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Density of Zeros on the Lee-Yang Circle Obtained from Magnetization Data
of a Two-Dimensional Ising Ferromagnet

Ch. Binek

Angewandte Physik, Gerhard-Mercator-Universitat Duisburg, D-47048 Duisburg, Germany
(Received 7 August 1998

In order to provide experimental access to the statistical theory of Lee and Yang [Phy87R410
(1952)] the density functiorg(#) of zeros on the Lee-Yang circle has been determined for the first
time by analyzing isothermal magnetization dat@) of the Ising ferromagnet FeCin axial magnetic
fields H at temperature34 < T < 99 K. The validity of our approach is demonstrated by the perfect
agreement of magnetic specific heat data as calculated f@nand m(H) via Maxwell's relation.
Moreover, the correct in-plane exchange constant of Fe@lerges from the series expansiormdi{)
involved in the analysis. [S0031-9007(98)08010-7]

PACS numbers: 75.10.Hk, 05.50.+(q, 75.40.Cx

In 1952 Lee and Yang (LY) [1] pointed out that the denote the magnetic moment and its saturation value. The
distribution of the zeros of the partition functighof an  coefficients of the high field series expansion
Ising ferromagnet reveals a remarkable symmetry in the o
complex fugacity plane. By virtue of their famous theorem Iz) =1+ 27 Z gnZ" (2)
they proved that in the case of an Ising ferromagnet, the n=1
zeros ofZ are distributed on the unit circle= exp(if#) in
the complexz = exp(—2gSupuoH /kgT) plane, where
gS up is the magnetic moment with Bohr’'s magnetes,
the spin quantum numbér, and the Landé factqgy, while
H is the complex magnetic field, affdis the temperature. . .
They conjectured that this symmetry has a simple and fa?er to satisfactorily represemt(9). However, Kortman

reaching basis, which, however, still has to be discovered”.anI Griffiths [10] pomfted out ”‘63(‘?) may a}lso be con-
Up to now, little progress has been made within thiSStrUCted’ €9, fr_om quickly converging Pade approximants
fundamental field of statistical physics. Although it hasOf I(z) when using the relation,
been shown that the LY theorem is applicable to much ¢(0) = (1/27) lim Rel[r explif)]. 3)
wider classes of model systems [2,3], little is known about r—1-
the distribution functiorg (0) itself, which completely de-  This equation is easily verified by substitution pf=
termines the thermodynamic behavior of the system. In.exp(ig)into Eq. (2). As will be shown below, this ansatz
particular, ¢(f) has always been thought to be a purelyyrs out to be particularly useful for analyzing experimen-
theoretical quantity which is not accessible by experia| data. Based on high field series expansion§f[11],
mental investigations. However, it is the aim of this Kortman and Griffiths computed the corresponding Padé
Letter to demonstrate for the first time thet) can be ex-  approximants and calculatedd) for Ising ferromagnets
tracted from isothermal magnetization curvesvs H of  on g 2D square and a 3D diamond lattice Tort T.. In
Ising ferromagnets, provided that they are measured withqdition they investigateg(6) for the mean-field model
high enough accuracy using, e.g., modern superconductinghd the linear chain. Their solution of the latter problem
quantum interference device (SQUID) techniques. was in good agreement with the rigorous analytical expres-
From the theoretical point of view, there are two ap-sjon obtained previously by Lee and Yang [1].
proaches to investigatg(¢). On the one hand, there  |n analogy to the procedure introduced by Kortman and
are straightforward solutions @f(z) = 0 for dimensions  Griffiths [10], we have determinegi#) from experimental
D = 2 which are, however, restricted to systems of a fewqata ;n vs H by using, again, Eq. (3). To this end, the

interacting spins only [4—7]. On the other hand, the basigjata sets are normalized with respect to the low tempera-

directly determine the coefficients = (2/) [ g(8) X
cognf)dl, n = 1, of the Fourier cosine series @f(#)
[8]. Unfortunately, the poor convergence of the series (2)
requires a huge number of expansion coefficients in or-

relation [1], ture and high field saturation value, of the magnetic
™ moment and subsequently best fitted to empirical functions
I(z) =1 — 4 fo [¢(0) (z — cosd)/ of the type,

(22 = 2zcosf + 1)]do, (1)  f@=[1+mz— 1+ n)?]/(1 +diz + dr2?),

which correlates the normalized magnetization m/m; ()
and g(#), is used in order to approximatg(d) from  with appropriate parameters, d;, andd,. The fitting
corresponding approximations @&fz). Herem andm;  functions take into account the limiting casés = 1) =0
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and f(z = 0) = 1 of the normalized magnetization at approximant are determineg (6) can be calculated by
T > T. in zero and infinite magnetic field, respectively. replacingl(z) in Eg. (3) by the ansatz function (4). One
Once the fitting parameters of such an empirical Padé-t}/pceadily obtains

g(H) :1/277[1 + (dl — dz)nl —dy + (1 —d; + dz)nl cosf — (1 —dy + nl)c05(26)]/
[1 4+ d} + d5 + 2d,(1 + dy)cosh + 2d,cog26)]. (5)

In the first step, we have tested the above proceJurﬁects usingH = H, — Nm, whereH, is the applied ax-
on numerical data sets of the isothermal magnetizatioral magnetic field. N is the demagnetizing factor, which
in the case of the linear chain and the mean-field modeis calculated according t8 = (dm/dH,)~' = const for
The density functions, Eq. (5), emerging from the bes0.8 < H, < 1.3 MA/m, within the coexistence region of
fits agree with previous results apart from roundings othe antiferromagnetic and paramagnetic phases [15].
the pole occurring for the linear chain and of the steplike Figure 1 shows the normalized isothermal magnetic
change at the upper bound of the gap encountered in thmomentm/m, vs H of FeCh [13,14] for temperatures
mean-field case [10]. In particulag(#) inherently fulfils T = 34, 49, 50, 51, 52, 53, and 99 K. The data are best
the condition [12], fitted to Eq. (4). The results of the fitting procedure are
T indicated in Fig. 1 by full lines and are in detail shown for
f g(0)do = —. (6) the extended magnetic field range in the insets (a)—(e) for
the temperature¥, = 49 K + nAT, where AT = 1 K
eandn =0,1,...,4, respectively.
Figure 2 shows the density functiong(#) which
correspond to the magnetization data obtained at
=49,...,53 K (curves 1-5) and” = 99 K (curve 6).
hey have been calculated via Eq. (5) inserting the fitting

; : tersn;, d;, and d, obtained from Eg. (4) and
The experiments are carried out on an as-cleftiatelet ~Parametersu, ai, 2 )
with thickness = 0.5 mm and areal = 18 mn? by use Summarized in Table |. The Lande-factor= 4.1 [16]

of a SQUID magnetometer (Quantum Design MPMS—SS)enterSZ and, hence, EQ: (4), as a fixed parameter. S_ince
at temperature34 = T = 99 K. The saturation moment the zeros of the partition function of a noninteracting
m, =~ 4 kAm?, is deduced from the high field limit of SYStem accumulate at = —1, its density function is
the m vs H data atT' = 4.5 K (Fig. 1, dashed line). At 91Ven by g(8) = 6( — ). The pronounced peak of

this temperature, FeClbehaves as a prototypical meta- 8(0.T =d99 K) a_the h= 7|T (.Fig]; 2, cEr\_/e 6) is, her:x;_e,h
magnet switching from long-range antiferromagnetic into!M &ccordance with the limit of weak interaction. It
saturated paramagnetic order Ft= 0.8 MA/m. Note dJecreasing temperature the maximum values@) de-

that all data have been corrected for demagnetization ef'€aSes, while its position shifts towards lowevalues.
or example, af’ = 51 K (curve 3),g(0) is nearly zero

for 0 < 6 = 0.8, but exhibits a steep increase with in-

In order to test Eq. (5) on real experimental data w
have measured the isothermal axial magnetic moment
of the layered antiferromagnet FeCWhich behaves as a
quasi-2D triangular Ising ferromagnet at temperatures we
above the 3D ordering temperatufg, = 23.7 K [13,14].

creasingl, which yields a maximum aig/d6 atf = 1.5.
T T T T
| 1: T=49K X4
0.6 5\ x 112
3 2: T=50K
= 3: T=51K 4 JE
5 4: T=52K
= 041 5 T=53K 3 -
g 6: T=99K 2
I 1
02} E
K, HIT]
0.0 . L .
FIG. 1. m/m; vs H of FeCh for temperaturesl” = 34, 49, 0.0 0.8 1.6 24 n
50, 51, 52, 53, and 99 K (solid circles, down triangles, open 0 [rad]

squares, crosses, open circles, up triangles, and solid squares,

respectively) and” = 4.5 K (dashed line). Results of the best FIG. 2. LY-zero density function g(8) for T = 49,
fits of Eq. (4) to the data @ = 49,...,53 K are indicated by 50,...,53 K (curves 1-5, respectively) andl' =99 K
full lines and in detail shown within the insets [(a),(b),,(e), (curve 6). Data of curve 5 and 6 are scaled by facgoemdl,
respectively]. respectively.
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TABLE 1. Best-fit parameters;, d;, and d, of Eq. (4) to them/m, vs H data partially
displayed in Fig. 1;J/kg = —(T/12)In[(d, — n;)/2]; and quality parametery?, which
measures the sum of the squares of the deviations of Eq. (4) from the respective data points
normalized to the degrees of freedom.

T [K] ny d, d» J/kg [K] x?

34 —1.5583 —1.07621 0.44795 4.031 2.45 x 1077

35 —1.62526 —1.09583 0.42893 3.877 4.66 X 1077

36 —1.60725 —1.04905 0.41056 3.829 6.26 X 1077

49 —1.22375 —0.33542 0.28636 3.314 2.86 X 1077

50 —1.00352 —0.12235 0.35496 3.415 1.84 X 1077

51 —0.79428 0.07411 0.44338 3.546 1.79 x 1078

52 —0.58248 0.28942 0.52122 3.598 6.10 x 1078

53 —0.10146 0.71108 0.74829 3.978 228 x 1078

99 —0.41602 1.50348 0.54979 0.339 5.90 X 107°
The pronounced peak ét= 1.8 is followed by a smooth  F/NgugS = — uoH — (kgT/gusS)
decay into the constant valgéd = =) = 0.19. This be- 7
havior bears similarity with th@-dependence of the den- X / g(@)In(z*> — 2zcosd + 1)d6,
sity function of the square lattice, which was theoretically 0
determined af’ = 6T, [10]. The observed steep increase 8

of g(6) indicates the upper bound of the gaggf) =0  whereN = m,/gugS is the number of spins. By insert-
for0 < 6 < 6,, while the pronounced peak in curve 3 re- ing the g() functions shown in Fig. 2 and the respective
flects the smeared singularity at= 6,. This smearing (7, H) values one obtaing vs H curves, which are dis-
originates from the truncation of the Padé-type expansioplayed in Fig. 4 forT = 49, 50, 51, 52, and 53 K (curves
used in Eq. (4). This was clearly evidenced in the case of -5, respectively). From these functions the magnetic en-
the linear chain, whose exactly known [10] singularity be-tropy, s, and the specific heat, is calculated by numeri-
comes rounded within our approach (see above). In addtal derivation as shown fof = 51 K in Fig. 4 (inset)
tion, however, one has to take into account the dependenegd Fig. 3 (open circles), respectively. It is seen that,
of m(H) on the details of the lattice structure. Hence, oneapart from small deviations which originate from errors
might also expect qualitative differences between the unef the numerical integration, both curvas (H) andc(H)
derlying density functions of the square and the triangulagield identical results, where(H = 0) = —Ac(H — )
lattice. Tentatively, this might be at the origin of the dis- as expected.
crepancy between the steep decay@ — =) inthe case  Since the curvature ofi/m; vs H is weak in the avail-
of the square lattice [10] and its virtual absence in the casgple field range of the magnetometer, the extrapolation
of the triangular lattice (Fig. 2). of the fitting results into the high field regime is risky
The validity of our procedure yielding the density and has to be checked separately. Therefore we calculate
function, ¢(#), from experimental magnetization data, the leading term of the high field series pfz), Eq. (4),
m(H), is determined by a comparison of the magnetic
specific heat¢(H), as deduced from eithgi(6) or m(H). : : : : : : :
Both results are shown in Fig. 3 by the functiond)
andAc(H), respectively.
The functionAc = [c(H) — ¢(H = 0)]/m, is calcu-
lated from the fitting results shown in Fig. 1 [inset (a)—
(e)] according to

H
Ac = Tf 0%(m/my) /9T dH'. @)
0

Equation (7) is derived from Maxwell's relation
oM /oT = 0S/oH [17,18]. The second order deriva-
tive which enters the integral is approximately given R T S
by 9°m/aT? = (1/12)[-m(T = 49 K) + 16m(50 K) —
30m(51 K) + 16m(52 K) — m(53 K)]JK 2 [9]. HH[T]

The alternative method to obtain(H) utilizes the FIG. 3. Field dependence af (open circles) andAc¢ (solid

density functiong(6) in conjunction with the magnetic circles) calculated frong(6) and by use of Maxwell’s relation,
free-energy function [1], respectively.
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7 — — to reduce the smearing of possible singularities and steps

T T T T contained in the density functions. Furthermore, investi-

gations on Ising ferromagnets in other dimensidnss 1

and 3, seem desirable in order to reveal pertinent differ-

ences [1] with theD = 2 case considered in this Letter.

Finally, it will be a challenging future task to determine

T — the ill-known symmetries of the zero distribution in the
10 20 30 40 50 case of antiferromagnetic systems [5,7] in a similar way

1 HIT] as has been done here on Ising ferromagnets.

| thank W. Kleemann for very fruitful discussions.
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