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Summary  The Eastern Basin within the Ross Sea records changes in the volume of the West Antarctic Ice Sheet 
(WAIS).  Examination of multibeam data revealed four acoustic facies that vary from west to east in a 900 km2 area.  It 
is hypothesized that these facies, that formed nearly contemporaneously, are the result of differences in proximity to the 
grounding line and its relationship with the seafloor.  The four facies are 1. Mega-Scale Lineation, 2. Slightly-Lineated 
Ridge Crest, 3. Discontinuous Ridges, 4. Irregular Mounds. These trends were also seen in SCS data, distinctively on 
the seafloor and mutedly at depth.  Through determining the extent of fluctuation in these facies and their distribution in 
the Ross Sea it will be possible to apply this scale to the core record to determine if facies were generated via global 
processes or were local in origin.  
 

Citation: Loth, A.S., L.R. Bartek, B.P. Luyendyk, D.S. Wilson, and C.C. Sorlien (2007), Scale of subglacial to sub-ice shelf facies variability, 
Eastern Basin, Ross Sea: in Antarctica: A Keystone in a Changing World __ Online Proceedings of the 10th ISAES, edited by A.K. Cooper and C.R. 
Raymond et al., USGS Open-File Report 2007-1047, Extended Abstract 200, 5 p.  
 
Introduction   
 

  Much about the nature of Antarctic cryosphere-when it formed; how ice masses relate to one another; if changes in 
the volume of ice are driven by climate and eustatic sea level fluctuations, or whether variations in grounding line 
position merely reflect autogenic processes; are unknown (Anderson and Bartek, 1992; De Santis et al., 1995; Shipp et 
al., 1999; Bart, 2003). Within this paper the term autogenic refers to episodic sedimentologic processes that may appear 
cyclical and are driven by internal dynamics of the ice sheet, not by external forcing of the depositional system by 
changes in climate or sea level.  An example of non-glacial autogenic process would be delta lobe switching in marginal 

marine environments.  Of all of the areas surrounding Antarctica, an 
ideal setting to study changes in ice sheet volume, with respect to 
climate change, is the Ross Sea, (Figure 1).  The embayment 
experiences growth and decay of both of Antarctica’s ice sheets, the 
East Antarctic Ice Sheet (EAIS) and West Antarctic Ice Sheet (WAIS), 
which are separated by the Transantarctic Mountains (TAM) on the 
mainland and in the Ross Sea, a drainage divide at approximately 180o. 
The study area is located in the Eastern Basin, an area that is singularly 
affected by the WAIS (Figure 1). The WAIS is a marine ice sheet and it 
is thought that small perturbations in sea level and climate can cause 
changes in ice sheet volume (Anderson et al., 1984; Alley and Whillans, 
1991; Anderson and Bartek, 1992; Anderson, 1999; De Santis et al., 
1999) Data for the area consists of numerous geophysical surveys and 
cores acquired by the Deep Sea Drilling Project (DSDP) (Figure 2).  
However, poor core recovery has made it difficult to extract a complete 
paleoclimate record (Alonso et al., 1992).  Since initial collection began, 
geophysical data density and quality continues to improve, however the 
collection of seismic data has reached critical mass, and no longer does 
a new survey vastly improve the basic framework of the glacial history 
of the Ross Sea.   

  This research builds upon efforts to ascertain paleoclimactic conditions as well as insight into ice sheet deposition 
and erosion through existing geophysical data, to improve upon knowledge of the history of the Antarctic cyrosphere. 
Three features make data collected for this research unique.  First, prior to 2000, the Ross Ice Shelf covered the location 
where seismic profiles and swath bathymetric data were acquired.  Once the B-15 iceberg calved in 2000, it exposed the 
most up dip stratigraphic record of the Eastern Basin providing access to the strata that formed most proximal to the ice 
sheet in both younger and older sediments.  Additionally, the calving event revealed older strata at shallow depths 
beneath the seafloor. This is ideal because it minimizes the destructive interference from the seafloor multiple that 
impedes studying rocks at depth.  It also makes it possible to interpret the older data at a higher resolution than typically 
possible since they are shallow enough to not be affected by attenuation in the Multi-Channel Seismic Record.  This 
situation creates opportunities to examine old deposits for subtle characteristics that would determine if they were 
deposited in a glacially dominated environment and potentially unlock the timing of ice sheet onset. Secondly, the high  

Figure 1. Geographic map of Antarctica,
boxed area represents location of study
area.  RS, Ross Sea, RIS, Ross Ice Sheet,
TAM, Transantarctic Mountains.  Adapted
from Anderson, 1999. 
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frequency content of the acoustic source used to acquire the Single-Channel Seismic profiles improved the vertical 
resolution of the strata and enhances the value of the data collected. Lastly, spacing between profiles is very low, on 
average 4.6 kilometers, compared to previous cruises with average profile intervals that are triple this value. Densely 
spaced profiles provide an opportunity to resolve facies with limited distribution, observe facies transitions that occur 
over short distances, and discern the details of the morphologies of stratigraphic surfaces and units. Through having 
such high-resolution, up-dip data it will allow description of the scale of stratigraphic variability in ice sheet 
depositional processes. This is a critical issue to resolve when attempting to distinguish facies and surfaces in core that 
represent major changes in the climate system from those that are the product of small autogenically produced changes 
in the location of grounding line.  
 
  Methods 

 

  Approximately1600 km of seismic data were collected aboard the R/V IB Nathaniel B. Palmer (R/V IB NBP 0306). 
These data, along with 30,000 km collected from previous cruises, are being used to reconstruct the glacial history of 
the ice sheets that drain into the eastern portion of the Ross Sea. Two types of data are being used to interpret ice sheet 
growth and decay; Single Channel Seismic (SCS), and sonar data. High-resolution Two-Dimensional (2-D) SCS data 
were collected by using a 50 cubic inch G/I gun source, this produced an acoustic pulse in the frequency spectrum of 
30-1000 Hz and have a vertical resolution of 1-3 m.  Four types of sonar data, having a resolution of 0.1-0.5 m were 
collected; sub-bottom chirp, side-scan sonar, deep-tow chirp, and multibeam bathymetry. Using the Seismic Processing 
Workshop software suite from the Parallel Geoscience Corporation.  Primary processing steps for SCS consist of 
spiking deconvolution, band pass filtering, and gain recovery. Digital interpretation is done using The Kingdom Suite 
Version 7.5 software published by Seismic MicroTechnology, Incorporated.  Stratigraphic units are identified using 
reflection termination patterns as described by Vail et al. (1977).  Seismic facies are identified using reflection 
characteristics described by Vail et al. (1977) such as lateral continuity, frequency, amplitude and geometry.  Structure, 
isopach, and facies distribution maps are constructed to evaluate spatial changes in facies and surfaces.  Major surfaces 
are correlated to DSDP sites to gain insight into associated lithofacies and for chronostratigraphic control.
 

Figure 2.  Map of the Ross Sea showing the location of major sedimentary basins, some geophysical surveys that 
have been taken in the region, and the location of DSDP Leg 28 core locations.  Boxed area represents data that are 
the focus for this project.  Adapted from Davey (1987).   
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Discussion 
 

  The multibeam record (Figure 3) is used to identify major sedimentologic elements and acoustic facies in an area of 
approximately 900 km2 on the sea floor.  The facies represent subtle changes in the relationship of the ice sheet to the 
sea floor, and are not the result of an artifact in the data.  The largest trend in the grid of multibeam data is the presence 
of a north-south oriented large-scale bathymetric ridge that slopes off to adjacent troughs.  This large-scale ridge and 
trough morphology is common throughout the Ross Sea, with ridges ranging in size up to hundreds of meters in height 
to tens of kilometers in width, while troughs are hundreds of kilometers wide and hundreds of meters deep (Shipp et al., 
1999; Anderson, 1999; Bart, 2004. Four very different acoustic facies, that were generated nearly simultaneously, are 
distinguishable across the grid (from west to east).  It is hypothesized that the variation in facies is related to the location 
on the continental shelf relative to the grounding line.  Characterizing the facies and their extent provides a tool to 
distinguish facies generated by climate events, from those that formed due to minor autogenic migration of the 
grounding line.  The facies that is associated with the most up-dip (SE) sub-ice sheet position is a set of Mega-Scale 
Lineations that formed as the ice sheet advanced across the continental shelf [Mega-Scale Lineations,A] (Shipp et al., 
1999; Anderson; 1999).  These are oriented SW-NE, the same direction of ice sheet expansion, and are tens of meters in 
width, tens of meters in height, and reoccur approximately every half kilometer.  Eastward from the Mega-Scale 
Lineations, the facies is present on the crest of the large-scale ridge and is characterized by a lower density of lineations 
[Slightly-Lineated Ridge Crest, B].  Here, there is an increase in spacing between ridges coupled with a decrease in 
relief of the ridges, suggesting that the ice sheet was much less firmly coupled to the bed. Since the ice sheet was not  
firmly coupled to the seafloor, there were  places that did not receive the intense scouring that occurred in the Mega-
Scale Lineations facies.  Along the east side of the large-scale ridge is a zone that is covered with irregular, small ridges 
with their long-axes oriented parallel to that of the large-scale ridge and trough topography [Discontinuous Ridge, C].   

Figure 3.  Entire multibeam grid with insets showing the four facies that occur across the sea floor.  A. Mega-Scale 
Lineation, B. Slightly-Lineated Ridge Crest, C. Discontinuous Ridges, D. Irregular Mounds.  Line outlined in black 
is the seismic line shown in Figure 4.  
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 In the context of adjacent acoustic facies, the genesis of this facies is interpreted as a product of the zone where the ice 
sheet is slightly decoupled from the sea floor.  Debris eroded by the ice sheet in the zone of Mega-Scale Lineations was 
piled up in this area and pushed into a series of discontinuous ridges. On the east side of the large-scale ridge, the 
contact between the ice sheet and bed was broken due to the slope of the sea floor. The final facies that is present within 
the multibeam grid is a series of erratically distributed, small mounds [Irregular Mounds, D].  There is a range of sizes 
for these mounds, but many are roughly 0.5-0.75 km wide, 3-8 km long and 40-100 m high.  In this zone is the ice sheet 
was fully decoupled from the bed, and debris from the base of the ice sheet rained-down onto the topography of the 
trough. As with the Mega-Scale Lineations, many of the mounds appear to be oriented SW-NE.  The similarity with the 
orientation of the lineations suggests that some of these mounds are associated with sub-glacial depositional processes.  
Their similarity to features described by Shipp et al., 1999, suggests that they may be drumlins deposited in the trough 
when it was occupied by the ice sheet.   Other mounds may simply be piles of debris, rafted to the sites of deposition by 
the decoupled ice sheet. These four facies are highlighted across the multibeam grid in insets of Figure 3.  
  In the seismic record these features and facies changes are preserved on the sea floor, however, without the 
multibeam record it would be difficult to discern the features that comprise the multibeam facies (Figures 3 and 4). The 
only features that are as easily observed in the seismic record as in the multibeam record are the large-scale ridge and 
trough. Beginning on the west side of the seismic profile, there are irregularities in the sea floor, which correspond to 
the Mega-Scale Lineation facies in the multibeam record (highlighted in red in Figure 4).  Moving east up the side of 
the large-scale ridge to its crest, the number of lineations significantly decreases in the Slighty-Lineated Ridge Crest 
zone (highlighted in yellow in Figure 4).  Continuing toward the east, down the flank of the ridge, is the Discontinuous 
Ridge facies (highlighted in blue in Figure 4).  On the seismic profile this facies appears very similar to the Mega-Scale 
Lineation facies, only after studying the multibeam data is it possible to recognize characteristics that can be used to 
identify them as being different from one another on the seismic profiles.  Moving down into the trough, it is very 
difficult to see the Irregular Mound facies (highlighted in green in Figure 4).  There are a couple of slight humps on the 
sea floor, but they are not as abundant and defined in the seismic profile as they are in the multibeam.  In addition to 
revealing features on the sea floor, the seismic data also captures features that are present at depth.  It appears that on 
the seismic profile it is possible to see slices through older large-scale ridges and troughs (outlined in orange on Figure 
4).  Thus, as suggested by Bart (2004) the ice sheet has not expanded in the same direction throughout its history.  At 

Figure 4.  High-resolution single channel seismic profile from R/V IB NBP 0306, circled on Figure 3.  The orange 
line represents an ancient ridge and trough complex.  Facies A-D are positioned where they occur on the profile. 
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depth on the seismic profile, there appear to be some remnants of the acoustic facies that are present on the surface, 
however, they are difficult to distinguish and identify at depth.  From the multibeam and SCS data it is possible to see 
four different facies, in a narrow swath (30 km).   Had the interval between the multibeam swaths in Figure 3 been 
larger, facies and transitions between them would have been missed.  This suggests that there are rapid transitions in 
depositional environment that may not be included in existing climatic interpretations using the coarse seismic profile 
spacing that is common on the Antarctic margin.  

 Part of ongoing research is determining the density of data that is required to capture the scale of lateral variation in 
acoustic facies that is documented in Figures 3 and 4.  Without knowledge of the scale of this variability it is difficult to 
assess the completeness of the record at any location and whether interpretation of vertical successions recorded on 
seismic profiles and within drillcore represent changes associated with significant climate change, or are associated only 
with localized autogenic movement of the ice sheet.  The key to discerning whether an event in drillcore reflects a 
regionally significant event, is to place that event in a regional context through correlation of facies and surfaces to a 
dense grid surrounding the drill site, within a regionally extensive seismic database.  It should be possible to correlate 
events that are climatically significant across the region, while those that represent autogenic processes should only 
correlate locally.  
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of the R/V Nathaniel B. Palmer, the Marine Projects Coordinator, Ashley Lowe Ager and the shipboard technicians of RAYTHEON Polar Services, 
as well as Laura Callihan, Pres Viator Lauren Boyd and David Parnell. This research was supported by National Science Foundation grants OPP-
087392 to Bartek, and OPP-0088143 to Luyendyk and Wilson. 
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