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Density of Zeros on the Lee-Yang Circle Obtained from Magnetization Data
of a Two-Dimensional Ising Ferromagnet

Ch. Binek
Angewandte Physik, Gerhard-Mercator-Universität Duisburg, D-47048 Duisburg, Germany

(Received 7 August 1998)

In order to provide experimental access to the statistical theory of Lee and Yang [Phys. Rev.87, 410
(1952)] the density functiongsud of zeros on the Lee-Yang circle has been determined for the first
time by analyzing isothermal magnetization datamsHd of the Ising ferromagnet FeCl2 in axial magnetic
fields H at temperatures34 # T # 99 K. The validity of our approach is demonstrated by the perfect
agreement of magnetic specific heat data as calculated fromgsud and msHd via Maxwell’s relation.
Moreover, the correct in-plane exchange constant of FeCl2 emerges from the series expansion ofmsHd
involved in the analysis. [S0031-9007(98)08010-7]

PACS numbers: 75.10.Hk, 05.50.+q, 75.40.Cx

In 1952 Lee and Yang (LY) [1] pointed out that the
distribution of the zeros of the partition functionZ of an
Ising ferromagnet reveals a remarkable symmetry in the
complex fugacity plane. By virtue of their famous theorem
they proved that in the case of an Ising ferromagnet, the
zeros ofZ are distributed on the unit circlez ­ expsiud in
the complexz ­ exps22gSmBm0HykBT d plane, where
gSmB is the magnetic moment with Bohr’s magnetonmB,
the spin quantum numberS, and the Landé factorg, while
H is the complex magnetic field, andT is the temperature.
They conjectured that this symmetry has a simple and far
reaching basis, which, however, still has to be discovered.

Up to now, little progress has been made within this
fundamental field of statistical physics. Although it has
been shown that the LY theorem is applicable to much
wider classes of model systems [2,3], little is known about
the distribution functiongsud itself, which completely de-
termines the thermodynamic behavior of the system. In
particular,gsud has always been thought to be a purely
theoretical quantity which is not accessible by experi-
mental investigations. However, it is the aim of this
Letter to demonstrate for the first time thatgsud can be ex-
tracted from isothermal magnetization curvesm vs H of
Ising ferromagnets, provided that they are measured with
high enough accuracy using, e.g., modern superconducting
quantum interference device (SQUID) techniques.

From the theoretical point of view, there are two ap-
proaches to investigategsud. On the one hand, there
are straightforward solutions ofZszd ­ 0 for dimensions
D $ 2 which are, however, restricted to systems of a few
interacting spins only [4–7]. On the other hand, the basic
relation [1],

Iszd ­ 1 2 4z
Z p

0
fgsud sz 2 cosudy

sz2 2 2z cosu 1 1dg du , (1)

which correlates the normalized magnetizationI ­ myms

and gsud, is used in order to approximategsud from
corresponding approximations ofIszd. Here m and ms

denote the magnetic moment and its saturation value. The
coefficients of the high field series expansion

Iszd ­ 1 1 2p
X̀
n­1

gnzn (2)

directly determine the coefficientsgn ­ s2ypd
Rp

0 gsud 3

cossnud du, n $ 1, of the Fourier cosine series ofgsud
[8]. Unfortunately, the poor convergence of the series (2)
requires a huge number of expansion coefficients in or-
der to satisfactorily representgsud. However, Kortman
and Griffiths [10] pointed out thatgsud may also be con-
structed, e.g., from quickly converging Padé approximants
of Iszd when using the relation,

gsud ­ s1y2pd lim
r!12

ReIfr expsiudg . (3)

This equation is easily verified by substitution ofz ­
r expsiud into Eq. (2). As will be shown below, this ansatz
turns out to be particularly useful for analyzing experimen-
tal data. Based on high field series expansions ofIszd [11],
Kortman and Griffiths computed the corresponding Padé
approximants and calculatedgsud for Ising ferromagnets
on a 2D square and a 3D diamond lattice forT fi Tc. In
addition they investigatedgsud for the mean-field model
and the linear chain. Their solution of the latter problem
was in good agreement with the rigorous analytical expres-
sion obtained previously by Lee and Yang [1].

In analogy to the procedure introduced by Kortman and
Griffiths [10], we have determinedgsud from experimental
datam vs H by using, again, Eq. (3). To this end, the
data sets are normalized with respect to the low tempera-
ture and high field saturation valuems of the magnetic
moment and subsequently best fitted to empirical functions
of the type,

fszd ­ f1 1 n1z 2 s1 1 n1dz2gys1 1 d1z 1 d2z2d ,

(4)

with appropriate parametersn1, d1, and d2. The fitting
functions take into account the limiting casesfsz ­ 1d ­ 0
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and fsz ­ 0d ­ 1 of the normalized magnetization at
T . Tc in zero and infinite magnetic field, respectively.
Once the fitting parameters of such an empirical Padé-type

approximant are determined,gsud can be calculated by
replacingIszd in Eq. (3) by the ansatz function (4). One
readily obtains

gsud ­1y2pf1 1 sd1 2 d2dn1 2 d2 1 s1 2 d1 1 d2dn1 cosu 2 s1 2 d2 1 n1d coss2udgy

f1 1 d2
1 1 d2

2 1 2d1s1 1 d2d cosu 1 2d2 coss2udg . (5)

In the first step, we have tested the above procedure
on numerical data sets of the isothermal magnetization
in the case of the linear chain and the mean-field model.
The density functions, Eq. (5), emerging from the best
fits agree with previous results apart from roundings of
the pole occurring for the linear chain and of the steplike
change at the upper bound of the gap encountered in the
mean-field case [10]. In particular,gsud inherently fulfills
the condition [12],Z p

0
gsud du ­

1
2

. (6)

In order to test Eq. (5) on real experimental data we
have measured the isothermal axial magnetic momentm
of the layered antiferromagnet FeCl2, which behaves as a
quasi-2D triangular Ising ferromagnet at temperatures well
above the 3D ordering temperature,TN ­ 23.7 K [13,14].
The experiments are carried out on an as-cleftc platelet
with thicknesst ­ 0.5 mm and areaA ­ 18 mm2 by use
of a SQUID magnetometer (Quantum Design MPMS-5S)
at temperatures34 # T # 99 K. The saturation moment,
ms ø 4 kA m2, is deduced from the high field limit of
the m vs H data atT ­ 4.5 K (Fig. 1, dashed line). At
this temperature, FeCl2 behaves as a prototypical meta-
magnet switching from long-range antiferromagnetic into
saturated paramagnetic order atH ø 0.8 MAym. Note
that all data have been corrected for demagnetization ef-

FIG. 1. myms vs H of FeCl2 for temperaturesT ­ 34, 49,
50, 51, 52, 53, and 99 K (solid circles, down triangles, open
squares, crosses, open circles, up triangles, and solid squares,
respectively) andT ­ 4.5 K (dashed line). Results of the best
fits of Eq. (4) to the data atT ­ 49, . . . , 53 K are indicated by
full lines and in detail shown within the insets [(a),(b),. . . ,(e),
respectively].

fects usingH ­ Ha 2 Nm, whereHa is the applied ax-
ial magnetic field. N is the demagnetizing factor, which
is calculated according toN ­ sdmydHad21 ø const for
0.8 , Ha , 1.3 MAym, within the coexistence region of
the antiferromagnetic and paramagnetic phases [15].

Figure 1 shows the normalized isothermal magnetic
moment myms vs H of FeCl2 [13,14] for temperatures
T ­ 34, 49, 50, 51, 52, 53, and 99 K. The data are best
fitted to Eq. (4). The results of the fitting procedure are
indicated in Fig. 1 by full lines and are in detail shown for
the extended magnetic field range in the insets (a)–(e) for
the temperaturesTn ­ 49 K 1 nDT , where DT ­ 1 K
andn ­ 0, 1, . . . , 4, respectively.

Figure 2 shows the density functions,gsud which
correspond to the magnetization data obtained at
T ­ 49, . . . , 53 K (curves 1–5) andT ­ 99 K (curve 6).
They have been calculated via Eq. (5) inserting the fitting
parametersn1, d1, and d2 obtained from Eq. (4) and
summarized in Table I. The Landé-factorg ­ 4.1 [16]
entersz and, hence, Eq. (4), as a fixed parameter. Since
the zeros of the partition function of a noninteracting
system accumulate atz ­ 21, its density function is
given by gsud ­ dsu 2 pd. The pronounced peak of
gsu, T ­ 99 Kd at u ­ p (Fig. 2, curve 6) is, hence,
in accordance with the limit of weak interaction. With
decreasing temperature the maximum value ofgsud de-
creases, while its position shifts towards loweru-values.
For example, atT ­ 51 K (curve 3),gsud is nearly zero
for 0 , u u 0.8, but exhibits a steep increase with in-
creasingu, which yields a maximum ofdgydu atu ­ 1.5.

FIG. 2. LY-zero density function gsud for T ­ 49,
50, . . . , 53 K (curves 1–5, respectively) andT ­ 99 K
(curve 6). Data of curve 5 and 6 are scaled by factors1

2 and 1
4 ,

respectively.
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TABLE 1. Best-fit parametersn1, d1, and d2 of Eq. (4) to themyms vs H data partially
displayed in Fig. 1;JykB ­ 2sTy12d lnfsd1 2 n1dy2g; and quality parameterx2, which
measures the sum of the squares of the deviations of Eq. (4) from the respective data points
normalized to the degrees of freedom.

T fKg n1 d1 d2 JykB fKg x2

34 21.5583 21.07621 0.44795 4.031 2.45 3 1027

35 21.62526 21.09583 0.42893 3.877 4.66 3 1027

36 21.60725 21.04905 0.41056 3.829 6.26 3 1027

49 21.22375 20.33542 0.28636 3.314 2.86 3 1027

50 21.00352 20.12235 0.35496 3.415 1.84 3 1027

51 20.79428 0.07411 0.44338 3.546 1.79 3 1028

52 20.58248 0.28942 0.52122 3.598 6.10 3 1028

53 20.10146 0.71108 0.74829 3.978 2.28 3 1028

99 20.41602 1.50348 0.54979 0.339 5.90 3 1029

The pronounced peak atu ­ 1.8 is followed by a smooth
decay into the constant valuegsu ­ pd ­ 0.19. This be-
havior bears similarity with theu-dependence of the den-
sity function of the square lattice, which was theoretically
determined atT ­ 6Tc [10]. The observed steep increase
of gsud indicates the upper bound of the gap,gsud ­ 0
for 0 , u , ug, while the pronounced peak in curve 3 re-
flects the smeared singularity atu ­ ug. This smearing
originates from the truncation of the Padé-type expansion
used in Eq. (4). This was clearly evidenced in the case of
the linear chain, whose exactly known [10] singularity be-
comes rounded within our approach (see above). In addi-
tion, however, one has to take into account the dependence
of msHd on the details of the lattice structure. Hence, one
might also expect qualitative differences between the un-
derlying density functions of the square and the triangular
lattice. Tentatively, this might be at the origin of the dis-
crepancy between the steep decay ofgsu ! pd in the case
of the square lattice [10] and its virtual absence in the case
of the triangular lattice (Fig. 2).

The validity of our procedure yielding the density
function, gsud, from experimental magnetization data,
msHd, is determined by a comparison of the magnetic
specific heat,csHd, as deduced from eithergsud or msHd.
Both results are shown in Fig. 3 by the functionscsHd
andDcsHd, respectively.

The functionDc ­ fcsHd 2 csH ­ 0dgyms is calcu-
lated from the fitting results shown in Fig. 1 [inset (a)–
(e)] according to

Dc ­ T
Z H

0
≠2smymsdy≠T2 dH 0. (7)

Equation (7) is derived from Maxwell’s relation
≠My≠T ­ ≠Sy≠H [17,18]. The second order deriva-
tive which enters the integral is approximately given
by ≠2my≠T2 ­ s1y12d f2msT ­ 49 Kd 1 16ms50 Kd 2

30ms51 Kd 1 16ms52 Kd 2 ms53 KdgK22 [9].
The alternative method to obtaincsHd utilizes the

density functiongsud in conjunction with the magnetic
free-energy function [1],

FyNgmBS ­ 2 m0H 2 skBTygmBSd

3
Z p

0
gsud lnsz2 2 2z cosu 1 1d du ,

(8)

whereN ­ msygmBS is the number of spins. By insert-
ing thegsud functions shown in Fig. 2 and the respective
zsT , Hd values one obtainsF vs H curves, which are dis-
played in Fig. 4 forT ­ 49, 50, 51, 52, and 53 K (curves
1–5, respectively). From these functions the magnetic en-
tropy, s, and the specific heat,c, is calculated by numeri-
cal derivation as shown forT ­ 51 K in Fig. 4 (inset)
and Fig. 3 (open circles), respectively. It is seen that,
apart from small deviations which originate from errors
of the numerical integration, both curvesDcsHd andcsHd
yield identical results, wherecsH ­ 0d ­ 2DcsH ! `d
as expected.

Since the curvature ofmyms vs H is weak in the avail-
able field range of the magnetometer, the extrapolation
of the fitting results into the high field regime is risky
and has to be checked separately. Therefore we calculate
the leading term of the high field series offszd, Eq. (4),

FIG. 3. Field dependence ofc (open circles) andDc (solid
circles) calculated fromgsud and by use of Maxwell’s relation,
respectively.
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FIG. 4. Field dependence of the free energy calculated from
gsud at T ­ 49, . . . , 53 K (curves 1–5, respectively). The
inset shows the field dependence of the entropy atT ­ 51 K
calculated from the free-energy curves 1, 2, 4, and 5 by
numerical derivation.

which readsfszd ­ 1 2 sd1 2 n1dz 1 Ofz2g. Compari-
son with the theoretical expansion of the magnetiza-
tion of the 2D Ising ferromagnet on a triangular lattice
[11] yields u3 ­ s1y2d sd1 2 n1d, where u is given by
u ­ exps24JykBT d. Hence, the ferromagnetic nearest
neighbor in-plane exchange constant of FeCl2 is re-
lated to the fitting parametersn1 and d1 according to
JykB ­ 2sTy12d lnfsd1 2 n1dy2g. The average value of
the exchange constant yieldsJykB ­ 3.7 K for 34 #

T # 53 K. Within an error of ø6% this is in accor-
dance with the valueJykB ­ 3.94 K which has been de-
termined from magnon dispersion data of inelastic neutron
scattering investigations on FeCl2 [14]. Disappointingly,
the value from the data atT ­ 99 K, JykB ­ 0.339, de-
viates from the experimental one by 1 order of magnitude.
Presumably this is due to the finite value of the single-ion
anisotropy of FeCl2 [14], which violates the condition of
Ising-type symmetry at high temperatures.

In conclusion, it has been shown for the first time, that
the LY-zero density can be determined experimentally
with high accuracy from the field dependence of the
isothermal magnetization data,msHd, of a quasi-2D Ising
ferromagnet. In accordance with theoretical predictions
[1] and model calculations [1–7,10]gsud exhibits a gap
in the low-u region, which shrinks upon lowering the
temperature towards the phase transition instability. The
resulting density functions are used to calculate the field
dependencies of the magnetic free energy, the entropy,
and the specific heat. The latter quantity is alternatively
calculated frommsHd by utilizing Maxwell’s relation. The
results of both methods are in nearly perfect agreement.

It will be interesting to perform high field magnetiza-
tion measurements in the regime of strong curvature of
the m vs H dependencies. These data will require Padé-
type approximants, which contain relevant additional free
parameters. Such higher order approximants are expected

to reduce the smearing of possible singularities and steps
contained in the density functions. Furthermore, investi-
gations on Ising ferromagnets in other dimensions,D ­ 1
and 3, seem desirable in order to reveal pertinent differ-
ences [1] with theD ­ 2 case considered in this Letter.
Finally, it will be a challenging future task to determine
the ill-known symmetries of the zero distribution in the
case of antiferromagnetic systems [5,7] in a similar way
as has been done here on Ising ferromagnets.

I thank W. Kleemann for very fruitful discussions.
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