantly correlated with canopy LUE across the four
species sampled (R2=0.64,p<0.05, Fig. 3A). The cor-
relations were stronger when the species were divided
into their functional groups. A linear relationship was
apparent between PRISE-590 and LUE for the decidu-
ous species (R2=0.78,p<0.05, Fig. 3B) and conifer-
ous species (R2=0.65,p<0.05, Fig. 3C).

The PRISE-590:LUE relationships were reassessed
by calculating PRISE-590 using a range of reference
wavelengths. Fig. 4A shows a summary of theR2 of
the relationship between PRISE-590and LUE. The peak
of this graph would be the best combination of xan-
thophyll wavelength and reference wavelength for the
estimation of LUE. A reference wavelength of 569 nm
produces the best relationship between PRISE-590 and
LUE. This is also the optimal reference waveband to
use for the deciduous species (Fig. 4B), but for the
coniferous sites, the selection of a slightly longer ref-
erence wavelength generated a stronger relationship
between PRISE-590 and LUE (Fig. 4C). In this case, se-
lecting a reference wavelength of 575 nm produced an
R2 of 0.82 in the relationship between PRISE-590and
LUE.

When the reflectance data from the SE-590 were
averaged to simulate data generated by the AVIRIS
instrument, scatter was introduced into the relation-
ship between PRIAVIRIS and LUE. The PRIAVIRIS:LUE
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Fig. 1. Mean spectra of the coniferous and deciduous forest canopy from the BOREAS southern study area. Each curve represents the mean
of 20–25 scans acquired by the helicopter mounted SE-590 spectroradiometer. Wavelengths used for PRI calculation are shown in the Figure.

relationship across the four species were significantly
linearly correlated (R2=0.46,p<0.05, Fig. 5A). The
relationship between PRIAVIRISand LUE was weak-
ened within the deciduous species (R2=0.38,p<0.05,
Fig. 5B) but strengthened within the coniferous species
(R2=0.78,p<0.05, Fig. 5C).

5. Discussion

5.1. Canopy PRI and photosynthetic LUE

The consistent relationship between PRISE-590 and
LUE for canopies sampled in full sunlight (Fig. 3A–C)
supports the hypothesis that PRISE-590 provides a
measure of PS II LUE across species and functional
types. Similar observations have been made using
individual leaves and small plots (∼2 m) (Gamon
et al., 1990, 1992, 1997; Penuelas et al., 1995, 1997;
Fillela et al., 1996), but this is the first time a rela-
tionship has been found between PRI and LUE over
heterogeneous forest canopies.

Penuelas et al. (1995) studied the relationship
between PRI and PS II LUE in plants differing in
phenology, habit and photosynthetic type, and found
that the slope and intercept of the PRI:LUE relation-
ship varied between species. The lack of a single
relationship in their study is not surprising. Variation

may arise from the environmental growth conditions,
varying anatomy, morphology and pigmentation and
diverse species differences. Such factors can dra-
matically influence the visible reflectance, and PRI
(Guyot, 1990).

The scatter in the relationship between PRISE-590
and LUE could be the result of several factors that can
cause divergence between whole leaf assimilation and
PS II LUE. These factors include the Mehler reaction,
photorespiration (Harbison et al., 1990) and nitrate re-
duction (Bloom et al., 1989), all of which compete
with carboxylation for reductant generated by electron
transport. In the conditions of this study, the signifi-
cant correlations between PRISE-590 and LUE within
each functional group suggest that the overall photo-
synthetic systems were sufficiently regulated to main-
tain consistent relationships between PS II processes
and carboxylation.

Consistent relationships between PRI and LUE at
the small plot scale (∼2 m) do not always exist. Work
by Gamon et al. (1992) on sunflower canopies expe-
riencing severe water stress showed a divergence be-
tween PRI and LUE, possibly owing to increased use
of reductant by photorespiration and other processes
besides carboxylation. Of the sites used in this study
it is possible that a degree of water stress was expe-
rienced at the old jack pine site because of the free
draining nature of the soil (Cuenca et al., 1997), and
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Fig. 2. Relationship between reflectance at 529 nm and canopy
light-use efficiency (LUE). Each point is an average of 20–25
spectral scans and 4 h of canopy LUE data. (A) Four boreal
forest species. (B) Two deciduous species. (C) Two coniferous
species. Individual species are represented by the different symbols
indicated.

Fig. 3. Relationship between the photochemical reflectance index
(PRI) and canopy light-use efficiency (LUE) for boreal forest sites
sampled in full sun. Each point is an average of 20–25 spectral
scans and 4 h of canopy LUE data. (A) Four boreal forest species.
(B) Two deciduous species. (C) Two coniferous species. Individual
species are represented by different symbols indicated.
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Fig. 4. A summary of theR2coefficients for relationship between
the photochemical reflectance index (PRI) and canopy light–use
efficiency (LUE). (A) Four boreal forest species. (B) Two decid-
uous species. (C) Two coniferous species. PRI was calculated us-
ing R529 as the xanthophyll waveband with reference wavelengths
ranging from 540 to 670 nm, at 3 nm intervals.

Fig. 5. Relationship between the photochemical reflectance index
(PRI) and canopy light-use efficiency (LUE) where data from the
SE-590 has been averaged to 10 nm to represent data generated
by the AVIRIS sensor. (A) Four boreal forest species. (B) Two
deciduous species. (C) Two coniferous species. Individual species
are represented by different symbols indicated.
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some of the scatter in the PRISE-590:LUE relationship
could be attributed to this (Baldocchi et al., 1997).

5.2. Wavelength choice for the calculation of PRI

The wavelength chosen to signal activity of the xan-
thophyll cycle differs slightly from that used in previ-
ous studies (Gamon et al., 1990, 1992, 1997; Penuelas
et al., 1995; Fillela et al., 1996). However, it has been
shown that the 531 nm ‘signal’ consists of two spec-
tral components (Penuelas et al., 1995; Gamon et al.,
1997). Gamon et al. (1997) found the dominance of a
545 nm component in low PPFD, with an appearance
of a 526 nm component at higher PPFD. The contri-
bution of two spectral components could explain pre-
vious reports of a non-linear relationship between PRI
and LUE where samples were measured over a wide
range of PPFDs (Penuelas et al., 1995). Although
Gamon et al. (1990) first highlighted this, a recent pa-
per has shown that these two spectral signals are active
at different PPFDs, and can be separated in laboratory
conditions (Gamon et al., 1997).

The 545 nm component, which was apparent in the
difference spectra, is related to chloroplast conforma-
tional changes associated with the build-up of the pH
gradient, rather than to the conversion of violaxanthin
to zeaxanthin. This conclusion was based on exper-
imental work associating the generation of the thy-
lakoid pH gradient with a change in absorbance at
540 nm (Heber, 1969, Bilger et al., 1989, Bjorkman
and Demmig-Adams, 1994) and with a correspond-
ing reflectance change near 539 nm (Gamon et al.,
1990). That the 545 nm component was initiated at
lower PPFDs and progressively disappeared at higher
PPFDs, suggests that it is not directly a result of
xanthophyll pigment interconversion or the associated
heat dissipation, but is more likely a result of light
scattering changes associated with the initial build-up
of the thylakoid pH gradient upon the sudden transi-
tion from darkness to low PPFD (Gamon et al., 1997).

The 526 nm component, which appears at higher
PPFD, is most likely caused by spectral changes as-
sociated with the conversion of violaxanthin to zeax-
anthin. This conclusion can be drawn from evidence
attributing a similar absorbance change near 515 nm
(Bilger et al., 1989; Bjorkman and Demmig-Adams,
1994) and a related reflectance change near 525 nm
(Gamon et al., 1990), to the production of zeaxan-

thin. Gamon et al. (1997) further showed that PRI,
when calculated using the 526 nm component at high
light, was more strongly correlated to LUE than PRI
calculated using 531 nm. Thus, the increased activ-
ity at PPFDs above 500mmol m−2 s−1 of the 526 nm
component is consistent with the function of xan-
thophyll cycle pigments as photoprotective pigments
that serve to dissipate excess absorbed PPFD as heat
(Demmig-Adams and Adams, 1994; Demmig-Adams
et al., 1996). In the linear, quantum yield region of the
photosynthetic PPFD response curve, there is no need
for such energy dissipation and thus no detectable con-
tribution of the 526 nm component in sun acclimated
leaves. Given this information, we chose 529 nm to
represent our xanthophyll cycle wavelength. However,
because no data were acquired at low PPFD, it is not
possible to confirm directly the existence of these two
spectral components in this study.

We then recalculated PRISE-590 using a range of
reference wavelengths and correlated it against LUE.
Some surprising relationships emerged. When all
the species were grouped together, theR2 peaked at
0.645 when 569 nm was used as a reference. This was
also the case for the deciduous species. However, the
PRISE-590 data for the conifers were more strongly
correlated with LUE when a slightly longer refer-
ence waveband of 575 nm was used. Gamon et al.
(1992) found that any reference waveband between
539 and 570 nm would be suitable for the calcula-
tion of PRISE-590 and statistical correlation with LUE
data. Their results however, were for a single species,
rather than the four species used in this study.

5.3. AVIRIS data and photosynthetic light-use
efficiency

The differences in the relationships between PRI
and LUE from the helicopter data, as opposed to the
AVIRIS simulation, suggest that the 10 nm resolution
is not too broad to detect this spectral signal but does
introduce scatter. This could present significant diffi-
culty in extending the use of PRI to landscape scales
as few sensors have the capability of measuring large
areas at a resolution of less than 5 nm. However, when
the spectra are represented as difference spectra, the
width of the dip representative of the ‘xanthophyll’
signal appears to be wider than 10 nm (Gamon et al.,
1990, 1992; Fillela et al., 1996), and this would
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suggest that a 10 nm resolution should be appropri-
ate for detecting changes in the xanthophyll cycle.
Future work using AVIRIS data for PRI applications
will confirm its utility for the estimation of canopy
scale LUE.

5.4. Effects of background reflectance on PRI

The effective use of periodic remotely-sensed ob-
servations in landscape process studies depends on
stable estimation of diurnally integrated conditions
(Goward and Huemmrich, 1992). It has been widely
documented that the reflectance measured from forest
sites may vary with solar illumination angle, view-
ing angle, understorey or background reflectance and
atmospheric effects, as well as intrinsic canopy para-
meters such as phytomass and leaf area index of the
dominant species (Kimes, 1980; Ranson et al., 1986;
Huete, 1987; Guyot, 1990; Goward and Huemm-
rich, 1992). Although the spectral data used in this
study were acquired from a nadir orientation during
conditions of highest possible solar elevation (ap-
proximately 40–60◦), which would have minimised
unstable calculations of PRI, a full sensitivity anal-
ysis of the PRI:LUE relationship is warranted and a
companion paper will focus on these issues.

6. Conclusions

We have demonstrated that PRISE-590 can serve as
an index of photosynthetic LUE over heterogeneous
forest canopies. These results extend beyond earlier
studies using individual leaves (Gamon et al., 1992;
Penuelas et al., 1995; Fillela et al., 1996) by show-
ing that this index is well suited to sampling areas
of ∼70 m2 in contrasting ecosystems at high PPFD.
Consequently, it should be possible to derive meth-
ods of remotely estimating relative photosynthetic
rates based on reflectance in the 529 nm spectral
region.

Our simulation of AVIRIS data shows that the
resolution of this sensor is not too coarse to detect
the fine spectral signal generated by the xanthophyll
cycle, although it is degraded more at this resolution.
Thus we propose that the application at the landscape
and larger scales will require a more rigorous test of
the use of AVIRIS data as well as the use of radiative

transfer and geometric models, such as SAIL (Scat-
tering from Arbitrarily Inclined Leaves) (Verhoef,
1984) and GeoSail (Huemmrich, 1995) to scale PRI
and LUE to whole landscapes.

Improvement in the accuracy of scaling processes
such as photosynthetic LUE will continue to be piv-
otal for the development of physiological ecology
and global change research. As new perspectives and
methods for scaling ecological function from local to
global levels continues to evolve (e.g., via microm-
eteorological towers, remote sensing and modeling),
our understanding of how functional variables scale
across ecological levels must keep pace. Without this
synergy, our ability to resolve important issues such
as sources and sinks of CO2 will be impaired.
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