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Isotropic nanocomposite magnetic structures were produced via cluster assembly routes with energy
products reaching 18 MG Oe. Gas aggregation produces Fe clusters with an average size less than
10 nm with a very narrow size distribution, and these were embedded in a hard magnetic matrix by
cosputtering of FePt. Structures produced were crystallographically isotropic with Fe cluster phase
content ranging from 0 to 30 vol %. The coercivity decreased from 13 kOe as Fe cluster content
increased. Single-phase-type hysteresis loops indicating excellent exchange coupling at low Fe
cluster content give way to a stepped demagnetization loop at an Fe cluster content greater than
20%. The energy product initially increased with Fe cluster content, then decreased. ©2005
American Institute of Physics. fDOI: 10.1063/1.1853271g

INTRODUCTION

Nanocomposite exchange-spring permanent magnets
have generated a significant amount of attention in the last
dozen years. The combination of soft and hard magnetic
phases, assembled at the nanoscale, results in high rema-
nence and concomitant high energy products when compared
to conventional, nonexchange-coupled permanent magnet
materials.1–3 For example, isotropic, noninteracting Nd–Fe–
B-based magnets have energy products of 12–14 MG Oe and
a theoretical maximum of 16 MG Oe.4 Nanocomposite per-
manent magnets based in the same system have achieved
energy products greater than 20 MG Oe,5 and predictions
based on modeling studies are more than twice that.6 The
magnetic performance is strongly tied to features of the
nanostructure, primarily scale of the hard and soft magnetic
phases and the phase morphology. Specifically, ideally the
soft magnetic phase dimension is on the order of twice the
domain wall width of the hard magnetic phase, or 5–10 nm.1

Larger scale structures result in some of the soft magnetic
phase remaining uncoupled. Magnetic reversal initiates in
these uncoupled regions.7 As a result, nonideal nanostruc-
tures lead to early reversal and lower-than-expected energy
products. Consequently, there is a great deal of effort to con-
trol the nanostructural development. In melt-processed or de-
vitrified materials, it has proven to be very difficult to gen-
erate appropriately fine and uniform nanostructures. In this
article, we report cluster-assembled nanocomposite
exchange-spring permanent magnets with extremely fine and
uniform structures with excellent magnetic properties.

EXPERIMENTAL PROCEDURES

Clusters were fabricated by the gas-aggregation
technique8 in which Fe clusters are formed through collisions
with the Ar ions. The atomic gas was produced by dc mag-
netron sputtering from a 99.9% pure Fe target. The base
pressure of the system was below 10−7 Torr, and an Ar/He
gas mixture was introduced into the nucleation chamber. He
gas was used to ensure uniform temperature in the nucleation
chamber. The He gas flow rate was varied from 250 to 300
sccm while the Ar gas flow rate was varied between 250 and
350 sccm. The sputtering power also influences cluster size
and size distribution. In this study, it was varied between 60
and 160 W, although most depositions were done at a power
level of 160 W.

The gas aggregation system is also equipped with a sec-
ond dc magnetron sputtering source, and an ac magnetron
sputtering source, both currently situated perpendicular to
the cluster source. The ac source was used to deposit a C
overlay to protect the deposited material from oxidation. The
dc source was used to deposit hard magnetic FePt thin films,
and alternating deposition between the cluster gun and the
second dc magnetron gun allowed the development of nano-
composite structures, with the clusters imbedded in the hard
magnetic phase. The nanocomposite structures were fabri-
cated by alternating deposition of FePt and Fe clusters by
physically rotating the substrate for deposition from the clus-
ter or thin film source. The relative fraction of Fe clusters
and FePt film was controlled by varying deposition times
from each source. The relative volume fraction of each phase
was determined from the respective sputtering rates and the
deposition times, and the accuracies were on the order of
10%. The material was deposited directly on a carbon sup-adElectronic mail: jshield2@unl.edu
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port grid for transmission electron microscopy and, simulta-
neously, a Si substrate for characterization by x-ray diffrac-
tion and magnetometry.

The clusters and nanocomposite structures were charac-
terized by transmission electron microscopy using a
JEOL2010 transmission electron microscope operating at
200 kV, x-ray diffraction using a Rigaku diffractometer, and
magnetometry using a Quantum Design MPMS supercon-
ducting quantum interference device and alternating gradient
field magnetometers. The magnetic signal from the substrate
was subtracted from the nanocomposite magnetic signal by
fitting a straight line to the high-field region and subtracting
the linear portion from the measured signal. In this article,
we present results for in-plane measurements only. As such,
the demagnetization factor was assumed to be zero.

RESULTS AND DISCUSSION

The cluster size and size distribution were critically de-
pendent on the processing parameters, primarily the gas flow
rates, which controlled the frequency of collisions during the
cluster formation process. Fe clusters with an average size
from 5 to 20 nm were produced with extremely narrow size
distributions. For example, clusters with an average size of
4.7 nm and as /d of approximately 0.1, wheres is the
standard deviation andd is the average cluster size, are
shown in Fig. 1. The narrow size distribution essentially cre-
ates a monosized nanostructure with respect to thea-Fe
phase. This is in direct comparison tos /d values of 0.2–0.3
in nanostructures produced by rapid solidification.9 Electron
diffraction patterns revealed that the clusters formed in the
bcc structure.

The as-deposited FePt film was in the disorderedA1 fcc
structure. Therefore, heat treatments were necessary to form
the hard magneticL10 structure. Rapid thermal annealing
was utilized for the heat treatment. This processing limits the
exposure of the film to high temperatures, reducing interdif-

fusion between the FePt matrix and Fe clusters, as well as
coarsening of the FePt structure that can deleteriously affect
the magnetic properties. The magnetic properties, and thus
the formation of theL10 structure, were sensitive to the exact
heat treatment. The optimum heat treatment was found to be
600 °C for 10 min, which resulted in a coercivity of greater
than 10 kOe for FePt thin film structures with no Fe clusters.
The films showed predominantly isotropic grain orientations,
as deduced from x-ray diffraction analysis and comparison of
in- and out-of-plane magnetic measurements.

Different phase contents in the nanocomposite structures
were achieved by varying the deposition times for the Fe
clusters and FePt thin films. Nanocomposite structures con-
taining between 0 and 30 vol % Fe clusters were fabricated.
Figure 2 shows a typical nanocomposite structure before heat
treatment to form theL10 structure. This image shows Fe
clusters and a background of fine FePt grains prior to heat
treatment. This image is of a single layer of Fe clusters and
FePt; multiple layers were used to form the nanocomposite
structures. The heat treatment results in a coarsening of the
very fine FePt structure.

FIG. 1. Fe clusters formed by gas ag-
gregation deposited directly on a
graphite support film. The inset shows
the cluster size distribution.

FIG. 2. Transmission electron microscopy micrograph showing the nano-
composite FePt/Fe cluster system prior to heat treatment. The Fe cluster
size was on the order of 6 nm.
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The magnetic behavior of the FePt and FePt/Fe cluster
nanocomposites was also evaluated. Figure 3 shows hyster-
esis curves for the various samples. A smooth demagnetiza-
tion curve was observed for the films containing 8 and 14 vol
% Fe clusters, indicating excellent exchange coupling be-
tween the FePt matrix and Fe clusters. In the film with 20 %
Fe clusters, a step in the demagnetization loop, indicating
two-phase behavior, was observed. The problem may be that
the Fe clusters are “clustering” during deposition, leading to
regions with effectively larger Fe regions and thus decoupled
from the hard magnetic matrix. This two-phase behavior may
also develop due to compositional changes in the FePt phase
that arise due to different Fe and Pt sputtering rates. A FePt
film with no Fe clusters deposited after the 20 vol % Fe
cluster nanocomposite displayed a large step in the demag-
netization loop. Further work to better maintain composi-
tional control over the FePt phase is underway.

The overall magnetic properties of the FePt and FePt/Fe
cluster nanocomposite structures are summarized in Fig. 4.

The FePtL10 film, with no Fe clusters, exhibited a coercivity
of greater than 10 kOe, and the coercivity decreased system-
atically with increasing Fe cluster content, as might be ex-
pected. The remanence increased systematically with Fe
cluster content, while the energy product went through a
maximum of 17.7 MG Oe. The energy products were well
above those expected for randomly oriented, noninteracting
magnetic systems. For example, isotropic, single-phase, non-
interacting FePt has a theoretical maximum of 12.8 MG Oe.
The enhanced energy products are attributed to exchange-
spring interactions between the hard magnetic FePtL10

phase and the soft magnetic Fe clusters.

CONCLUSIONS

This work shows that nanocomposite structures can be
achieved with excellent control of scale and phase fraction
through cluster assembly processes utilizing codeposition
processing. Soft magnetic Fe cluster formation by gas aggre-
gation techniques produces cluster sizes below 10 nm. Nano-
compositea-Fe/FePt structures can be achieved through
codeposition of Fe clusters and FePt thin films, resulting in
outstanding energy products for isotropic structures. The
magnetic properties strongly depend on the phase content of
the FePt/Fe clusters nanocomposites. Energy products on the
order of 18 MG Oe were realized in the two-phase system,
and were increased over single-phase materials. The coercive
force decreased with increasing Fe cluster content, but were
reasonably highs5.7 kOed at 14 vol % Fe clusters.
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FIG. 3. Hysteresis curves at 300 K for the nanocomposite films with differ-
ent Fe cluster content. All samples were annealed at 600°C/10 minprior to
measurement.

FIG. 4. Summary of magnetic properties of nanocomposite films.
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