FUNCTIONAL TWO-DIMENSIONAL ELECTRONIC GASES AT INTERFACES OF OXIDE HETEROSTRUCTURES

Yong Wang
University of Nebraska-Lincoln, tumble2000cn@gmail.com

Follow this and additional works at: http://digitalcommons.unl.edu/physicsdiss
Part of the Condensed Matter Physics Commons
FUNCTIONAL TWO-DIMENSIONAL ELECTRONIC GASES AT INTERFACES OF
OXIDE HETEROSTRUCTURES

By

Yong Wang

A DISSERTATION

Presented to the Faculty of

The Graduate College at University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Doctor of Philosophy

Major: Physics and Astronomy

Under the Supervision of Professor Evgeny Y. Tsymbal

Lincoln, Nebraska

August, 2011
FUNCTIONAL TWO-DIMENSIONAL ELECTRONIC GASES AT INTERFACES OF OXIDE HETEROSTRUCTURES

Yong Wang, PhD

University of Nebraska, 2011

Adviser: Evgeny Y. Tsymbal

A quasi-two dimensional electron gas (2DEG) in oxide heterostructures such as LaAlO$_3$/SrTiO$_3$ has unique properties that are promising for applications in all-oxide electronic devices. In this dissertation, we focus on understanding and predicting novel properties of the 2DEG by performing first-principles electronic calculations within the framework of density-functional theory (DFT). The investigation is made upon adding new functionalities in oxide heterostructures, such as ferroelectric polarization, epitaxial strain, and spin polarization that can be employed to control 2DEG properties.

Based on first-principles calculations the effects of different polarization magnitudes and alignments in all-oxide heterostructures incorporating different ferroelectric constituents, such as KNbO$_3$/ATiO$_3$ (A = Sr, Ba, Pb), are investigated. It is found that screening charge at the interface that counteracts the depolarizing electric field in the ferroelectric material significantly changes the free electron density of 2DEG at the interface. Using this mechanism, nonvolatile metal-insulating transition can be achieved at the interface by switching the ferroelectric spontaneous polarization.
Growing on different substrates, LaAlO$_3$/SrTiO$_3$ heterostructures experience different epitaxial strains. Our first-principles calculations reveal that compressive epitaxial strain introduces a polarization in SrTiO$_3$ pointing away from the interface, which is consistent with the experimental observations. This polarization strongly affects the 2DEG carrier density through a polarization charge formed at the interface. Our theoretical investigation finds that the critical thickness to form a 2DEG at the interface of the heterostructure increases with the compressive strain, while the saturated carrier density decreases which is consistent with the experimental results.

Adding a spin degree of freedom to 2DEG may be interesting for the application of 2DEGs in a spintronic device. We explore a LaAlO$_3$/EuO interface as a potential candidate to create a spin-polarized 2DEG. The exchange splitting of unoccupied Eu-5d conduction band in bulk EuO makes it possible to realize spin-polarized 2DEG. We predict that LaAlO$_3$/EuO interface forms a spin-polarized 2DEG with spin polarization of about 50%. We hope that this prediction will stimulate experimental investigations to achieve the spin-polarized 2DEG.
Acknowledgements

I would like to thank all the friends, colleagues and my family for their support and guidance during my doctoral studies.

First and foremost, I would like to thank my advisor, Professor Evgeny Tsymbal. He provided an excellent guidance on my graduate research and dissertation. I am greatly influenced and educated by his strong interest in physics, erudite scientific knowledge, and perspective physical intuition. He provided many opportunities for me to participate in different research projects and obtain experience of writing proposals and applications for fellowship. I sincerely appreciate his support and interest in my scientific development and future career.

I would like to thank Professor Sitaram Jaswal, Professor Peter Dowben, and Professor Mathias Schubert for serving on my Supervisory Committee. I am grateful to them for their careful and critical reading of this dissertation.

I would like to thank Professor Sitaram Jaswal for his insightful comments and helpful discussion during my doctoral studies, as well as for collaborating with me on the work presented in Chapter 3.

I am indebted to Professor Manish Niranjan from Indian Institute of Technology Hyderabad for instructing me in VASP simulation package, and for many helpful discussions we had during his work in the group of Professor Evgeny Tsymbal, as well as collaborating with me on majority of the research projects presented in this dissertation.
I would like to thank Professor Kirill Belashchenko and Dr. Joonhee An for helping me with the LDA+U calculations of bulk EuO, as well as collaborating with me on the work presented in Chapter 5.

I am grateful for helpful and interesting discussions with Professor J.D. Burton during my graduate studies, as well as collaborating with me on the work presented in Chapter 5.

The experiments on strain effect on 2DEG presented in Chapter 4 were led by Professor Chang-Beom Eom and performed by Dr. Chung Wung Bark, Dr. H. W. Jang, C. M. Folkman, Dr. J. W. Park, Dr. Seung Hyub Baek, Mr. David A Felker and Professor Mark Rzchowski from University of Wisconsin-Madison, in collaboration with Dr. Y. Zhang, Professor Xiaoqing Pan from University of Michigan, Dr. H. Zhou and Dr. Dillon Fong from Argonne National Laboratory. I am grateful for having the opportunity to make contribution to their research project as well as another one not presented in this dissertation.

The following people also deserve my thanks for collaborating with me on other research projects that are not presented in this dissertation: Dr. Mikhail Zhuravlev, Professor Sadamichi Maekawa, Professor Julian Velev, Professor Alexei Gruverman, Mr. Dong Wu, Mr. Haidong Lu, Mr. C. T. Nelson, Mr. D. Su, Mr. Sanghan Lee, Ms. Karolina Janicka and Mr. Y. Zhu.

The work presented in this dissertation was supported by the National Science Foundation (Grant No. DMR-0906443), the Nanoelectronic Research Initiative through the Materials Research Science and Engineering Center at the University of Nebraska
Computations were performed utilizing the Research Computing Facility of the University of Nebraska-Lincoln.

At last but not the least, I would like to thank my wife Lingmei and our daughter Nicky. I was motivated by their love. Their support during my whole doctoral studies is so important to keep me on pace. I am also very grateful to my parents and parents-in-law for their great support.
Contents

Chapter 1 **Introduction** ... 1
1.1 Oxide heterostructures ... 1
1.2 2DEG at oxide interfaces ... 5
1.3 Motivation and organization of this dissertation 13

Chapter 2 **Theoretical methods** ... 17
2.1 Many-body Schrödinger equation ... 17
2.2 Kohn-Sham equation ... 18
2.3 LDA and GGA approximations .. 21
2.4 LDA+U approximation ... 23
2.5 Plane wave pseudopotential methods .. 26
2.6 Vienna Ab-initio Simulation Package (VASP) 30

Chapter 3 **Ferroelectric polarization effect on 2DEG** 32
3.1 Introduction .. 33
3.1.1 Ferroelectricity in perovskite oxides 33
3.1.2 Field controlled 2DEG ... 35
3.2 Theoretical approach .. 38
3.2.1 Computational method ... 38
Chapter 4 **Strain effect on 2DEG** ... 67

4.1 Introduction ... 68

4.2 Experimental investigation ... 68

4.3 Theoretical studies ... 75

4.4 Summary .. 84

Chapter 5 **Spin-polarized 2DEG** ... 86

5.1 Introduction ... 86

5.1.1 Overview of spin-polarized 2DEG .. 86

5.1.2 Ferromagnetic insulator EuO .. 87

5.2 Spin-polarized 2DEG in EuO based heterostructure 89

5.2.1 LaAlO3/EuO .. 90

5.2.2 EuO/LaO/EuO .. 100
List of Figures

Figure 1.1 High-resolution TEM image of LaAlO₃ on SrTiO₃ (STO) on (LaAlO₃₀.₃−(Sr₂AlTaO₆₀.₇) (LSAT). Intensity differences between LaAlO₃ and SrTiO₃ layers and the individual La and Sr atoms are clearly seen.

Figure 1.2 LaAlO₃ thickness dependence of the electronic properties of the LaAlO₃/SrTiO₃ interfaces. (A) Sheet conductance and (B) carrier density of the heterostructures plotted as a function of the number of LaAlO₃ unit cells. The data showed in blue and red are those of samples grown at 770-C and 815-C, respectively. The data were taken at 300 K.

Figure 1.3 Illustration of heterostructure with (LaO)+/(TiO₂)⁰ interface showing the atomic arrangement and ionic charge for each layer.

Figure 1.4 Schematic of the polar catastrophe at the n-type interface of LaAlO₃/SrTiO₃ heterostructure. (a). Before electronic reconstruction, alternating positive and negative atomic layers produce on average a constant electric field in LaAlO₃. The potential increases with the thickness of LaAlO₃. (b) -0.5e is transferred to TiO₂ layers, alternating electric fields form at LaAlO₃, and the overall effective electric field in LaAlO₃ is zero.

Figure 1.5 Schematic band diagrams for the SrTiO₃/LaAlO₃ heterostructures with thickness smaller and larger than the critical thickness. (a) When the LaAlO₃
thickness is smaller than the critical thickness, the valence band maximum (VBM) of LaAlO$_3$ on the surface lies below the conduction band minimum (CBM) of SrTiO$_3$ at the interface and no charge is transferred. (b) When the LaAlO$_3$ thickness exceeds the critical thickness, VBM of LaAlO$_3$ on the surface lies above the CBM of SrTiO$_3$ at the interface and charge is transferred from the surface layer of LaAlO$_3$, i.e. AlO$_2$ to the interface layer of SrTiO$_3$, i.e. TiO$_2$. The red dashed line indicates the position of the Fermi energy. Ref. [52]

Figure 3.1 (a) cubic perovskite structure ABO$_3$. B (gray) is at center of oxygen (red) octahedron. A (blue) is at the center of a hole formed by these octahedral. (b) ferroelectric tetragonal phase of ABO$_3$ in (010) direction.

Figure 3.2 (NbO$_2$)$^+$/AO0 interface in KNbO$_3$/ATiO$_3$ heterostructure (a) as an analogue of (LaO)$^+$/TiO$_2$)0 interface in LaAlO$_3$/SrTiO$_3$ heterostructure (b).

Figure 3.3 Atomic structure of the unit cell and the (NbO$_2$)$^+$/AO0 interfaces in a (KNbO$_3$)$_{8.5}$/(ATiO$_3$)$_{8.5}$ (001) superlattice with parallel (a) and antiparallel (b) polarization indicated by white and black arrows respectively.

Figure 3.4 Layer-projected density of states (DOS) on 4d-orbitals of Nb atoms (a, b, c) and 3d-orbitals of Ti atoms (d, e, f) located at different NbO$_2$ or TiO$_2$ monolayers l or k from the (NbO$_2$)$^+$/SrO0 interface respectively in the (KNbO$_3$)$_{8.5}$/(SrTiO$_3$)$_{8.5}$ superlattice for either interface in the paraelectric state (a, d), the right interface (b, e) and the left interface (c, f) in the ferroelectric state. The shaded plots are the DOS of atoms in the central monolayer. The zero
along the horizontal axis refers to the Fermi energy.

Figure 3.5 Cation (Nb, Ti, K, Sr) displacements with respect to oxygen anions in (KNbO$_3$)$_{8.5}$/(SrTiO$_3$)$_{8.5}$ superlattice with eight middle monolayers of SrTiO$_3$ fixed (a), with all the ions fully relaxed (b) and displacements of all the ions in fully relaxed ferroelectric state (c). Open and solid symbols in (a) and (b) indicate Sr-O (K-O) and Ti-O$_2$ (Nb-O$_2$) displacements, respectively. Solid circles and squares in (c) indicate Sr (K) and Ti (Nb) displacements respectively. Open circles and squares in (c) indicate displacements of O atoms in SrO (KO) and TiO$_2$ (NbO$_2$) layers, respectively. The two dashed vertical lines indicate left and right NbO$_2$/SrO interfaces.

Figure 3.6 The free charge (in units of electron) on Nb and Ti atoms across the unit cell of (KNbO$_3$)$_{8.5}$/(SrTiO$_3$)$_{8.5}$ superlattices in paraelectric state and ferroelectric state when the middle layers in SrTiO$_3$ is fixed (a) and all the ions are fully relaxed (b). The screening charge is obtained by calculating the difference of the free charges on Nb and Ti atoms for ferroelectric and paraelectric states. The directions of polarization for the ferroelectric state are from left to right.

Figure 3.7 Layer-projected density of states (DOS) on 4d-orbitals of Nb atoms (a,b,c) and 3d-orbitals of Ti atoms (d,e,f) located in different monolayers l and k respectively from the (NbO$_2$)$_{7}$(PbO)$_{0}$ interface in the (KNbO$_3$)$_{8.5}$/(PbTiO$_3$)$_{8.5}$ superlattice for either interface in the paraelectric state (a, d), the right interface (b, e) and the left interface (c, f) in the ferroelectric state. Layer number
indicates the layer from the interface. The shaded plots are the DOS of atoms in the central monolayer. The zero along the horizontal axis refers to the Fermi energy.

Figure 3.8 Cation (Nb, Ti, K, Pb) displacements with respect to oxygen anions in \((\text{KNbO}_3)_{8.5}/(\text{PbTiO}_3)_{8.5}\) superlattice. Open and solid and symbols indicate Pb-O (K-O) and Ti-O (Nb-O) displacements, respectively. The two dashed vertical lines indicate left and right \((\text{NbO}_2)^0/(\text{PbO})^0\) interfaces.

Figure 3.9 The free charge (in units of electron) on Nb and Ti atoms across the unit cell of \((\text{KNbO}_3)_{8.5}/(\text{PbTiO}_3)_{8.5}\) superlattices in paraelectric state and ferroelectric state. The screening charge is the difference of the free charges on Nb and Ti atoms for the ferroelectric and paraelectric states. The direction of polarization for the ferroelectric state is from left to right.

Figure 3.10 Layer-projected density of states (DOS) on 4d-orbitals of Nb atoms (a,b,c) and 3d-orbitals of Ti atoms (d,e,f) located in different monolayers \(l\) and \(k\) respectively away from the \((\text{NbO}_2)^+/\text{(BaO})^0\) interface in the \((\text{KNbO}_3)_{8.5}/(\text{BaTiO}_3)_{8.5}\) superlattice for either interface in the paraelectric state (a, d), the right interface (b, e) and the left interface (c, f) in the ferroelectric state. Layer number indicates the layer from the interface. The shaded plots are the DOS of atoms in the central monolayer. The zero along the horizontal axis refers to the Fermi energy.

Figure 3.11 Cation (Nb, Ti, K, Ba) displacements with respect to oxygen anions in
(KNbO₃)₈.5/(BaTiO₃)₈.5 superlattice with parallel polarizations pointing from left to right (a) and with antiparallel polarizations pointing toward each other (b). Open and solid symbols indicate Ba-O (K-O) and Ti-O₂ (Nb-O₂) displacements respectively. The two dashed vertical lines indicate left and right (NbO₂)⁰/(BaO)⁰ interfaces.

Figure 3.12 The free charge (in units of electron) on Nb and Ti atoms across the unit cell of (KNbO₃)₈.5/(BaTiO₃)₈.5 superlattices in paraelectric state and ferroelectric state with (a) polarizations in the same direction from left to right and (b) opposite polarizations. The screening charge is the difference of the free charges on Nb and Ti atoms for ferroelectric and paraelectric states.

Figure 4.1 Schematic diagram of grown structures. Thickness of LaAlO₃ layer was varied from 1 to 30 unit cells on STO on LSAT, NGO, Si, DSO, GSO substrate.

Figure 4.2 Effect of strain on 2DEG. (A) Critical thickness of LaAlO₃ under bi-axial strain. While all others samples have a 50 unit cell-thick SrTiO₃ layer, sample LAO/STO/Si has 100nm-thick STO and is the nominally unstrained STO layer on silicon. The conductivity versus thickness of LaAlO₃ in the LAO/STO interface on various substrates is given in the inset. (B) Room-temperature carrier concentrations at the LAO/STO interface under various biaxial strains. The carrier concentrations in tensile strain state were above our measurement limit.

Figure 4.3 The calculated atomic structure of unstrained (A) and compressively strained
LaAlO$_3$/SrTiO$_3$ system. In Figure B Ti-O and Sr-O displacements are amplified by a factor of eight as compared to the calculated results for visual comprehension. The left and right panels show schematically the 2DEG formation and the effect of the polarization P in the strained SrTiO$_3$ on the 2DEG as described in text.

Figure 4.4 The symmetric atomic structure of (LaAlO$_3$)$_3$/SrTiO$_3$ separated by a 8 Å thick vacuum gap.

Figure 4.5 B (Ti, Al) – oxygen (O) atom displacements in the unstrained (squares), 1.2% (circles) and 2% (half circle) compressively strained (LaAlO$_3$)$_3$/SrTiO$_3$ structure.

Figure 4.6: Density of electronic states at the TiO$_2$ monolayer located at the interface of the unstrained, and the -2% strained (LaAlO$_3$)$_3$/SrTiO$_3$ structure. The vertical line indicates the position of the Fermi energy. The filled area under the curve for the unstrained system indicates the free electron charge responsible for the formation of the 2DEG. The strain eliminates this charge making the system insulating.

Figure 5.1 Rocksalt crystal structure of EuO.

Figure 5.2 The density of states (DOS) of bulk EuO for different orbitals. The positive and negative values show the DOS for the spin-up and spin-down electrons, respectively. Fermi energy is located at zero, indicated by the dashed line.

Figure 5.3 Atomic structure of the LaO/EuO interface in the (LaAlO$_3$)$_{8.5}$/EuO$_{15}$ (001)
superlattice containing 8.5 unit cells of LaAlO$_3$ and 15 monolayers of EuO within the supercell. Indices l and m denote atomic monolayers and are increasing with separation from the interface. $l = 8$ in EuO and $m = 9$ in LaAlO$_3$ correspond the middle of the respective layers.

Figure 5.4 The density of state (DOS) of bulk EuO under strain by LaAlO$_3$ (blue) and without strain (red).

Figure 5.5 Atomic displacements in the (LaAlO$_3$)$_{8.5}$/EuO$_{15}$ (001) superlattice with respect to the atomic “bulk” positions. The latter are determined by fixing the in-plane lattice constant and optimizing the interlayer distance, as described in text. The vertical lines indicate interfaces.

Figure 5.6 Layer- and spin-resolved density of states (DOS) on EuO (a) LaO (b) and AlO$_2$ (c) monolayers located at different planes l and m away from the LaO/EuO interface (as labeled in Figure.1). Top (bottom) panels show the majority(minority)-spin. In panel (a) the majority-spin states at energies below $–1$eV are the occupied Eu-4f states. The vertical lines denote the Fermi energy (E_F).

Figure 5.7 Spin-dependent charge distribution across the (LaAlO$_3$)$_{8.5}$/EuO$_{15}$ (001) supercell. The notation for the atomic layers is the same as in Figure.1. The dashed lines indicate interfaces.

Figure 5.8 Atomic structure of LaO/(EuO)$_{19}$ (001) superlattice containing one monolayer LaO and 19 monolayers of EuO. Indices l denote atomic monolayers
and are increasing with separation from the interface layer LaO.

Figure 5.9 Atomic displacements in the LaO/(EuO)$_{19}$ (001) superlattice with respect to the atomic “bulk” positions. The latter are determined by fixing the in-plane lattice constant and optimizing the interlayer distance, as described in the text. The vertical dashed line indicates the interface layer LaO.

Figure 5.10 Spin-dependent charge distribution across the LaO/(EuO)$_{19}$ (001) supercell. The notation for the atomic layers is the same as in Figure 4.8. The dashed lines indicate the LaO interface layer.
List of Tables

Table 3.1 Number of electrons on Nb and Ti atoms per lateral unit cell area at two interfaces in the KNbO$_3$/ATiO$_3$ (A = Sr, Ba, Pb) heterostructures without polarizations, with parallel and with antiparallel polarizations in each constituent.

Table 4.1 Results from high-resolution x-ray diffraction measurements on the films at room temperature are given. The in-plane (a) and out-of-plane (c) lattice constants and lattice mismatch between the SrTiO$_3$ films and single crystal substrates on average of two orthogonal directions. The a- and c-lattice parameters of single-crystalline SrTiO$_3$ are 3.905 Å. All SrTiO$_3$ templates were fully coherent except STO/Si (12). (002), (101) of SrTiO$_3$ and cubic substrates, LSAT, Silicon (200) pseudo-cubic of (101) pseudo-cubic of orthorombic substrate, GdScO$_3$ and DyScO$_3$, NdGdO$_3$ were observed to determine in-plane and out-of-plane lattice parameters.
Chapter 1 Introduction

1.1 Oxide heterostructures

The field of research related to oxide materials has been developing vigorously in the last few decades. There has been a significant experimental and theoretical effort to understand fundamental properties of oxide materials and to elucidate the origin of their complex behavior [1-3]. This effort is largely motivated by the fact that oxide materials provide more structural and functional choices than conventional semiconductors used in the electronic industry today. Oxide materials have enormous range of structure combinations from simplest binary monoxides like ZnO to much more complex oxides like Mo$_2$P$_4$O$_{15}$ containing a remarkable 441 crystallographically distinct atoms in its asymmetric unit [4]. Their transport properties span from insulating to semiconducting to metallic. Oxide materials possess a broad range of functional properties such as ferroelectricity, ferromagnetism, multiferroicity, and high-temperature superconductivity. For example, MgO, an insulator with simple rock-salt structure, is widely used as a barrier in magnetic tunnel junctions [5] which nowadays find applications in magnetic field sensors and magnetic random access memories (MRAM). Ferroelectric Pb(Zr, Ti)O$_3$ plays an important role in ferroelectric random access memory (FeRAM) due to its large electric polarization at low Zr concentration. This material is also used in sensors and actuators [6], due to its excellent piezoelectric properties. La$_{1-x}$Sr$_x$MnO$_3$ exhibits different phases and depends on the concentration x. It
exhibits ferromagnetic or antiferromagnetic order with properties of conductivity ranging from metallic to insulating. Multiferroics BiFeO$_3$ simultaneously possesses ferroelectric and ferromagnetic properties which may be interesting for applications in multifunctional devices. Complex oxide YBa$_2$Cu$_3$O$_7$ exhibits a high-temperature superconductivity with the critical temperature above the boiling point (77 K) of liquid nitrogen [7]. All these properties are sensitive to stoichiometry, structural distortions, and chemistry [8, 9]. These factors provide many possible ways to engineering the functionalities of the oxide materials.

Figure 1.1 High-resolution TEM image of LaAlO$_3$ (LAO) / SrTiO$_3$ (STO) grown on (LaAlO$_3$)$_{0.3}$–(Sr$_2$AlTaO$_6$)$_{0.7}$ (LSAT). Intensity differences between separate LaAlO$_3$ and SrTiO$_3$ layers and the individual La and Sr atoms are clearly seen. [10]
Even more interesting physical phenomena and an even broader spectrum of functional properties occur if two or more complex oxides are combined with atomic-scale precision in a heterostructure to form a new nanoscale material. Recent advances in thin-film deposition and characterization techniques, such as pulsed laser deposition (PLD) [11], molecular beam epitaxy (MBE) [12] and the in situ monitoring techniques like reflection high-energy electron diffraction (RHEED) [13], have made the experimental realization of such oxide heterostructures possible. With these progresses, complex oxide heterostructures with atomically abrupt interfaces have been experimentally grown [10] [2, 14]. As an example the sharp interfaces between $\text{SrTiO}_3/\text{(LaAlO}_3\text{)}_{0.3-\text{(Sr}_2\text{AlTaO}_6\text{)}}_{0.7}$ (LSAT) and $\text{LaAlO}_3/\text{SrTiO}_3$ are shown in Figure 1.1.

With the ability to create the oxide interfaces with atomic precision, many interesting and unexpected physical properties have been found [3, 9, 15]. For example, in $\text{Mg}_x\text{Zn}_{1-x}\text{O}/\text{ZnO}$ heterostructure grown on ScAlMgO_4 substrate, polarizations are developed in $\text{Mg}_x\text{Zn}_{1-x}\text{O}$ and ZnO layers. Due to the uncompensated polarizations at the interface, two-dimensional electron gas (2DEG) and fractional quantum Hall effect are observed at the $\text{Mg}_x\text{Zn}_{1-x}\text{O}/\text{ZnO}$ interface [16]. Also extraordinary properties were discovered in all oxide superconductor/ferromagnet $\text{YBa}_2\text{Cu}_3\text{O}_7/\text{La}_{2/3}\text{Ca}_{1/3}\text{MnO}_3$ (YBCO/LCMO) heterostructures such as a very large magnetoresistance effect [17] and a coexistence of magnetism and superconductivity [18, 19]. Superconductivity and ferromagnetism normally do not coexist because of their competing long-range order. However, across the YBCO/LCMO interface charge is transformed from Mn to Cu atoms leading to a
covalent bond between Mn to Cu, and thus induces electronic reconstructions in the interfacial CuO$_2$ layer. As a result of the orbital rearrangement and strong hybridization, Cu ions in YBCO at interface are ferromagnetically ordered [19]. Another appealing phenomenon observed in oxide heterostructures is the localized ferromagnetic ordering at the interface between A-type antiferromagnetic LaMnO$_3$ and G-type antiferromagnetic SrMnO$_3$ [20] and possible magnetoelectric coupling [21]. When LaMnO$_3$ is deposited on SrMnO$_3$ (or vice versa), difference in the chemical potential at the interface causes a charge transfer which interacts with the spin and orbital degree of freedom and leads to the formation of two-dimensional ferromagnetic layers [20]. In addition, the interface between LaMnO$_3$ and SrMnO$_3$ is polar due to the broken symmetry. By combining three layers LaMnO$_3$, SrMnO$_3$ and LaAlO$_3$, the macroscopic inversion symmetry breaking could be retained and leads to an overall polar structure, and thus permits magnetoelectric coupling. The examples given above are just a few demonstrations of the new physics and novel functionalities that could arise from oxide interfaces.

One of the most exciting discoveries recently is the demonstration of a 2DEG at the interface between two perovskite oxide insulators LaAlO$_3$ and SrTiO$_3$ as we will discuss in detail in the next section. This discovery has attracted intense research activities both in experiment [22-28] and in theory [29-43].

1.2 2DEG at oxide interfaces
A two dimensional electron gas has been discovered at the LaO/TiO\textsubscript{2} interface between two wide-bandgap insulators SrTiO\textsubscript{3} and LaAlO\textsubscript{3} [44]. This electron gas presents an extremely high electron density up to \(10^{14}/\text{cm}^2\) [45], and high mobility up to \(10^4\text{cm}^2/\text{V}\text{s}\) at low temperatures [44]. This 2DEG is attractive for applications as all-oxide field-effect transistors [46, 47]. It was found that there is a critical thickness of LaAlO\textsubscript{3} with value of 4 unit cells above which the 2DEG emerges, as seen in Figure 1.2 [46]. By applying a gate voltage on LaAlO\textsubscript{3} with thickness of 3u.c just below the critical thickness, reversible control of insulator-metal transition was realized in LaAlO\textsubscript{3}/SrTiO\textsubscript{3} heterostructure. There are also indications of ferromagnetic [48] and antiferromagnetic [49] ordering at the interfaces of LaAlO\textsubscript{3}/SrTiO\textsubscript{3} heterostructures grown under high and low oxygen pressure respectively. Moreover, superconductivity is observed in LaAlO\textsubscript{3}/SrTiO\textsubscript{3} at low temperature around a few hundred mK [50]. These interesting properties of this 2DEG make it promising for future generation electronics.
Figure 1.2 LaAlO$_3$ thickness dependence of the electronic properties of the LaAlO$_3$/SrTiO$_3$ interfaces. (A) Sheet conductance and (B) carrier density of the heterostructures plotted as a function of the number of LaAlO$_3$ unit cells. The data showed in blue and red are those of samples grown at 770-C and 815-C, respectively. The data were taken at 300 K [46].

SrTiO$_3$ and LaAlO$_3$ are all wide-bandgap insulators with $E_g = 3.2$eV and 5.6eV respectively. Both of them have perovskite structure and have well matched lattice constants of 3.789 Å and 3.905 Å for LaAlO$_3$ and SrTiO$_3$ respectively. In these structures the conventional valance states for each element are La^{3+}, Al^{3+}, Sr^{2+}, Ti^{4+} and O^{2-}. Along the [001] direction, the perovskite can be considered consisting alternating planes of AO and BO$_2$. The major difference between LaAlO$_3$ and SrTiO$_3$ is that LaAlO$_3$ is formed of alternately charged atomic layers $(\text{LaO})^+$ and $(\text{AlO}_2)^-$ while SrTiO$_3$ is composed of neutral layers $(\text{SrO})^0$ and $(\text{TiO}_2)^0$ as shown in Figure 1.3.
Figure 1.3 Illustration of LaAlO$_3$/SrTiO$_3$ heterostructure with (LaO)$^+$/$(TiO_2)^0$ interface showing the atomic arrangement and ionic charge for each layer.

When LaAlO$_3$ is deposited on top of SrTiO$_3$ in [001] direction, there are two types of interface terminations: LaO/TiO$_2$, as shown in Figure 1.3, and AlO$_2$/SrO called n-type and p-type interface respectively. It was found that a metallic phase can be formed at the LaO/TiO$_2$ terminated interface as long as the thickness of LaAlO$_3$ exceeds the critical thickness of 4 unit cells [44]. This metallic phase is confined within a couple of nanometers near the interface [51] and therefore can be regarded as a two dimensional electron gas. There are three proposed origins of the metallic state observed at the LaO/TiO$_2$ interface of SrTiO$_3$/LaAlO$_3$ heterostructure: polar catastrophe [52], oxygen
vacancies [23-25] and cation intermixing [53, 54].

Figure 1.4 Schematic of the polar catastrophe at the n-type interface of LaAlO$_3$/SrTiO$_3$ heterostructure. (a). Before electronic reconstruction, alternating positive and negative atomic layers produce on average a constant electric field in LaAlO$_3$. The potential
increases with the thickness of LaAlO3. (b) -0.5e is transferred to TiO2 layers, alternating electric fields form at LaAlO3, and the overall effective electric field in LaAlO3 is zero.

The polar catastrophe scenario is demonstrated in Figure 1.4. Polar discontinuity at the (LaO)+(TiO2)0 interface occurs as the consequence of the alternating positive and negative charged planes of LaAlO3 on top of neutral planes of SrTiO3. This polar discontinuity creates an internal electric field in LaAlO3 and thus an increase electric potential across the LaAlO3 layers. From the electrostatic point of view, as the thickness of LaAlO3 increases, the potential also increases and the system becomes unstable. In semiconductor heterointerfaces such a polar discontinuity is well-known, and which often causes atomic reconstruction at the interface to avoid the diverging electrostatic potential [55, 56]. In contrast, transition metals in perovskite oxide can be mixed-valence and make electronic reconstruction possible, which is more favorable in energy than atomic reconstruction [53]. Half an electron per two-dimensional unit cell is transferred through the interface from LaAlO3 to SrTiO3 causing the interfacial titanium ion in SrTiO3 to be in the mixed valence state (Ti^{3.5}). This half an electron per unit cell at the (LaO)+//(TiO2)−0.5 interface forms the 2DEG.
Figure 1.5 Schematic band diagrams for the SrTiO$_3$/LaAlO$_3$ heterostructures with
thickness smaller and larger than the critical thickness. (a) When the LaAlO\(_3\) thickness is smaller than the critical thickness, the valence band maximum (VBM) of LaAlO\(_3\) on the surface lies below the conduction band minimum (CBM) of SrTiO\(_3\) at the interface and no charge is transferred. (b) When the LaAlO\(_3\) thickness exceeds the critical thickness, VBM of LaAlO\(_3\) on the surface lies above the CBM of SrTiO\(_3\) at the interface and charge is transferred from the surface layer of LaAlO\(_3\), i.e. AlO\(_2\) to the interface layer of SrTiO\(_3\), i.e. TiO\(_2\). The red dashed line indicates the position of the Fermi energy. Ref. [52]

This scenario has been confirmed more rigorously by first-principles calculations [38, 42, 52] and can be understood from a simple band diagram, as illustrated in Figure 1.5. Due to the polar nature of LaAlO\(_3\) resulting in the intrinsic electric field, the macroscopically averaged local potential increases across the LaAlO\(_3\) layer. When the thickness of LaAlO\(_3\) is smaller than the critical thickness the potential change is not large enough to make the valence band maximum (VBM) of LaAlO\(_3\) on the surface to exceed the SrTiO\(_3\) band gap and therefore there is no charge transfer to the LaAlO\(_3\)/SrTiO\(_3\) interface. However, when the LaAlO\(_3\) thickness is larger than the critical thickness, the VBM of LaAlO\(_3\) at the surface exceeds the conduction band minimum (CBM) of SrTiO\(_3\) at the interface, and charge is transferred to the interface. Due to the insulating nature of LaAlO\(_3\) and SrTiO\(_3\) layers away from the interface, the conducting electrons are quantum confined at the interface [37].
There are a number of experimental results suggesting the electronic reconstruction is the primary mechanism responsible for the 2DEG formation at oxide interfaces. In particular, the built-in electric field in LaAlO₃ was recently experimentally observed [57]. In addition, 2DEG was also found at the interfaces in other heterostructures, such as LaVO₃/SrTiO₃ [22], consistent with electronic reconstruction mechanism. In some systems, however, it was argued the polar discontinuity may also be eliminated by the competition between the electronic and atomic reconstruction mechanisms [56, 58].

The properties of a 2DEG strongly depend on the thin film grow conditions, which influence the oxygen vacancy concentration. It is well known that oxygen vacancy rich SrTiO₃ is metallic [59]. Depending on the oxygen pressure during the film growth process, the carrier mobility and carrier concentration at the SrTiO₃/LaAlO₃ interface can be different by orders of magnitude [23]. The maximum carrier density at the interface can be as high as \(10^{17}/\text{cm}^2\) which is much larger than the maximum theoretical value \(3.5 \times 10^{14}/\text{cm}^2\). Apparently oxygen vacancies are responsible for the metallic behavior. Several experiments have demonstrated that during the growth oxygen vacancies appear in the SrTiO₃ substrate which makes it conducting [23-25]. However, if heterostructures are grown at high oxygen pressure, oxygen vacancies may be avoided and the dominant mechanism of the conducting interface in this situation is the electronic reconstruction [53].

The cation intermixing may also be the reason for the 2DEG formed at the LaAlO₃/SrTiO₃ interface. It follows from the fact that La⁺ doped SrTiO₃, i.e., Sr₁-
$xLaxTiO_3$ with $0.1 < x < 0.95$, is metallic [60]. Experimentally La and Sr intermixing at the interface of SrTiO$_3$ and LaAlO$_3$ has been observed, which leads to the formation of a thin layer of Sr$_{1-x}$LaxTiO$_3$ at interface, and thus to a conducting phase [53, 54]. Cation intermixing was also considered theoretically as a possible mechanism of the conducting interface [54]. However, fabrication of stoichiometric interfaces with a precise control of oxide constituents at the interface eliminates this mechanism of the 2DEG formation.

In contrast, no metallic phase is found at p-type AlO$_2$/SrO interfaces. This is because there are no proper multiple valence states (e.g. Ti$^{4.5+}$ and O$^-$) and thus it is highly unlikely to accommodate a hole [45, 53]. Oxygen vacancy also plays an important role in this insulating p-type interface [53].

1.3 Motivation and organization of this dissertation

As pointed out by a recent review paper published in Science [15], incorporation of functional oxides into electronic circuits or their use in other applications requires mastering their interfaces. This implies understanding, predicting and tailoring the physical properties of the interfaces between complex oxide materials. Having these challenges in mind, in this thesis by performing first-principles calculations based on density functional theory, we investigate the effect of ferroelectric polarization and effect of epitaxial strain on 2DEG formed at the oxide interfaces, and propose a method to realize a spin-polarized 2DEG.

In chapter 2, we review the theoretical methods based on density functional theory
that are used in this dissertation. We first introduce the Schrödinger equation to describe a many-body interacting electron system and explain the difficulties of solving this equation in a general form. Then we describe the Hohenberg-Kohn theorems and the corresponding Kohn-Sham equation. In the next two sections, we briefly introduce the local density approximation (LDA), the generalized gradient approximation (GGA) and the LDA+U approximation for the exchange and correlation effects of interacting electrons. Then a projector augmented wave (PAW) method is introduced to approximate the ionic potential. In the last section of this chapter, we introduce the Vienna Ab-initio Simulation Package (VASP) in which our DFT calculations are implemented.

In chapter 3, the properties of 2DEG in the presence of ferroelectric materials are investigated and the ability to manipulate 2DEG by spontaneous polarization is demonstrated. We first give an introduction to some basic concepts and properties of perovskite ferroelectrics. Then, a method to control the properties of the 2DEG by external field known from literature is briefly reviewed. Further, we provide details of the electronic and atomic structures of the KNbO$_3$/ATiO$_3$ interfaces, which are considered to demonstrate the mechanisms responsible for the modulation of the 2DEG properties by ferroelectric polarization. The central part of this chapter is the prediction of the influence of ferroelectric polarizations on the 2DEG formed at three different systems: KNbO$_3$/ATiO$_3$ ($A = \text{Sr, Ba and Pb}$). Finally, we discuss a possibility of the controllable metal-insulator transition at the interface driven by polarization reversal.

In chapter 4, the epitaxial strain effect on 2DEG at the LaAlO$_3$/SrTiO$_3$ interface is
investigated. Strain could change the crystal field, bonding properties and electron interactions and thus have strong impact on properties of materials. We first introduce the experimental results for the LaAlO$_3$/SrTiO$_3$ systems grown on different substrates, such as NdGaO$_3$, (LaAlO$_3$)$_{0.3}$–(Sr$_2$AlTaO$_6$)$_{0.7}$, DyScO$_3$ and GdScO$_3$, which provides epitaxial strain ranging from -1.2% to 1.59%. Then we discuss this phenomenon theoretically based on our first-principles calculations. We show that the critical thickness for 2DEG formation increases with the compressive strain. We demonstrate that the increased critical thickness under compressive strain can be explained by the electric polarization formed in SrTiO$_3$ due to the strain.

In chapter 5, we explore possibilities to create a spin-polarized 2DEG at EuO/LaO interfaces. First, spin-polarized 2DEG systems known from literature are introduced. Bulk properties of ferroelectric insulator EuO are briefly described. Then we consider two systems LaAlO$_3$/EuO and EuO/LaO/EuO. We demonstrate that in both systems 2DEG is formed due to extra charge at LaO$^+$ interface layer. The 2DEG becomes spin-polarized as the result of the electron population of the Eu-5d state in the EuO conduction band which is exchange split due to the hybridization with Eu-5f states.
Chapter 2

Theoretical methods

2.1 Many-body Schrödinger equation

Properties of materials are governed by the interactions between the constituting electrons and nuclei. From the point of view of quantum mechanics, these properties are determined by the many-body Schrödinger equation:

$$\hat{H}\psi(\{\mathbf{R}_i, \mathbf{r}_j\}) = E\psi(\{\mathbf{R}_i, \mathbf{r}_j\}) ,$$ \hspace{1cm} (2.1)

where the Hamiltonian is given by

$$\hat{H} = -\sum_i \frac{\hbar^2}{2M_i} \nabla_{\mathbf{r}_i}^2 - \frac{\hbar^2}{2m_e} \sum_i \nabla_{\mathbf{r}_i}^2 - \sum_{i,l} Z_i e^2 \frac{1}{|\mathbf{r}_i - \mathbf{R}_l|} + \frac{1}{2} \sum_{i\neq j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|} + \frac{1}{2} \sum_{i\neq j} \frac{e^2}{|\mathbf{R}_i - \mathbf{R}_j|} . \hspace{1cm} (2.2)$$

The first and second terms here are the kinetic energy of ions and electrons respectively. The third term is the ion-electron potential energy. The fourth and fifth terms are electron-electron and ion-ion potential energy. As the masses of ions are very large and the ions move very slowly compared to electrons, according to the Born-Oppenheimer approximation, the system can be excellently described by the motion of electrons alone and the kinetic energy of ions can be ignored in the Hamiltonian. Since we are interested in the electronic structures, the ion-ion interaction term is irrelevant and can be dropped. Thus, the Hamiltonian can now be simplified as

$$\hat{H} = \hat{T} + \hat{V}_{\text{ion}} + \hat{V}_{\text{ee}} ,$$ \hspace{1cm} (2.3)

where

$$\hat{T} = -\sum_i \nabla_{\mathbf{r}_i}^2 \hspace{1cm} (2.4)$$
\[\hat{V}_{\text{ion}} = -\sum_{i \neq j} \frac{Z_i}{|\mathbf{r}_i - \mathbf{R}_j|} \]

(2.5)

\[\hat{V}_{\text{ee}} = \frac{1}{2} \sum_{i \neq j} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} \]

(2.6)

and we used the atomic units to simplify the description.

The major difficulty in solving Eq. (2.1) is that the electron-electron interaction energy \(\hat{V}_{\text{ee}} \) (2.6) could not be simply expressed as a sum of isolated single-particle energies. Consequently, the correlation interaction of electrons, \(\psi(\{\mathbf{r}_i\}) \) can not simply written as a production of isolated electron wavefunctions. These facts make solution of Eq. (2.1) very difficult and even not possible at present time for realistic systems. Approaches such as the Hartree-Fock approximation and density functional theory to replacing the many-body particle equations by a non-interacting single particle equation have been proposed to go around these difficulties. Density functional theory excels the Hartree-Fock method in the sense that it only deals with the one simple function, i.e. density of electron \(n(\mathbf{r}) \), and includes both the exchange and correlation interaction while the Hartree-Fock method only includes the exchange effect. Density functional theory had an enormous impact on the electronic structure calculations and is the most widely used method today. The following three sections are devoted to the essential ideas behind density functional theory including the Kohn-Sham equation and the approximation for exchange-correlation potential and the approximation of the electron-ion potential.
2.2 Kohn-Sham equation

The density functional theory is based on two theorems proposed by Hohenberg and Kohn [61]. The first theorem states the ground state properties of many-body interacting electron system are uniquely defined by the ground state electron density $n_{\rho}(\mathbf{r})$. The second theorem states that the expectation value of energy E is a functional of electron density, i.e. $E = E[n(\mathbf{r})]$, and this functional reaches its minimum at the ground state density $n_{\rho}(\mathbf{r})$, i.e. $E_{\text{min}} = E[n_{\rho}(\mathbf{r})]$. The energy functional is naturally divided into two contributions: one depends purely on electronic motions and another depends on ionic potentials, which can be written as

$$E[n(\mathbf{r})] = F[n(\mathbf{r})] + \int V_{\text{ion}}(\mathbf{r}) n(\mathbf{r}) d\mathbf{r}$$ \hspace{1cm} (2.7)

with

$$V_{\text{ion}}(\mathbf{r}) = -\sum_{j} \frac{Z_j}{|\mathbf{r} - \mathbf{R}_j|}.$$ \hspace{1cm} (2.8)

As proposed by Kohn and Sham [62], the many-body electron system can be replaced by an auxiliary system of non-interacting particles as long as the ground state density of the auxiliary system is identical to the ground state density of many-body electrons. Assuming the single particle orbital is $\phi_i(\mathbf{r})$, the density of the auxiliary system is then expressed as

$$n(\mathbf{r}) = \sum_i |\phi_i(\mathbf{r})|^2.$$ \hspace{1cm} (2.9)

By evaluating Eq. (2.3) the functional $F[n(\mathbf{r})]$ in Eq. (2.7) takes the form
$$F[n(r)] = T[n(r)] + \frac{1}{2} \iiint \frac{n(r)n(r')}{|r-r'|} dr dr' + E_{xc}[n(r)]$$ \hspace{1cm} (2.10)$$

where the first term on the right hand side

$$T[n(r)] = -\sum \langle \phi_i(r)| \nabla_i^2 \phi_i(r) \rangle$$ \hspace{1cm} (2.11)$$
is the kinetic energy, and the second term is the Hartree energy due to the Coulomb repulsion between particles. The third term is defined to include all the many-body effects of exchange and correlation and is not known explicitly yet as a function of $n(r)$.

The approximation form of this term will be discussed in the next section. Performing variation calculation to Eq. (2.7) and taking account the restriction condition

$$\int \delta n(r) = \int \delta \phi_i(r) \phi_i^*(r) dr = 0 \text{ through a Lagrange multiplier } \epsilon_i ,$$

we obtain the Kohn-Sham equations:

$$\left[-\nabla^2_r + V_{\text{eff}}(r, n(r)) \right] \phi_i(r) = \epsilon_i \phi_i(r)$$ \hspace{1cm} (2.12)$$

with

$$V_{\text{eff}}(r, n(r)) = V_{\text{ion}}(r) + V_{\text{Hartree}}(r, n(r)) + V_{xc}(r, n(r)) ,$$ \hspace{1cm} (2.13)$$

where

$$V_{\text{Hartree}}(r, n(r)) = \int \frac{n(r')}{|r-r'|} dr'$$ \hspace{1cm} (2.14)$$

$$V_{xc}(r, n(r)) = \frac{\delta E_{xc}[n(r)]}{\delta n(r)}$$ \hspace{1cm} (2.15)$$

are Hartree and exchange-correlation potential respectively. The single particle wavefunction $\phi_i(r)$ is called the Kohn-Sham orbital and is not the true electron wavefunction. However it provides the correct density as in real many-body electron
system. The eigenvalues ε_i are not the true excitation energy of the electron since they are introduced just as Lagrange multipliers. The determination of the excitation energy is normally done by the Quantum Monte Carlo [63] and many-body perturbation theory calculation [64] with the assistance of the eigenstates obtained from Kohn-Sham equation. All the properties that can be derived from the ground state energy are given correctly. For a collinear spin-polarized system, spin up and spin down particles are treated separately. To extend to this case, all the functions in Kohn-Sham equations should be written as function of both position \mathbf{r} and spin direction σ i.e. $\phi(\mathbf{r}, \sigma)$ and $V_{\text{eff}}(\mathbf{r}, \sigma)$.

2.3 **LDA and GGA approximation**

Since the electron density function in the effective potential of the Kohn-Sham equation can only be obtained after Eq. (2.12) is solved for example using an iteration algorithm. The major issue in the Kohn-Sham approach is how to obtain the expression of the exchange-correlation potential V_{xc} or equivalently energy $E_{xc}[n(\mathbf{r})]$. Considering that the effective potential V_{eff} in Eq. (2.13) includes the ionic potential $V_{\text{ion}}(\mathbf{r})$ and long range Coulomb potential V_{Hartree}, the remaining exchange-correlation potential V_{xc} should be reasonably approximated by a local functional of density. The exchange-correlation energy

$$E_{xc}[n(\mathbf{r})] = \int n(\mathbf{r}) \varepsilon_{xc}(\mathbf{r}) d\mathbf{r}$$

is an integral of energy density over the whole space.
Within this local density approximation (LDA), the exchange-correlation energy density \(\varepsilon_{xc}(\mathbf{r}) \) at each space point \(\mathbf{r} \) is assumed to be the same as energy density \(\varepsilon_{xc}^{\text{hom}}(\mathbf{r}) \) in the homogeneous electron gas with the same particle density \(n(\mathbf{r}) \). In the homogeneous system, \(\varepsilon_{xc}^{\text{hom}} \) is purely a function of the electron density and can be divided to the exchange and correlation part separately i.e. \(\varepsilon_{xc}^{\text{hom}}(n) = \varepsilon_{x}^{\text{hom}}(n) + \varepsilon_{c}^{\text{hom}}(n) \). Therefore the exchange-correlation energy in the LDA approximation is

\[
E_{xc}^{\text{LDA}}[n(\mathbf{r})] = \int n(\mathbf{r}) \varepsilon_{xc}^{\text{hom}}(n(\mathbf{r})) d\mathbf{r} = \int n(\mathbf{r}) \left[\varepsilon_{x}^{\text{hom}}(n(\mathbf{r})) + \varepsilon_{c}^{\text{hom}}(n(\mathbf{r})) \right] d\mathbf{r}.
\] (2.17)

The exchange energy \(\varepsilon_{x}^{\text{hom}}(n) \) of a homogeneous electron gas is represented by a simple analytic form \(\varepsilon_{x}^{\text{hom}}(n) = \frac{1}{3} \left(\frac{3n}{\pi} \right)^{1/3} \) \([65]\), while the correlation energy \(\varepsilon_{c}^{\text{hom}}(n) \) can be parameterized with great accuracy using the results from Quantum Monte Carlo calculation \([66]\). As soon as the exchange-correlation energy \(E_{xc}^{\text{LDA}}[n(\mathbf{r})] \) is known, the exchange-correlation potential in the Kohn-Sham equation can be easily obtained from the variation of \(E_{xc}^{\text{LDA}}[n(\mathbf{r})] : \)

\[
\delta E_{xc}^{\text{LDA}}[n(\mathbf{r})] = \int \left[\varepsilon_{xc}^{\text{hom}}(n(\mathbf{r})) + n \frac{\partial \varepsilon_{xc}^{\text{hom}}(n(\mathbf{r}))}{\partial n} \right] \delta n(\mathbf{r}) d\mathbf{r}.
\] (2.18)

Thus by definition

\[
V_{xc}^{\text{LDA}}[n(\mathbf{r})] = \varepsilon_{xc}^{\text{hom}} + n \frac{\partial \varepsilon_{xc}^{\text{hom}}}{\partial n}.
\] (2.19)

This LDA works very well even in case of very inhomogeneous system, although strictly speaking both exchange and correlation in this case should be non-local \([67]\).
When the electron spin is taken into account, the approximation is extended to local spin density approximation (LSDA) in which the exchange-correlation energy and potential are the functional of both spin-up and spin-down electron densities. And the Eq. (2.17) is modified as

$$E^{LSDA}_{xc}[n(r)] = \int n(r) \varepsilon^{\text{hom}}_{xc}(n^+(r), n^-(r)) \, dr$$

(2.20)

Generalized-gradient approximations (GGA) [68-70] extend the LDA assuming that E_{xc} not only depends on the density $n(r)$, but also on the magnitude of its gradients $|\nabla n(r)|$. Thus the exchange-correlation energy is written as

$$E^{GGA}_{xc}[n(r)] = \int n(r) \varepsilon^{\text{hom}}_{xc}(n(r), |\nabla n(r)|) \, dr$$

(2.21)

where the gradient of density is included in dimensionless functional $F_{xc}(n(r), |\nabla n(r)|)$. As $\varepsilon^{\text{hom}}_{xc}$ is already known, the most important step for evaluating E^{GGA}_{xc} is to obtain both the exchange F_x and correlation F_c part of F_{xc}. By expanding both of them, various forms of F_{xc} have been proposed such as Perdew and Wang (PW91) [69] and Perdew, Burke and Enzerhof (PBE) [70]. Similar to LDA once E^{GGA}_{xc} is obtained, the exchange-correlation potential can be derived via variational method:

$$\delta E^{GGA}_{xc}[n(r)] = \int \left[\varepsilon^{\text{hom}}_{xc}(n(r)) + n \frac{\partial \varepsilon^{\text{hom}}_{xc}(n, \nabla n)}{\partial n} + n \frac{\partial \varepsilon^{\text{hom}}_{xc}(n, \nabla n)}{\partial V} \right] \delta n(r) \, dr ,$$

(2.22)

$$\nu^{GGA}_{xc}[n(r)] = \varepsilon^{\text{hom}}_{xc}(n(r)) + n \frac{\partial \varepsilon^{\text{hom}}_{xc}(n, \nabla n)}{\partial n} - \nabla \left(n \frac{\partial \varepsilon^{\text{hom}}_{xc}(n, \nabla n)}{\partial V} \right) .$$

(2.23)

GGA provides better agreement with experiment over LDAs in many cases especially in predicting the binding energy for many finite systems like molecules and
surfaces, etc.

2.4 LDA+U approximation

Despite the success of LDA and GGA, both of them have problems to describe systems with localized (strongly correlated) d and f electrons such as transition metal compound and rare earth elements and compound. Because $V_{xc} = \frac{\delta E_{xc}}{\delta n}$ obtained from LDA or GGA is like a mean-field solution. The LDA or GGA functional tend to over-delocalize the electrons and the on-site Coulomb repulsion is not well taken into account for localized orbitals. To improve the description, an additional orbital dependent interactions of the same form as the ‘U’ interaction in Hubbard models can be introduced [71]. In this method known as the ‘LDA+U’ and ‘GGA+U’, the added term shifts the energy of localized orbitals relative to other orbitals and thus corrects errors usually large in LDA and GGA calculations [67].

More specifically, within atomic spheres where the atomic characteristics of the electronic state largely survived, wave function is expanded in a localized orthonormal basis $|inlm\sigma\rangle$ (i denotes the site, n is the magnetic number, l is the orbital quantum number, m is the magnetic quantum number, σ is the spin index). The partly filled localized electrons are assumed to be in nl shell. The density matrix for these electrons is defined as [72]:

$$n_{nm}^{\sigma} = \frac{1}{\pi} \int_{E_c}^{E_F} \text{Im} G_{lm,lm}^{\sigma}(E)dE,$$

(2.24)
where $G_{\sigma \sigma}^{\mu \mu}(E)$ are the elements of the green-function matrix in the localized representation.

The generalized LDA+U functional containing three terms: the standard LDA functional E_{LDA}, the Hubbard-like term E_{Hub} including effective on-site interaction, and the ‘double counting’ term E_{dc}. Since the Hubbard-like term is added explicitly, the energy contribution of these orbitals included in LDA functional should be removed to avoid twice counting by subtracting E_{dc}. In terms of density matrix, LDA+U energy functional is

$$E_{\text{LDA}+U} = E_{\text{LDA}}[\rho^\sigma(\mathbf{r})] + E_{\text{Hub}}[\{n^\sigma\} - E_{\text{dc}}[\{n^\sigma\}], \quad (2.25)$$

where $\rho^\sigma(\mathbf{r})$ is the charge density for spin σ electrons. In the fully rotational invariant form [73] the Hubbard term is given as

$$E_{\text{Hub}}[\{n^\sigma\}] = \frac{1}{2} \sum_{\langle \mu \rangle, \sigma} \left\{ \langle m, m^* | V_{ee} | m', m'' \rangle n^{\sigma}_{\mu m} n_{\sigma m''} - \langle m, m^* | V_{ee} | m', m'' \rangle n^{\sigma}_{\mu m} n_{\sigma m''} \right\}, \quad (2.26)$$

where V_{ee} is the screened Coulomb interaction among correlation electrons. From the expansion of $\frac{1}{\mathbf{r} - \mathbf{r}'}$ in spherical harmonics, the matrix elements are obtained as:

$$\langle m, m^* | V_{ee} | m', m'' \rangle = \sum_{k} a_{k}(m, m', m^*, m'') F^{k}, \quad (2.27)$$

where

$$a_{k}(m, m', m^*, m'') = \frac{4\pi}{2k+1} \sum_{q = -k}^{k} \langle lm | Y_{kq} | lm' \rangle \langle lm | Y_{kq} | lm'' \rangle. \quad (2.28)$$

F^{k} is the effective Slater integral which are specified in terms of the effective on-site Coulomb and exchange parameter U and J [73]. The double counting term is given as
\[E_{\Delta}[\{n^\sigma\}] = \frac{U}{2} n(n-1) - \sum_{\sigma} \frac{J}{2} n^\sigma (n^\sigma - 1), \]
(2.29)

where

\[n^\sigma = \sum_{m} n^\sigma_{mm}, \]
(2.30)

\[n = \sum_{\sigma} n^\sigma. \]
(2.31)

The Kohn-Sham Hamiltonian \(\hat{H}_{\text{LDA}} \) including on-site Coulomb interaction is finally obtained by minimizing the LDA+U energy functional \(E_{\text{LDA}+U}(\rho^\sigma(r), \{n^\sigma\}) \) with respect to \(\rho^\sigma(r) \) and \(\{n^\sigma\} \) as:

\[\hat{H}_{\text{LDA}+U} = \hat{H}_{\text{LDA}} + \sum_{nmn'} |inl\sigma\rangle V^\sigma_{mn} \langle inl'\sigma|, \]
(2.32)

where

\[V^\sigma_{mn} = \sum_{mm'} \langle \{m,m'\}|V_{ee}^\sigma|\{m',m''\}\rangle n^{-\sigma}_{m'm''} + \left(\langle \{m,m'\}|V_{ee}^\sigma|m'',m''\rangle - \langle \{m,m''\}|V_{ee}^\sigma|m',m''\rangle \right) n_{m'm''}^\sigma \]
(2.33)

\[-U(n - \frac{1}{2}) + J(n^\sigma - \frac{1}{2}). \]

2.5 Plane wave pseudopotential methods

A simple and convenient way to solve the Kohn-Sham Schrödinger equation is the plane wave method [74]. From the Bloch theorem, the wavefunction \(\psi_{n,k}(r) = e^{ikr} u(r) \) of an electron in the effective periodic potential \(V_{\text{eff}} \) can be written as a cell-periodic function \(u(r) \) modulated by a plane wave \(e^{ikr} \). Expanding the periodic function \(u(r) \) by plane waves \(e^{ig \cdot r} \) with wave vectors \(\mathbf{G} \) in the reciprocal space, the electron wavefunction can be expressed as a combination of plane wave i.e.
\[\psi_k(r) = \sum_G c_{k \cdot G} e^{i(k \cdot G) r}, \quad (2.34) \]

where \(c_{n_{k \cdot G}} \) are determined by solving the matrix of Kohn-Sham equation in reciprocal space

\[\sum_{G'} \left[|k + G|^2 \delta_{GG'} + V_{eff}(G - G') \right] c_{k \cdot G'} = \varepsilon_k c_{k \cdot G} \quad (2.35) \]

upon substituting Eq. (2.34) into the equation. In principle, infinite number of reciprocal vectors \(G \) is required to expand the wavefunction. However, \(c_{n_{k \cdot G}} \) with smaller kinetic energy \(|k + G|^2\) are more important than those with larger kinetic energy. Within certain energy accuracy, finite plane wave basis set can be obtained by introducing a cutoff energy \(E_{cut} \) such that \(\frac{1}{2} |k + G|^2 \leq E_{cut} \).

Although the accuracy of the expansion can always be reached by increasing \(E_{cut} \), this direct plane wave method is not practical since the number of plane wave is always extremely large in order to describe the tight bounded electron core state and electron valence state with rapid oscillation near the nucleus. Considering the facts that the core electrons have little interaction with neighbors and physical properties of material are mostly influenced by valence electrons, a ‘pseudo’ ionic potential can be constructed such that a pseudo-wavefunction is generated correspondingly which pertains the identical scattering properties of the ion and core electron for valence electron and is identical to the valence wavefunction outside a critical radius (core radius). The pseudo-wavefunction can be smooth in the core region by choosing proper pseudopotential such
that pseudo-wavefunction is orthogonal to the core states which have many nodes. By replacing the true ionic potential with pseudopotential, the core electron states disappear and character of rapid oscillation of valence electron wave-function in the core region is replaced by smooth behavior of the pseudo-wavefunction [75]. Therefore, the replacing total energy without core-electrons energy is smaller than that in the true system, and the required plane wave set is much smaller due to the smooth nature of pseudo-wavefunction.

There are many pseudopotential approaches such as norm-conserving pseudopotential (NCPP) [76], ultrasoft pseudopotential (USPP) [77] and projector augmented wave (PAW) [78]. The ordinary pseudopotential method like NCPP is either very large or complicated for the first-row elements and system with d or f electrons in order to taking into account the semicore states of them, and is not an economical way to calculate these systems. But both USPP and PAW method allow these systems to be handled in an affordable effect. In this dissertation all the DFT calculations are performed using the PAW method. This all-electron pseudopotential method divides the wave function into an auxiliary smooth valence function \(\tilde{\Psi}_n \) which can be represented in a plane wave expansion and an auxiliary localized partial-wave function \(\tilde{\phi}_i \) which keep all the information of the core states [78]. Mathematically only \(\tilde{\Psi}_n \) are taken into account in Schrödinger equation calculation and \(\tilde{\phi}_i \) are taken into account within a
pseudopotential. PAW method starts with a transformation operator \hat{T} which maps the auxiliary wave function $\tilde{\psi}_n$ to the real wave function ψ_n:

$$\psi_n(r) = \hat{T} |\tilde{\psi}_n\rangle.$$ \hfill (2.36)

To look at the atomic centered contribution to the this transformation, the transformation operator \hat{T} is expressed as

$$\hat{T} = 1 + \sum_{R_i} \hat{T}_{R_i}, \hfill (2.37)$$

where \hat{T}_{R_i} acts within some augmentation region enclosing atom at site R_i and is determined by the transformation

$$|\phi_i(r)\rangle = \hat{T}_i |\tilde{\phi}_i\rangle, \hfill (2.38)$$

where target partial wave ϕ_i are the solution of radial Schrödinger equation for isolated atoms, and auxiliary partial-wave function $\tilde{\phi}_i$ are generated to be orthogonal to the core state and identical to target partial wave ϕ_i outside the augmentation radius. Using Eqs (2.37) and (2.38) and introducing a projector function $\langle \tilde{p}_j |$ which obeys the conditions:

$$\langle \tilde{p}_i | \tilde{p}_j \rangle = \delta_{ij} \hfill (2.39)$$

and

$$\sum_i |\tilde{\phi}_i\rangle \langle \tilde{p}_i| = 1. \hfill (2.40)$$

The transformation \hat{T} is obtained as

$$\hat{T} = 1 + \sum_j (\langle \phi_j | - |\tilde{\phi}_j\rangle) \langle \tilde{p}_j |. \hfill (2.41)$$

With the knowledge of \hat{T}, from variation calculation of the total energy with respect to auxiliary wave function:

$$\frac{\delta E[\psi_n]}{\delta \psi_n^*} = \frac{\delta E[\hat{T}\tilde{\psi}_n]}{\delta \psi_n^*}. \hfill (2.42)$$
we obtained the Schrödinger-like equation for auxiliary functions

\[(\hat{H} - \epsilon_n \hat{O}) \tilde{\psi}_n = 0, \quad (2.43) \]

where \(\hat{H} = \hat{T}^\dagger \hat{H} \hat{T} \) and \(\hat{O} = \hat{T}^\dagger \hat{T} \). And the electron density in the Eq. (2.43) can be evaluated as below:

\[\rho(r) = \sum_n \langle \psi_n \| r \| \psi_n \rangle = \sum_n \langle \tilde{\psi}_n \| \hat{T}^\dagger \| r \| \hat{T} \| \tilde{\psi}_n \rangle. \quad (2.44) \]

Now similar to the direct plane wave method, Eq. (2.43) can be solved by expanding \(\tilde{\psi}_n \) to a small number of plane waves.

2.6 Vienna Ab-initio Simulation Package (VASP)

All the computations presented in this dissertation are performed using Vienna Ab-initio Simulation Package (VASP) [79]. This is a computational program package for electronic structure and quantum-mechanical molecular dynamics (MD) calculations from first principles. The approach implemented in VASP is based on DFT using a plane-wave basis set as discussed above and an exact evaluation of the instantaneous electronic ground state at each MD time step.

Plane-wave calculations in VASP always involve integration of smooth periodic functions over the entire Brillouin zone (BZ). This integral can be approximated by discrete set of points in the BZ. VASP includes a full featured symmetry code to determine the symmetry of arbitrary structure automatically. By using point symmetry and selecting special points using Monkhorst-Pack method [80] in VASP, the number of
discrete k-points need to evaluate the integral is greatly reduced. For BZ integrals in metallic systems, discontinued functions at Fermi-level always leads to poor k-points convergence. A finite temperature is artificially introduced to smear the function. Gaussian smearing and Fermi-Direc smearing are available in the VASP for calculation of metals. The VASP code use efficient matrix diagonalisation schemes, such as the blocked Davidson scheme [81] and the residual minimization scheme - direct inversion in the iterative subspace (RMM-DIIS) [82, 83], for the iterative calculation of the lowest Kohn-Sham eigenstates. The VASP use efficient Paulay-Broyden pre-conditioned mixing of the input and output charge densities for iteration calculation [82].

The LDA (LSDA) and GGA approximations for exchange-correlation effect of interacting electrons are implemented in VASP. However, these approximations should be carefully chosen when deal with certain materials. Due to the overbinding tendency inherent in the LDA, LDA underestimated the lattice constant by about 1%. The GGA corrects this intrinsic defect of LDA but overestimates the lattice constant by about the same amount. GGA produces correct ground state for magnetic transition metals while LSDA fails. GGA gives better prediction for surface and adsorption energy over LDA method. LDA works better than GGA for layer crystals such as graphite and molecules crystals where Van Der Waals force is dominant [84]. The interaction between ions and electrons is described by USPP or PAW method which considerably reduces the number of plane waves per atom for transition metals and first row elements. The LDA+U
(GGA+U) approach is also implemented in VASP to take into account strong Coulomb repulsion between electrons in localized orbitals such as $3d$ and $5f$ bands.

Beyond simulations based on DFT, VASP code also allows post-DFT calculations such as many-body perturbation theory (GW) for quasiparticle spectra [85] and dynamical electronic correlations via the random phase approximation [86].
Chapter 3 *Ferroelectric polarization effect on 2DEG*

The 2DEG has unique properties that are promising for applications in all-oxide electronic devices. For such applications it is desirable to have the ability to control 2DEG properties by external stimulus. Here we employ first-principles calculations to investigate KNbO$_3$/ATiO$_3$ (001) (A = Sr, Pb, Ba) heterostructures where perovskites ferroelectrics, KNbO$_3$, PbTiO$_3$ and BaTiO$_3$, are used as oxide constituents to create the interface 2DEG. Our results suggest that the polar (NbO$_2$)$_{+}/($AO)$_{0}$ interface in these heterostructures favors the formation of 2DEG similar to that at the (LaO)$_{+}/($TiO$_2$)$_{0}$ interface in a LaAlO$_3$/SrTiO$_3$ heterostructure. We predict that the presence of spontaneous ferroelectric polarization which can be switched between two stable states allows modulations of the carrier density and consequently the conductivity of the 2DEG. The effect occurs due to the screening charge at the interface that counteracts the depolarizing electric field and depends on polarization orientation. The magnitude of the effect of polarization on the 2DEG properties strongly depends on contrast between polarizations of the two constituents of the heterostructure: the larger is the difference in the two polarizations, the bigger is the effect. For a sufficiently large polarization difference, we predict a metal-insulator transition at the interface driven by polarization reversal. This behavior is found for the KNbO$_3$/PbTiO$_3$ interface and for the KNbO$_3$/BaTiO$_3$ interface when polarizations of KNbO$_3$ and BaTiO$_3$ are antiparallel. The
proposed concept of ferroelectrically controlled interface conductivity may be very interesting for memory and logic applications and we hope that our predictions will stimulate experimental studies in this field.

3.1 Introduction

3.1.1 Ferroelectricity in perovskite oxides

Electric polarization created in dielectric and paraelectric materials almost linearly responds to the external electric field. In contrast, a ferroelectric material responds nonlinearly to the external field and has two or more stable states with different nonzero polarization at zero electric field, which is called ‘spontaneous polarization’. Some materials which are not ferroelectric also have the spontaneous polarization, such as wurtzite structure insulators, but their polarization is not switchable. What makes a ferroelectric material interesting is the ability to switch between different spontaneous polarizations states using the external electric field. This property gives ferroelectric materials broad applications in memory and microwave devices [6, 87]. The most studied ferroelectrics nowadays are perovskite oxides. The reason is that these materials are easy to make.

Perovskite oxides are a class of materials with chemical formula ABO$_3$, where O is oxygen, A and B are cations. In the high symmetric cubic phase, the A atom is sitting at the corner of the cube, the B atom is located at the center of the cube and oxygens sit at the center of each face, as shown in Figure 3.1(a). In addition, B is at the center of an
octahedron cornered by 6 oxygens, and A is at the center of a hole formed by these octahedral with 12 oxygens at corners. Alternatively viewed from the [001] direction, this structure is formed by alternating the AO and BO$_2$ layers.

The stability of the cubic phase is fragile, and can be estimated by the empirical criterion of Goldschmidt (1926) [88]. While the ionic radius of A is too small to contact the holes, rotation and tilting will be developed to make the contact possible, as happened in CaTiO$_3$. When the ionic radius of B is too small to contact the oxygen octahedron, it tends to develop a relative displacement to oxygen in the BO$_2$ plane and thus forms a dipole moment and possibly creates a ferroelectric polarization [89].

More generally, the polarization in these perovskite ferroelectrics is characterized by relative displacement between cations (both A and B) and oxygen anions, as seen from Figure 3.1 (b). BaTiO$_3$, PbTiO$_3$ and KNbO$_3$ are three representative perovskite ferroelectrics and will be used as components in the heterostructures to be discussed below. BaTiO$_3$ has a ferroelectric tetragonal phase between 278K and 393K. Above that range it has a cubic paraelectric phase. Below that range it transforms to orthorhombic, and finally to rhombohedral phase at 183K. KNbO$_3$ has the same transition pattern as BaTiO$_3$. It has three transitions from paraelectric cubic to ferroelectric tetragonal, to ferroelectric orthorhombic, and to ferroelectric rhombohedral phase at transition temperatures 701K, 488K and 210K respectively [90]. In contrast, PbTiO$_3$ has only one transition from cubic to ferroelectric tetragonal at 760K. In this chapter, we consider the ferroelectric perovskites in the tetragonal phase under strain applied by SrTiO$_3$ substrate
at room temperature.

![Diagram](image.png)

Figure 3.1 (a) cubic perovskite structure ABO_3. B (gray) is at center of oxygen (red) octahedron. A (blue) is at the center of a hole formed by these octahedral. (b) ferroelectric tetragonal phase of ABO_3 in (010) direction.

3.1.2 Field controlled 2DEG

Using a 2DEG system to make a field-effect device is an important step toward practical applications. The interface of a heterostructure with 3 unit cell thick LaAlO_3 on top of SrTiO_3 was found insulating. And it was demonstrated that operating at room temperature in field-effect configuration, an insulator-metal phase transition can be achieved by gate voltages [46]. Surprisingly this 2DEG formed at $\text{LaAlO}_3/\text{SrTiO}_3$ interface has a certain memory behavior which is not observed in conventional dielectric
It was demonstrated that nanosize conducting dots with densities > 10^{14} inch$^{-2}$ and lines with widths of about 3nm can be created and erased just using voltage applied by conducting atomic force microscope probe [91]. A possible explanation of this switching behavior is that by application of positive and negative voltage oxygen on the surface of LaAlO$_3$ is removed and adsorbed respectively. The oxygen vacancy on top of the LaAlO$_3$ modifies the intrinsic field in LaAlO$_3$ and thus the carrier density [91]. Other studies imply absorption of hydrogen and water could also play an important role in the switching process [92, 93]. Using the same technique, tunnel junctions and field-effect transistors with characteristic dimensions as small as 2 nanometers were created without using destructive lithography techniques [47].

All of the field-controlled devices above depend on the induced defects or adsorbed molecules which are impossible to control. In this chapter, we propose a prototype for a field-controlled device which is independent on external environment. The switching behavior is completely determined by the internal property, i.e. spontaneous polarization of ferroelectrics.

The effect of spontaneous polarization on the 2DEG has been already demonstrated experimentally. It was observed in ZnO/Mg$_x$Zn$_{1-x}$O [16][94] and GaN/Al$_x$Ga$_{1-x}$N [95] heterostructures where a sheet charge is formed at the interface to relax the electrostatically unfavorable state. Using a ferroelectric oxide material as one (or both) constituent of the 2DEG heterostructure allows the control of the 2DEG properties by
ferroelectric polarization switching.

Figure 3.2 (NbO$_2$)$^+$/ (AO)0 interface in KNbO$_3$/ATiO$_3$ heterostructure (a) as an analogue of (LaO)$^+$/ (TiO$_2$)0 interface in LaAlO$_3$/SrTiO$_3$ heterostructure (b).

To explore the effect of ferroelectricity on electronic properties at the interface of all oxide heterostructure, we consider oxide heterostructures composed of ferroelectric layers. The particular systems chosen for this study are KNbO$_3$/ATiO$_3$ (001) (A = Sr, Pb and Ba) oxide heterostructures. Ferroelectric KNbO$_3$ has alternating charge layers of (NbO$_2$)$^+$ and (KO)$^-$ along the [001] direction similar to those of LaAlO$_3$ as shown in Figure 3.2. A generalized perovskite form ATiO$_3$ consists of alternating planes of (TiO$_2$)0 and (AO)0. A specific analogy is the neutral planes (TiO$_2$)0 and (SrO)0 in the SrTiO$_3$.
Similar to \((\text{LaO})^+/(\text{TiO}_2)^0\), the polar discontinuity at the \((\text{NbO}_2)^+/(\text{AO})^0\) interface in the \(\text{KNbO}_3/\text{ATiO}_3\) heterostructure leads to potential divergence which needs to be removed by electron transfer. The \((\text{NbO}_2)^+/(\text{SrO})^0\) interface in \(\text{KNbO}_3/\text{ATiO}_3\) is expected to be compensated electronically leading to the conducting interface. On the other hand, the presence of the free charge at the interfaces allows for the growth of a superlattice with stable polarized regions and large polarization discontinuities at the internal interfaces, as was shown recently using first-principles calculations for a \(\text{SrTiO}_3/\text{KNbO}_3\) system \cite{96}.

We will show in the next sections that the 2DEG is indeed formed at the \((\text{NbO}_2)^+/(\text{AO})^0\) interface, and the conducting properties of the 2DEG can be switched by the orientation of the spontaneous polarization.

3.2 Theoretical approach

3.2.1 Computational method

Our theoretical studies are performed using methods described in Chapter 2. The electron wave functions are expanded in a plane wave basis set limited by a cutoff energy of 500eV. Spin-orbit corrections are not included in the calculations. The bulk and superlattice calculations are performed using the 6x6x6 and 8x8x1 Monkhorst-Pack \cite{80} k-point mesh respectively. The self-consistent calculations are converged to \(10^{-5}\) eV/cell and the structures are relaxed until the forces on the ions are less than 0.02 eV/Å.
3.2.2 Properties of bulk perovskites SrTiO$_3$, KNbO$_3$, BaTiO$_3$ and PbTiO$_3$

We consider perovskite superlattices grown on (001) SrTiO$_3$ single-crystal substrates. Thus in-plane lattice constant of the superlattice is fixed to the experimental lattice constant of SrTiO$_3$ which is $a = 3.905$ Å [97]. By varying the out-of-plane lattice constant c in a paraelectric configuration and minimizing the total energy, the lattice constant c of bulk BaTiO$_3$, SrTiO$_3$ and KNbO$_3$ are calculated to be 4.143 Å, 3.983 Å and 4.049 Å respectively. The obtained tetragonal structures of the perovskites are used as building blocks of all the superlattices with constituents in paraelectric states with mirror plane symmetry and with spontaneous polarization where reflection symmetry is broken [98]. However, the out-of-plane lattice constant c of PbTiO$_3$ without ionic relaxation (4.018 Å) is used only in superlattice in paraelectric state. With large polarization in ferroelectric state, the out-of-plane lattice constant of PbTiO$_3$ in the ferroelectric state will be much different from that in the paraelectric state. When the ferroelectric state is developed in the PbTiO$_3$ in superlattice, we used an out-of-plane lattice constant of 4.530 Å obtained by minimizing the total energy with full ionic relaxation. Here, the tetragonal distortion c/a is 1.16, which is consistent with the GGA result of Ref. [99], but which overestimates the experimental value of $c/a = 1.06$ at room temperature [100]. It is known that the GGA approximation in general overestimates the tetragonal distortion in ferroelectrics (see, e.g., Ref. [101]). However, the predicted value of polarization of PbTiO$_3$ is consistent with experimental data as discussed in the next paragraph.

When the bulk ATiO$_3$ structures with the in-plane constraint $a = 3.905$ Å are in the
ferroelectric state, the polarizations of BaTiO$_3$, KNbO$_3$ and PbTiO$_3$ obtained by using the Berry Phase Method [102] are 0.43 C/m2, 0.41 C/m2, and 1.16 C/m2, respectively. These values are consistent with the experimental values of 0.46 C/m2 [103], 0.37 C/m2 [104], and 0.97 C/m2 [105], for polarizations of BaTiO$_3$, KNbO$_3$ and PbTiO$_3$ respectively and the previous theoretical calculations [98, 99, 106]. It is notable that the calculated polarization of PbTiO$_3$ is much larger than the calculated polarization of both KNbO$_3$ and BaTiO$_3$, which has an important implication for our results as discussed in Sec 3.3.

The calculated band gaps of bulk KNbO$_3$, SrTiO$_3$, BaTiO$_3$, and PbTiO$_3$ with the in-plane constraint are very close in magnitude, i.e. 2.0 eV, 2.0 eV, 1.8 eV and 2.0 eV respectively. These values are lower than the experimental values of 3.3 eV [107], 3.3 eV [108], 3.3 eV and 3.4 eV [109], respectively, due to well-known deficiency of DFT calculations [66]. However, similar to our calculations they are very close in magnitude. This fact has an important implication for the formation of 2DEG at the KNbO$_3$/ATiO$_3$ (A = Sr, Pb, and Ba) interfaces, which makes it different from the LaAlO$_3$/SrTiO$_3$ interfaces, where both the calculated (3.7 eV) and the experimental (5.6 eV [109]) gaps in LaAlO$_3$ are much higher than those in SrTiO$_3$.

3.2.3 Structural model for superlattices

We employed periodic boundary conditions for the superlattice. With building blocks obtained above, the superlattices are constructed as (KNbO$_3$)$_m$/(ATiO$_3$)$_n$ (A = Sr, Ba, and Pb) with $m = 8.5$ unit cells of KNbO$_3$ and $n = 8.5$ unit cells of ATiO$_3$ along the [001]
direction. Figure 3.3 shows the interface geometry of the superlattice. The two interfaces have the same termination, i.e. NbO$_2$/AO. This implies a non-stoichiometric KNbO$_3$ which is terminated by the NbO$_2$ monolayers on both sides. In this case an “extra” electron is introduced into the system due to an electron on the additional NbO$_2$ monolayer. As we will see in Sec 3.3, the Fermi level move above the conduction band at the interface and thus there is a 2DEG.

The interface separation distance in the KNbO$_3$/ATiO$_3$ heterostructure is determined by minimizing the total energy of a smaller superlattice ($m = 2.5$ and $n = 1.5$) keeping the in-plane and out-of-plane lattice constants in KNbO$_3$ and ATiO$_3$ subunits unchanged. The left and right NbO$_2$/AO interfaces (see Figure 3.3) in the heterostructure are symmetric when both KNbO$_3$ and ATiO$_3$ are in paraelectric states. However, when ferroelectric states are developed, the interface to the right is equivalent to the interface to the left with electric polarization reversed. This allows us to study the effects of polarization reversal on the interface electronic properties by considering two interfaces in a single heterostructure.
Figure 3.3 Atomic structure of the unit cell and the (NbO$_2$)/((AO)$_0$) interfaces in a (KNbO$_3$)$_{8.5}$/(ATiO$_3$)$_{8.5}$ (001) superlattice with parallel (a) and antiparallel (b) polarization indicated by white and black arrows respectively.

First, we consider a reference paraelectric state in which lattice parameters of the two components in the heterostructure are kept the same as found above for the bulk structures. Only the interface separation is relaxed to minimize the total energy of the whole system. Next, we consider a ferroelectric state: we relax all the ions in the KNbO$_3$/ATiO$_3$ superlattices starting with the displacement pattern of the bulk tetragonal soft mode [110, 111] (with polarization pointing from left to right), and minimize the total energy with respect to atomic coordinates of all atoms in the heterostructures keeping the lattice constants unchanged. The ferroelectric states are stable with respect to the paraelectric states by energies -1.18, -1.43 and -0.91 eV/supercell for KNbO$_3$/BaTiO$_3$, KNbO$_3$/PaTiO$_3$, KNbO$_3$/SrTiO$_3$ heterostructures, respectively.

Within the GGA approximation, the SrTiO$_3$ in the superlattice shows polar atomic
displacements. Since SrTiO$_3$ is not a ferroelectric material in the bulk, we also investigate the interfaces of the KNbO$_3$/SrTiO$_3$ superlattice by fixing the atomic positions in the middle eight monolayers in SrTiO$_3$. Finally, in KNbO$_3$/BaTiO$_3$ heterostructure, we consider polarizations in KNbO$_3$ and BaTiO$_3$ pointing opposite to each other in order to verify our explanation of the switching behavior and to introduce one more avenue to realize metal-insulator transition at the interface.

3.3 Results and discussion

3.3.1 SrTiO$_3$/KNbO$_3$

First, we investigate properties of (NbO$_2$)$^+$/SrO0 interface in (KNbO$_3$)$_{8.5}$/(SrTiO$_3$)$_{8.5}$ heterostructure in a paraelectric state. Figures 3.4(a) and 3.4(d) show the density of states (DOS) projected onto 4d-orbitals of Nb atoms (Figure 3.4(a)) and 3d-orbitals of Ti atoms (Figure 3.4(d)), located at different NbO$_2$ or TiO$_2$ monolayers l and k respectively away from the (NbO$_2$)$^+$/SrO0 interface. Apparently, there are occupied conducting states at and below the Fermi energy, thus n-type metallic state is obtained at the interface. As is evident from Figures 3.4(a,d), the occupation of these states is largest near the interface (i.e. for $l = 1$ and $k = 2$) and decreases with increasing distance from the interface. These occupied states are similar to those at the (LaO)$^+$/TiO$_2$0 interface in LaAlO$_3$/SrTiO$_3$ heterostructures. However, due to a smaller band gap in KNbO$_3$ (the calculated value is 2.0eV) as compared to that in LaAlO$_3$ (the calculated value is 3.7eV), the KNbO$_3$ conduction band minimum in the KNbO$_3$/SrTiO$_3$ heterostructure lies much closer to the
Fermi energy, i.e. about 0.4eV, which makes it energetically favorable to bend and populate the conduction bands of KNbO$_3$ that are mainly formed by the Nb 4d-orbitals (see Figure 3.4(a)). This is different from the LaAlO$_3$/SrTiO$_3$ heterostructure where the LaAlO$_3$ conduction bands lie 2.6eV above the Fermi level and consequently almost do not participate in the 2DEG formation.

Next, we investigated the interface of the (KNbO$_3$)$_{8.5}$/(SrTiO$_3$)$_{8.5}$ superlattice in a ferroelectric state with polarization pointing from left to right. We fix eight middle monolayers of SrTiO$_3$ and relax all the other atomic positions in the superlattice. Figure 3.5(a) shows the ferroelectric displacements of the cations (Nb, Ti, K, Sr) relative to the oxygen anions in the heterostructure. The symmetry between the left and right interfaces (see Figure 3.3(a)) is broken by the ferroelectricity resulting in the deviation between electronic structures at the two interfaces as compared to paraelectric (centrosymmetric) state. We find that ferroelectric displacements in the central monolayers of KNbO$_3$ are close to those found in the bulk KNbO$_3$ constrained to have the in-plane lattice constant $a = 3.905$ Å.
Figure 3.4 Layer-projected density of states (DOS) on 4d-orbitals of Nb atoms (a, b, c) and 3d-orbitals of Ti atoms (d, e, f) located at different NbO$_2$ or TiO$_2$ monolayers l or k from the (NbO$_2$)$^+$(SrO)0 interface respectively in the (KNbO$_3$)$_{8.5}$/(SrTiO$_3$)$_{8.5}$ superlattice for either interface in the paraelectric state (a, d), the right interface (b, e) and the left interface (c, f) in the ferroelectric state. Layer number indicates the layer counted from the interface. The shaded plots are the DOS of atoms in the central monolayer. The zero along the horizontal axis refers to the Fermi energy.

Figures 3.4(b,c) and Figures 3.4(e,f) show the DOS projected onto the Nb 4d-orbitals
and the Ti 3d-orbitals respectively, located at different NbO₂ or TiO₂ monolayers (l or k respectively) from the right and left of the (NbO₂)⁺/(SrO)⁰ interfaces. For the interface on the left (Figures 3.4(b,e)), the occupancies of both the Nb-4d states and Ti-3d states are reduced significantly as compared to the right interface (Figures 3.4(c,f)) due to the ferroelectric displacements. Thus, in the superlattice the two interfaces are distinguished by the orientation of the ferroelectric polarization. This implies that by reversing the electric polarization, the carrier density of 2DEG at the KNbO₃/SrTiO₃ interface could be changed significantly.

For the KNbO₃/SrTiO₃ heterostructure without constraints in the middle layers of SrTiO₃, we find ferroelectric-type displacements in SrTiO₃ which are seen in Figure 3.5 (b) and (c). An induced polarization in SrTiO₃ is known from experimental studies (see, e.g., Ref. [112]). We note, however, that in our calculations these ferroelectric displacements are partially the result of using the GGA approximation which overestimates the equilibrium lattice constant of SrTiO₃, resulting in the tetragonal distortion of SrTiO₃ when the experimental lattice constant is used to constrain the in-plane lattice parameter. We find, however, that for the superlattice with the unconstrained SrTiO₃ the layer-resolved DOS on Nb and Ti atoms are similar to those in the superlattice where eight middle monolayers in SrTiO₃ are fixed. This indicates that the induced polarization in SrTiO₃ does not affect the result qualitatively due to the fact that the SrTiO₃ subunit in the superlattice is a dielectric at the fringe of ferroelectricity with much smaller spontaneous polarization compared to KNbO₃.
Figure 3.5 Cation (Nb, Ti, K, Sr) displacements with respect to oxygen anions in (KNbO$_3$)$_{8.5}/$(SrTiO$_3$)$_{8.5}$ superlattice with eight middle monolayers of SrTiO$_3$ fixed (a), with all the ions fully relaxed (b) and displacements of all the ions in fully relaxed ferroelectric state (c). Open and solid symbols in (a) and (b) indicate Sr-O (K-O) and Ti-O$_2$ (Nb-O$_2$) displacements respectively. Solid circles and squares in (c) indicate Sr (K) and Ti (Nb) displacements, respectively. Open circles and squares in (c) indicate displacements of O atoms in SrO (KO) and TiO$_2$ (NbO$_2$) layers, respectively. The two dashed vertical lines indicate left and right NbO$_2$/SrO interfaces.

The switchable behavior can be understood in terms of the screening of the polarization charge achieved by changing the free electron density of 2DEG at the interface. As discussed above the polarization in SrTiO$_3$ can be ignored for this consideration. The polarization in KNbO$_3$ is pointing from the left to the right causing
negative and positive polarization bound charges accumulated at left and right interfaces, respectively. To reduce the depolarization field and thus decrease the energy in the superlattice, the free charge is enhanced at the right interface and reduced at the left interface to compensate polarization charges. This is seen from Figure 3.6 which shows the free charge on Nb and Ti atoms in the paraelectric (open circles) and ferroelectric (open triangles) states. These charges are obtained by integrating the layer dependent DOS shown in Figure 3.4 from the conduction band minimum up to the Fermi energy. Thus each point on the curves in Figure 3.6 shows the number of free electrons on the Nb and Ti sites in the superlattice. Figure 3.6 also shows the screening charges (solid symbols) calculated from the difference between the free charges in the ferroelectric and paraelectric states.
Figure 3.6 The free charge (in units of electron) on Nb and Ti atoms across the unit cell of (KNbO₃)₈.5/(SrTiO₃)₈.5 superlattices in paraelectric state and ferroelectric state when the middle layers in SrTiO₃ is fixed (a) and all the ions are fully relaxed (b). The screening charge is obtained by calculating the difference of the free charges on Nb and Ti atoms for ferroelectric and paraelectric states. The directions of polarization for the ferroelectric state are from left to right.

<table>
<thead>
<tr>
<th>Heterostructure</th>
<th>Ferroelectric: Right interface</th>
<th>Ferroelectric: Left interface</th>
<th>Paraelectric: Either interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nb</td>
<td>Ti</td>
<td>Total</td>
</tr>
<tr>
<td>Parallel polarizations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNbO₃/SrTiO₃: full relaxation</td>
<td>0.36</td>
<td>0.07</td>
<td>0.43</td>
</tr>
<tr>
<td>KNbO₃/SrTiO₃: middle SrTiO₃ layers fixed</td>
<td>0.39</td>
<td>0.14</td>
<td>0.53</td>
</tr>
</tbody>
</table>
Table 3.1 Number of electrons on Nb and Ti atoms per lateral unit cell area at two interfaces in the KNbO$_3$/ATiO$_3$ (A = Sr, Ba, Pb) heterostructures without polarizations, with parallel and with antiparallel polarizations in each constituent.

Further insight as to how polarization switching influences the density of the 2DEG can be obtained from the number of free electrons accumulated at the two interfaces. We calculate local charges using Wigner-Seitz (WS) spheres that are used by VASP to project the wave functions onto spherical harmonics to calculate partial DOS*. Table 3.1 shows the number of occupied Nb-4d and Ti-3d states integrated from conduction band minimum up to the Fermi energy and added for all the atoms from the middle layer up to the left and right interface. In the paraelectric KNbO$_3$/SrTiO$_3$ superlattice, free carriers on left and right interface are calculated to be 0.29 electrons each per unit cell area, which are equal due to the symmetry. In the ferroelectric KNbO$_3$/SrTiO$_3$ superlattice with middle layer of SrTiO$_3$ fixed, free carriers on right and left interface are obtained to be 0.53 electrons and 0.05 electrons per unit cell area. Comparing with the paraelectric state, extra 0.24 electrons are accumulated at the right interface and 0.24 electrons are removed from the left interface. Evidently the induced screening charge has an opposite

\[\text{Table 3.1} \]

<table>
<thead>
<tr>
<th></th>
<th>KNbO$_3$/PbTiO$_3$</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.25</th>
<th>0.47</th>
<th>0.72</th>
<th>0.16</th>
<th>0.11</th>
<th>0.27</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KNbO$_3$/BaTiO$_3$</td>
<td>0.25</td>
<td>0.03</td>
<td>0.28</td>
<td>0.12</td>
<td>0.15</td>
<td>0.27</td>
<td>0.17</td>
<td>0.09</td>
<td>0.26</td>
</tr>
<tr>
<td>Antiparallel polarizations</td>
<td>KNbO$_3$/BaTiO$_3$</td>
<td>0.46</td>
<td>0.12</td>
<td>0.58</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.19</td>
<td>0.09</td>
<td>0.26</td>
</tr>
</tbody>
</table>

*There is no unambiguous way to define WS radii, and we use the default values of 2.138, 1.588, 1.979, 1.725, 1.323, 1.270, and 0.820 Angstroms for the radii of Sr, K, Ba, Pb, Ti, Nb and O atoms respectively provided by the input potential file in the VASP program.
sign to the polarization charge, thereby counteracting the depolarizing electric field. The polarization charge density σ_p can be estimated from the polarization of KNbO$_3$ in middle layer using the Berry phase method which gives $P_{\text{KNbO}_3} = 0.41 \text{C/m}^2$. This corresponds to the polarization charge per unit cell area of $\sigma_p = 0.39e$. The WS charge density at the two interfaces changes by $0.24e$ per unit cell area in going from para- to ferro-electric state. The WS charge density ($0.29e$ per unit cell area) underestimates the actual charge density ($0.5e$ per unit cell area) in the paraelectric state. When scaled with the factor $0.5/0.29$, the change in charge at either interface becomes $0.41e$ per unit cell area which is about the same as the polarization charge density.

In the heterostructure with full structural relaxation, the difference of free charges between two interfaces is not as much as that when the middle layer of SrTiO$_3$ is fixed due to the small induced polarization in SrTiO$_3$. We obtain the polarization of SrTiO$_3$ from polar displacements (Figure 3.5(b)), using the Berry phase method, of about 0.17C/m^2. From the difference of the polarizations in KNbO$_3$ and SrTiO$_3$ of 0.24C/m^2, the polarization charge per unit cell area is $\sigma_p = 0.23e$, which is about the same as the screening charge density of $0.14e$ per unit cell area scaled with the factor $0.5/0.29$.

3.3.2 PbTiO$_3$/KNbO$_3$

Here we describe our investigations of the electronic properties at the polar interfaces in the $(\text{KNbO}_3)_{8.5}/(\text{PbTiO}_3)_{8.5}$ heterostructure. When both subunits are in a paraelectric state, similar to the $(\text{NbO}_2)^+/(\text{SrO})^0$ interface in the KNbO$_3$/SrTiO$_3$ heterostructure, the
presence of polar interfaces leads to the formation of 2DEG at the \((\text{NbO}_2)^+/(\text{PbO})^0\) interfaces in the K\(\text{NbO}_3/\text{PbTiO}_3\) heterostructure. This is evident from Figures 3.7 (a,d), which show the Nb-4d and Ti-3d DOS indicating the largest local DOS at the Fermi energy at the monolayers located close to the interface \((l = 1 \text{ and } k = 2)\). The local DOS decreases with the distance from the interface. The calculated free carrier densities are 0.27 electrons per unit cell area on both interfaces as shown in Table 3.1.
Figure 3.7 Layer-projected density of states (DOS) on 4d-orbitals of Nb atoms (a,b,c) and 3d-orbitals of Ti atoms (d,e,f) located in different monolayers l and k respectively from the $(\text{NbO}_2)^+/\text{(PbO)}^0$ interface in the $(\text{KNbO}_3)_{8.5}/(\text{PbTiO}_3)_{8.5}$ superlattice for either interface in the paraelectric state (a, d), the right interface (b, e) and the left interface (c, f) in the ferroelectric state. Layer number indicates the layer from the interface. The shaded plots are the DOS of atoms in the central monolayer. The zero along the horizontal axis refers to the Fermi energy.

Figure 3.8 shows the ferroelectric displacements of the cations (Nb, Ti, K, Pb)
relative to the oxygen anions in the heterostructure. It can be seen that in the (KNbO\textsubscript{3})\textsubscript{8.5}/(PbTiO\textsubscript{3})\textsubscript{8.5} heterostructure, the spontaneous polarization of strained PbTiO\textsubscript{3} exceeds significantly the polarization of a KNbO\textsubscript{3} subunit, which leads to positive and negative polarization charge on the left and right interfaces, respectively, even though the polarization for the system points to the right. As follows from our discussion of the KNbO\textsubscript{3}/SrTiO\textsubscript{3} heterostructure, this leads to more free charges at the left interface and less free charges at the right interface to compensate the polarization charges.

![Figure 3.8](image)

Figure 3.8 Cation (Nb, Ti, K, Pb) displacements with respect to oxygen anions in (KNbO\textsubscript{3})\textsubscript{8.5}/(PbTiO\textsubscript{3})\textsubscript{8.5} superlattice. Open and solid and symbols indicate Pb-O (K-O) and Ti-O\textsubscript{2} (Nb-O\textsubscript{2}) displacements, respectively. The two dashed vertical lines indicate left and right (NbO\textsubscript{2})0/(PbO)0 interfaces.
Figure 3.9 The free charge (in units of electron) on Nb and Ti atoms across the unit cell of (KNbO$_3$)$_{8.5}$/(PbTiO$_3$)$_{8.5}$ superlattices in paraelectric state and ferroelectric state. The screening charge is the difference of the free charges on Nb and Ti atoms for the ferroelectric and paraelectric states. The direction of the polarization for ferroelectric state is from left to right.

It is seen from Figures 3.7 (b,c,e,f) that for (KNbO$_3$)$_{8.5}$/(PbTiO$_3$)$_{8.5}$ heterostructure, the DOS on both the Nb and Ti atoms at the Fermi energy is very large on the left interface (Figures 3.7(c,f)) while that on the right interface is zero (Figures 3.7 (b,e)). This indicates a ferroelectrically induced metal-insulator transition at the interface as a result of polarization reversal. The origin of this behavior can be explained by the large difference in polarizations on the two constituents of the heterostructure. The
polarizations in the middle of KNbO$_3$ and PbTiO$_3$ in the superlattice are 0.47C/m2 and 1.09C/m2, respectively. This results in a negative polarization charge of $0.58e$ per unit cell area at the right interface, which expels all the free carriers of $0.5e$ per unit cell area on that interface leading to an insulating right interface. This metal-insulator transition at the interface is visualized by the free charge distribution in Figure 3.9. Thus, a metal-insulator transition at the interface with polarization reversal is expected at the interface of the two constituents with a large difference in their polarizations.

3.3.3 BaTiO$_3$/KNbO$_3$

Similar to the polar interfaces considered above, the KNbO$_3$/BaTiO$_3$ system exhibits a 2DEG at the (NbO$_2$)$_+$/BaO0 interface. This is seen from the Nb-4d and Ti-3d DOS shown in Figures 3.10 (a,d) for the heterostructure in a paraelectric state. Again we see the largest occupied DOS near the Fermi energy at the interfacial layers which decreases when moving away from the interface. The calculated free carrier densities are $0.26e$ per unit cell area on both interfaces as shown in Table 3.1.
When the ferroelectric state is developed in the KNbO₃/BaTiO₃ heterostructure, the ferroelectric displacements in KNbO₃ and BaTiO₃ appear to be similar in magnitude. This is seen from Figure 3.11 (a), which shows the displacements of the cations (Nb, Ti, K, Ba) relative to the oxygen anions. This leads to the comparable polarizations of strained BaTiO₃ and KNbO₃ in the heterostructure, mirroring the similarity of their bulk polarizations 0.41C/m² and 0.43C/m² for KNbO₃ and BaTiO₃, respectively. This behavior is different from KNbO₃/SrTiO₃ and KNbO₃/PbTiO₃ systems, where the polarization discontinuity was pronounced at the interfaces.
Figure 3.11 Cation (Nb, Ti, K, Ba) displacements with respect to the oxygen anions in the (KNbO₃)₈.₅/(BaTiO₃)₈.₅ superlattice with parallel polarizations pointing from left to right (a) and with antiparallel polarizations pointing toward each other (b). Open and solid symbols indicate Ba-O (K-O) and Ti-O₂ (Nb-O₂) displacements respectively. The two dashed vertical lines indicate the left and right (NbO₂)₀/(BaO)₀ interfaces.
The similar polarization values of BaTiO$_3$ and KNbO$_3$ lead to the net polarization charge of almost zero at the two interfaces for parallel polarizations resulting in the small difference in the density of free carriers at two interfaces as indicated in Table 3.1. We note that the layer-resolved DOS of Ti is larger at the left interface than at the right interface while it is opposite for the layer-resolved DOS of Nb as is clearly seen from the comparison of Figures 3.10 (b) and (c) and Figures 3.10 (e) and (f). This asymmetric behavior is a direct result of opposite screening charges extending to several layers away from the interfaces to compensate the inhomogeneous polarization charge in each constituent. This can be seen from the screening charge distribution in each constituent in Figure 3.12(a).
Figure 3.12 The free charge (in units of electron) on Nb and Ti atoms across the unit cell of (KNbO3)8.5/(BaTiO3)8.5 superlattices in paraelectric state and ferroelectric state with (a) polarizations in the same direction from left to right and (b) opposite polarizations. The screening charge is the difference of the free charges on Nb and Ti atoms for ferroelectric and paraelectric states.

We see, therefore, that there is no pronounced switching effect at the conducting NbO2/BaO interface in the KNbO3/BaTiO3 heterostructure when polarizations of the two constituents are in the same direction. However, we predict a metal-insulator transition at the NbO2/BaO interface with polarizations reversal when the polarizations in KNbO3 and BaTiO3 point opposite to each other. It has been predicted that while electrical compatibility constrain normally prevent head-to-head and tail-to-tail domain walls from
forming in ferroelectric materials, such domain walls could be stabilized by delta-doping supplying a substitutional charge density that provides a cancellation of the bound polarization charge \[113\]. In our case the stabilization of the domains with the opposite polarization orientation is provided by the presence of the free charges at the interfaces. This antiparallel polarization state of the KNbO\(_3\)/BaTiO\(_3\) heterostructures is stable with respect to the paraelectric states by energies of -0.86eV/supercell. On the left interface, the polarizations of BaTiO\(_3\) and KNbO\(_3\) are pointing away from the NbO\(_2\)/BaO interface while on the right interface the polarizations are pointing toward interface as shown in Figure 3.3(b). We find that the total energy of the superlattice in the parallel polarization state is lower by 0.32eV/supercell than that in the antiparallel state. The polarizations of BaTiO\(_3\) and KNbO\(_3\) in the heterostructure are -0.26C/m\(^2\) and 0.25C/m\(^2\), respectively, causing -0.49e and 0.49e polarization charges per unit cell area on the left and right interface, respectively. The magnitude of the polarization charges is close to that of the free carriers (i.e. 0.5e) at the interfaces in paraelectric heterostructure. Thus, to stabilize the ferroelectric state with the antiparallel polarization almost all the free charge needs to be removed from one interface and placed to the other interface. This causes a metal-insulator transition at the interface by the polarization reversal as explained in the section describing a KNbO\(_3\)/PbTiO\(_3\) heterostructure.

The presence of the ferroelectrically induced metal-insulator transition at the interface is seen from the calculated charge distribution in the KNbO\(_3\)/BaTiO\(_3\) heterostructure with antiparallel polarization as shown in Figure 3.12(b). It is seen that
while in the paraelectric state the free charge is equally localized at the two interfaces, the antiparallel ferroelectric polarization state eliminates the charge from the left interface and places it to the right interface. It is notable that the distribution of this charge is not symmetric with respect to the interface reflecting complex structural relaxations at this interface evident from Figure 3.11 (b).

3.4 Summary

We have explored the formation of 2DEG and its dependence on the electric polarization at the \((\text{NbO}_2)^{+/+}/(\text{AO})^0\) interface in the \((\text{KNbO}_3)/(\text{ATiO}_3)\) \((A = \text{Sr, Pb, and Ba})\) oxide heterostructures using first-principles methods. The chosen structures have ferroelectric constituents besides having polar discontinuity similar to that at the interface in \((\text{LaAlO}_3)/(\text{SrTiO}_3)\) heterostructure. The interfaces are found to have occupied Nb 4d-states and Ti 3d states around the Fermi energy leading to conducting interfaces with \(n\)-type carriers.

We have predicted that the conducting properties at the two interfaces in these systems are influenced by ferroelectricity. Switching the ferroelectric polarization orientation may cause significant changes in the carrier density and consequently the conductivity of the interfacial 2DEG. The effect of the polarization reversal on the interface carrier density is understood in terms of screening by 2DEG. The magnitude of the effect is controlled by contrast between polarizations of the two constituents of the heterostructure: the larger is the difference in the two polarizations, the bigger is the
effect. Our calculations predict that a heterostructure with ferroelectric constituents can be designed such that the density of the 2DEG at the interface can be controlled by an external electric field including the possibility of switchable metal-insulator transition at the interface. These effects may be useful in controlling the interfacial conducting properties in ferroelectric oxide heterostructures by external electric fields.
Chapter 4 \textit{Strain effect on 2DEG}

Properties of the two-dimensional electron gas (2DEG) at interface of insulating oxides LaAlO$_3$ and SrTiO$_3$ have attracted significant interest due to its potential applications in nanoelectronics. Control over this carrier density and mobility of the 2DEG is essential for applications of these novel systems, and may be achieved by epitaxial strain. Our experimental collaborators at University of Wisconsin-Madison have investigated LaAlO$_3$/SrTiO$_3$ interfaces with controlled levels of biaxial epitaxial strain by using different substrates with different lattice constants. They found that tensile strained SrTiO$_3$ destroys the conducting 2DEG, while compressively strained SrTiO$_3$ retains the 2DEG, but with a carrier concentration reduced in comparison to the unstrained LaAlO$_3$/SrTiO$_3$ interface. They also found that the critical LaAlO$_3$ overlayer thickness for 2DEG formation increases with SrTiO$_3$ compressive strain. Here we use density functional calculations to explore this behavior. Our results suggest that a strain-induced electric polarization in the SrTiO$_3$ layer is responsible for this behavior. We find that it is directed away from the interface and hence creates a negative polarization charge opposing that of the polar LaAlO$_3$ layer. This both increases the critical thickness of the LaAlO$_3$ layer, and reduces carrier concentration above the critical thickness, in agreement with the experimental results. Our findings suggest that epitaxial strain can be used to tailor 2DEG properties of the LaAlO$_3$/SrTiO$_3$ heterointerface.
4.1 Introduction

Strains have previously been used to engineer and enhance numerous properties of materials. For example, increased mobility in semiconductors [114, 115], and increased transition temperature in ferroelectric materials [116-119] and superconductors [120] have been observed. A recently discovered two-dimensional electron gas (2DEG) at the LaAlO$_3$/SrTiO$_3$ interface [44, 121] has attracted great interest due to its novel application to nanoscale oxide devices [47]. So far, most studies of 2DEGs at oxide interfaces were performed using TiO$_2$-terminated SrTiO$_3$ bulk single crystal substrates. Thus, despite the rich nature of strain effects on oxide materials properties, the relationship between the strain and electrical properties of the 2DEG at the LaAlO$_3$/SrTiO$_3$ heterointerface remains largely unexplored.

The importance of strain effects comes from the fact that integrating 2DEGs to other functional devices or substrates always involves strain. Therefore, it is desirable to know the effect of the strain on 2DEG at the LaAlO$_3$/SrTiO$_3$ interface. In addition, by changing strain we might be able to obtain novel functional properties. For example, strain can induce an electric polarization in otherwise non-polar SrTiO$_3$ [122]. It has been predicted that polarization can be used to control 2DEG properties at oxide heterointerfaces [123, 124]. Thus by using the relation between the polarization and the strain, we could engineer 2DEG behavior.

4.2 Experimental investigation
Performed by our collaborators at University of Wisconsin-Madison, LaAlO$_3$/SrTiO$_3$ thin films heterostructures were grown on various single crystal substrates using pulsed-laser deposition (PLD) with *in-situ* high pressure reflection high-energy electron diffraction (RHEED) [13]. Figure 4.1 shows the schematic of the thin film heterostructure. Table 4.1 shows substrates that were used in this study to vary the SrTiO$_3$ strain state from biaxial compressive to biaxial tensile in the plane. As shown in Figure 4.1, (001) SrTiO$_3$ (STO) thin films were grown on (110) NdGaO$_3$ (NGO), (001) (LaAlO$_3$)$_{0.3}$–(Sr$_2$AlTaO$_6$)$_{0.7}$ (LSAT), (110) DyScO$_3$ (DSO) and (110) GdScO$_3$ (GSO) substrates. The varying lattice parameters result in an average biaxial strain ranging from -1.21% (compressive) to +1.59% (tensile) in a fully commensurate SrTiO$_3$ deposited film. All grown single-crystal (001) SrTiO$_3$ templates were fully coherent with the substrates. (001) SrTiO$_3$ films were also grown on (001) silicon substrates using molecular beam epitaxy. Thickness of these quasi-single-crystal (001) SrTiO$_3$ templates on silicon was 100 nm, and the films were almost fully relaxed. The measured SrTiO$_3$ lattice parameters on Si correspond to an average biaxial strain of 0.15% [125, 126]. The bi-axial strain state and lattice parameters of the strained (001) SrTiO$_3$ templates are summarized in Table 4.1. LaAlO$_3$ overlayers were deposited using PLD on these various strain Ti-terminated single crystal SrTiO$_3$ templates.
Figure 4.1 Schematic diagram of grown structures. Thickness of LaAlO$_3$ layer was varied from 1 to 30 unit cells on STO on LSAT, NGO, Si, DSO, GSO substrate
Table 4.1 Results from high-resolution x-ray diffraction measurements on the films at room temperature are given. The in-plane (a) and out-of-plane (c) lattice constants and lattice mismatch between the SrTiO$_3$ films and single crystal substrates on average of two orthogonal directions. The a- and c-lattice parameters of single-crystalline SrTiO$_3$ are 3.905Å. All SrTiO$_3$ templates were fully coherent except STO/Si (12), (002), (101) of SrTiO$_3$ and cubic substrates, LSAT, Silicon (200) pseudo-cubic of (101) pseudo-cubic of orthorombic substrate, GdScO$_3$ and DyScO$_3$, NdGdO$_3$ were observed to determine in-plane and out-of-plane lattice parameters.

It is known experimentally that a conducting 2DEG forms at the LaAlO$_3$/bulk SrTiO$_3$ interface only after the LaAlO$_3$ overlayer thickness exceeds a
critical value of 4 unit cells [46]. It was found that this critical thickness depends on the strain of the system. This was determined by measuring the conductivity of strained LaAlO$_3$/SrTiO$_3$ bilayers for different thickness of the LaAlO$_3$ layer. As shown in Figure 4.1, LaAlO$_3$ overlayer thickness was changed from 1 to 30 unit cells while the thickness of SrTiO$_3$ template on NGO, LSAT, DSO, GSO substrates was fixed at 50 unit cells. The critical thickness of LaAlO$_3$ on Ti-terminated (001) SrTiO$_3$ bulk single crystal and on quasi-single-crystal (001) SrTiO$_3$ templates on silicon [127] was checked as a reference.
Figure 4.2 Effect of strain on 2DEG. (A) Critical thickness of LaAlO$_3$ under bi-axial strain. While all others samples have a 50 unit cell-thick SrTiO$_3$ layer, sample LAO/STO/Si has 100nm-thick STO and is the nominally unstrained STO layer on silicon. The conductivity versus thickness of LaAlO$_3$ in the LAO/STO interface on various substrates is given in the inset. (B) Room-temperature carrier concentrations at the LAO/STO interface under various biaxial strains. The carrier concentrations in tensile strain state were above our measurement limit.
In case of the two samples with unstrained SrTiO$_3$ layers (LaAlO$_3$ on bulk single crystal SrTiO$_3$ substrate and LaAlO$_3$ on relaxed SrTiO$_3$ templates on silicon), the critical thickness was in agreement with that previously reported, i.e. 4 unit cells. However, in the compressive strain states, (SrTiO$_3$ templates on LSAT and NGO), the critical thickness of LaAlO$_3$ increased to 10 unit cells and 15 unit cells, respectively, as shown in Figure 4.2 A. In all the cases, the conductivity saturate above the critical thickness of the LaAlO$_3$ overlayer. However, unlike the non-strained state, the conductivity versus thickness of LaAlO$_3$ had a gradual rather than an abrupt change at the critical thickness. For instance, in case of LaAlO$_3$/SrTiO$_3$/LSAT measurable conductivity was detected at 10 unit cells LaAlO$_3$ thickness, but it did not saturate until 20 unit cells. There is, however, a clear trend of increasing LaAlO$_3$ critical thickness with increasing compressive biaxial in-plane strain.

Figure 4.2 B shows the carrier concentration at each strain state above the critical thickness of LaAlO$_3$. Similar to the critical thickness of the LaAlO$_3$ layer, nearly the same carrier concentration was found at both near-zero strain states, LaAlO$_3$ on SrTiO$_3$ bulk single crystal and LaAlO$_3$ on quasi-single crystal (001) SrTiO$_3$ template on silicon. The saturation carrier concentration (above the critical thickness) decreased with increasing compressive strain Although LaAlO$_3$/SrTiO$_3$ interfaces on DSO and GSO were grown and treated in the same manner, the interfaces were not conducting within our measurement limit at any thickness of LaAlO$_3$ overlayer in these tensile-strained
The above experimental results indicate that compressively strained SrTiO$_3$ preserves the 2DEG, but with decreased interfacial carrier concentration. The origin of this behavior is the main subject of our theoretical investigation which is described in the next section 4.3. For the case of tensile strain in the STO layer, the experiments indicate that there is no conducting 2DEG for biaxial tensile strains above 1.1%. Free-standing SrTiO$_3$ has been predicted at zero temperature to develop an in-plane polarization in the (110) direction under biaxial tensile strain. Experiment suggests that, at room temperature, relaxor behavior, with nanoscale polar regions that can be aligned in an electric field, occurs in many tensile strained SrTiO$_3$ samples. Stabilization of a uniform in-plane polarization by the LaAlO$_3$ layer does not seem likely. If such nanoscale regions near to the interface were present in our samples, bound charge at polarization discontinuities between random nanopolar regions would tend to be locally screened by carriers at the 2DEG interface. This would lead to localization of these carriers, preventing us from observing conduction in these samples.

4.3 Theoretical studies

The physical origin of the experimentally observed changes of 2DEG properties under compressive strain are qualitatively explained in Figure 4.3 In the unstrained system, positively charged (LaO)$^+$ atomic layers and negatively charged (AlO$_2$)$^-$ atomic layers create an average polarization whose positive bound charge resides at the
interface, as shown schematically in the left panel of Figure 4.3 (a). This polarization charge is responsible for the intrinsic electric field E_0 in LaAlO$_3$ (shown by arrow in Figure 4.3 (a)) resulting in an electric potential difference between the LaAlO$_3$ surface and the LaAlO$_3$/SrTiO$_3$ interface that increases with LaAlO$_3$ layer thickness. Above the LaAlO$_3$ critical thickness, charge is transferred to the LaAlO$_3$/SrTiO$_3$ interface (shown by a blue filling) to avoid this polarization catastrophe.

![Figure 4.3](image)

Figure 4.3 The calculated atomic structure of unstrained (A) and compressively strained (B) LaAlO$_3$(3 unit cell.)/SrTiO$_3$ system. In Figure B Ti-O and Sr-O displacements are amplified by a factor of eight as compared to the calculated results for visual comprehension. The left and right panels show schematically the 2DEG formation and
the effect of the polarization P in the strained SrTiO$_3$ on the 2DEG as described in text.

The compressively strained SrTiO$_3$ layer contains polar displacements of the Ti$^{4+}$ ions with respect to the O$^{2-}$ ions, shown in Figure 4.3 (b) for the case of uniform polarization. These displacements are responsible for a polarization P pointed away from the interface (indicated by an arrow at the bottom of the left panel of Figure 4.3 (b)). The polarization orientation is determined by the presence of the LAO layer and is likely not switchable. The polarization produces a negative bound charge at the LaAlO$_3$/SrTiO$_3$ interface (indicated in the left panel of Figure 4.3 (b)) that creates an additional electric field in LaAlO$_3$ equal to P/ε, where ε is the dielectric constant of LaAlO$_3$, that opposes the intrinsic electric field E_0. The presence of polarization in the compressively strained SrTiO$_3$ layer reduces the total electric field in LaAlO$_3$ and hence enhances the critical thickness necessary to create a 2DEG at the LaAlO$_3$/SrTiO$_3$ interface due to the polarization catastrophe effect. Above this critical thickness, the mobile interfacial carrier concentration would be then reduced by the interfacial bound charge [123, 124].
In order to quantify these effects we have performed first-principles calculations of the LaAlO$_3$/SrTiO$_3$ bilayer under various strain states based on methods described in chapter 2. We use density functional theory (DFT) and the local density approximation (LDA) implemented within the VASP method [79, 128]. We consider a LaO/TiO$_2$-interfaced (LaAlO$_3$)$_n$/(SrTiO$_3$)$_m$ bilayer, where n and m are the numbers of unit cells of LaAlO$_3$ and SrTiO$_3$ respectively. The LaAlO$_3$/SrTiO$_3$ bilayer is placed in a LaAlO$_3$/SrTiO$_3$/vacuum/SrTiO$_3$/LaAlO$_3$/vacuum supercell, as shown in Figure 4.4, where the doubled bilayer is used to avoid an unphysical electric field in vacuum which otherwise would occur due to the potential step within the LaAlO$_3$ layer and periodic boundary conditions of the supercell calculations. The in-plane lattice constant of the unstrained superlattice is fixed to the calculated bulk lattice constant of SrTiO$_3$, i.e. $a = 3.871$ Å. For the strained systems the in-plane lattice constant was constrained to be by a certain percentage smaller than the bulk one. To reduce the effect of the SrTiO$_3$ surface on atomic structure and ionic displacements within the SrTiO$_3$ layer we use a boundary condition according to which the atomic positions within one unit cell on the SrTiO$_3$ surface are fixed to be the same as in the respectively strained bulk SrTiO$_3$. The latter are computed separately for the unstrained and strained bulk SrTiO$_3$. All the other atoms in the superlattices are relaxed.
Figure 4.5 B (Ti, Al) cite atom – oxygen (O) atom displacements in the unstrained (squares), 1.2% (circles) and 2% (half circle) compressively strained (LaAlO$_3$)$_3$(SrTiO$_3$)$_5$ structure.

Figure 4.5 shows the calculated ionic displacements for the unstrained 1.2% and 2% compressively strained (LaAlO$_3$)$_3$(SrTiO$_3$)$_5$ structures. It is seen that in the unstrained case polar Ti-O displacements in the SrTiO$_3$ layer are very small, consistent with the previous calculations [35]. The in-plane compressive strain produces sizable ionic displacements, polarizing the SrTiO$_3$ layer and as the compressive strain increases the induced polarization increases. The calculation predicts that the induced polarization is oriented away from the interface and is not switchable. In the case of 1.2% compressive
strain, the magnitude of the polarization is \(P \approx 0.18 \text{ C/m}^2 \), as found from the known polar displacements in the strained SrTiO\(_3\) layer using the Berry phase method [102, 129].

The critical thickness \(t_c \) in the presence of a STO polarization can be estimated as follows:

\[
t_c = \frac{\delta \mathcal{E}}{eE},
\]

where \(\delta \mathcal{E} = e\mathcal{E}_g + (\mathcal{E}_V^{\text{STO}} - \mathcal{E}_V^{\text{LAO}}) \), \(\mathcal{E}_g \) is the band gap of SrTiO\(_3\), \(\mathcal{E}_V^{\text{STO}} \) and \(\mathcal{E}_V^{\text{LAO}} \) are the valence band maxima (VBM) of SrTiO\(_3\) and LaAlO\(_3\) respectively, and \(E \) is the electric field in LaAlO\(_3\). In the derivation of \(t_c \) below, we only need to consider the situation that the free charge has not been transferred to the interface and the thickness of LaAlO\(_3\) is less than \(t_c \). \(E \) is reduced from the intrinsic value of \(E_0 \) due to polarization \(P \) of SrTiO\(_3\), so that

\[
E = E_0 - \frac{P}{\varepsilon_{\text{LAO}}},
\]

where \(\varepsilon_{\text{LAO}} \) is the dielectric constant of LaAlO\(_3\). Due to the reduced electric field in LaAlO\(_3\) in the presence of the SrTiO\(_3\) polarization, the critical thickness is enhanced as indicated in Eq. (4.1). The intrinsic electric field \(E_0 \) can be estimated from the experimentally measured critical thickness \(t_c^0 = 4 \) unit cell, for the unstrained system. Taking into account the experimental band gap of STO \(\mathcal{E}_g = 3.2 \text{ eV} \) and the CBM offset between SrTiO\(_3\) and LaAlO\(_3\) \(\mathcal{E}_V^{\text{STO}} - \mathcal{E}_V^{\text{LAO}} = 0.35 \text{ eV} \) [130], we find that \(\delta \mathcal{E} = 3.55 \text{ eV} \). Using the relationship
\[\delta \mathcal{E} = eE_e t_e^0, \quad (4.3) \]

we obtain that \(E_0 \approx 0.23 \text{V/Å} \), which is consistent with our first-principles calculation predicting \(E_0 \approx 0.22 \text{V/Å} \), and calculations by others [35, 42, 52]. Using Eqs. (4.1), (4.2) and (4.3) we obtain

\[t_c = \frac{t_c^0}{1 - \frac{P}{\varepsilon_{\text{LAO}} E_0}}. \quad (4.4) \]

For the system under strain, when the thickness of LaAlO\(_3\) is above the critical thickness, there is a transferred charge at the interface and the charge density \(\sigma \) is estimated as shown below. At first, it is necessary to derive the transferred charge density \(\sigma_0 \) for the system without strain similar to Ref. [52]. When the LaAlO\(_3\) thickness \(t \) is above the critical \(t_c^0 \), a free surface charge \(\sigma_0 \) is transferred to the LaAlO\(_3\)/SrTiO\(_3\) interface. The electric field inside LaAlO\(_3\) is then

\[E = E_0 - \frac{\sigma_0}{\varepsilon_{\text{LAO}}}. \quad (4.5) \]

The VBM of LaAlO\(_3\) is aligned with the CBM of SrTiO\(_3\). Therefore

\[e\sigma = eE_0 t_c^0 = \delta \mathcal{E}. \quad (4.6) \]

It follows from Eqs. (4.5) and (4.6) that

\[\sigma_0 = \varepsilon_{\text{LAO}} E_0 \left(1 - \frac{t_c^0}{t}\right), \quad (4.7) \]

i.e. the transferred charge density increases with the LaAlO\(_3\) thickness which is consistent with the experimental observation, as shown in the inset of Figure 4.2 A.
Similarly, when the system is under strain, above the critical thickness t_c, electric field inside LaAlO$_3$ is

$$E = E_0 - \sigma_0 - \frac{P}{\varepsilon_{\text{LAO}}}.$$ \hspace{1cm} (4.8)

Using Eqs. (4.4), (4.6) and (4.8), the transferred charge for strained system is then obtained as follows

$$\sigma = \varepsilon_{\text{LAO}}E_0 \left(\frac{t_0}{t_c} - \frac{t_0}{t} \right).$$ \hspace{1cm} (4.9)

It is clear that when there is no strain, i.e. $t_c = t_0$, Eq. (4.9) is identical to Eq. (7), as expected. As the strain increases, due to the increased polarization in SrTiO$_3$ (see Figure 4.5) we expect a larger critical thickness t_c, as indicated both by Eq (4.4) and by the experimental data shown in Figure 4.2 A. Eq. (4.9) predicts that for the same thickness t of LaAlO$_3$, as the strain increases, the transferred charge decreases as a result of the increased critical thickness. This prediction again agrees well with the experimental results shown in Figure 4.2 B.

Using the calculated polarization value of $P \approx 0.18$ C/m2 for 1.2% compressive strain in the STO layer, and the calculated electric fields in the LaAlO$_3$ and SrTiO$_3$ layers in the strained LaAlO$_3$/SrTiO$_3$ system, we estimate the dielectric constant of the 1.2% compressively strained LaAlO$_3$ to be $\varepsilon_{\text{LAO}} \approx 18\varepsilon_0$. This value is consistent with that obtained from the induced polarization of 0.34 C/m2 in the LaAlO$_3$ layer, as is estimated from the calculated ionic displacements using the Berry phase method. (We note that the
estimated value of the dielectric constant of the unstrained LaAlO$_3$ is $\varepsilon_{LaO} \approx 24\varepsilon_o$ which is consistent with the previously found result [38]). Using Eq. (4.4) and the dielectric constant $\varepsilon_{LaO} \approx 18\varepsilon_o$ we obtain $t_c \approx 9$ unit cell. This value is higher than the critical thickness (4 unit cell.) for the unstrained system, and is consistent with the experimental result for the 1.2% strained LaAlO$_3$/SrTiO$_3$ structure. In the experimental situation it is expected that the surface polarization charge in LaAlO$_3$ is screened by adsorbents, and that the bottom polarization charge in the strained SrTiO$_3$ is screened by defects. In the structural model used in our DFT calculation the SrTiO$_3$ polarization is screened by charge transferred to the SrTiO$_3$ surface.

Our computations predict that at the LAO critical thickness of 3 unit cells, when the unstrained system becomes conducting, the 2% compressive strain expels the electron charge from the interface making the interface insulating. This results is seen from Figure 4.6, which shows the density of states (DOS) at the TiO$_2$ layer located at the interface for the unstrained, and the -2% strained (LaAlO$_3$)$_3$/(SrTiO$_3$)$_5$ structure. It is seen that the compressive strain eliminates the free electron charge at the unstrained interface (filled shadow under the red curve) making the system insulating.
Figure 4.6: Density of electronic states at the TiO$_2$ monolayer located at the interface of the unstrained, and the -2% strained (LaAlO$_3$)$_3$/(SrTiO$_3$)$_5$ structure. The vertical line indicates the position of the Fermi energy. The filled area under the curve for the unstrained system indicates the free electron charge responsible for the formation of the 2DEG. The strain eliminates this charge making the system insulating.

4.4 Summary

We have demonstrated that properties of the 2DEG formed at the LaAlO$_3$/SrTiO$_3$ interface can be controlled by epitaxial strain. Both the critical thickness of the LaAlO$_3$ overlayer required to generate the 2DEG and the carrier concentration of the 2DEG depend on the strain of the SrTiO$_3$ layer. Compressive strain increases the critical thickness and decreases the saturated carrier concentration. Our DFT calculations indicate that a strain-induced polarization stabilized by the LaAlO$_3$ overlayer is
responsible for these changes. Changes in critical thickness and carrier concentration estimated from the DFT calculations are in agreement with the experimental data.

The dependence of the 2DEG properties at the LaAlO$_3$/SrTiO$_3$ interface on the strain state opens a new correlation between strain-induced polarization and the electrical properties of oxide interfaces. We believe that such strain engineering can be very useful for oxide 2DEG device applications, and the relation between strain and 2DEG properties provides a new tool in the manipulation of oxide interfacial 2DEGs.
Chapter 5 Spin-polarized 2DEG

Making 2DEG gas spin-polarized is a very exciting prospect for spintronics applications, where the involvement of the spin degree of freedom broadens the spectrum of potential applications. Here, using first-principles calculations, we predict the existence of a spin-polarized two-dimensional electron gas (2DEG) at the LaO/EuO interface in a LaAlO$_3$/EuO (001) heterostructure. We show that this polar interface favors electron doping into the Eu-5d conduction bands resulting in a 2DEG formed at the interface. Due to the exchange splitting of the Eu-5d states, the 2DEG is spin-polarized. The predicted mechanism for the formation of a spin-polarized 2DEG at the interface between polar and ferromagnetic insulators may provide a robust magnetism of the 2DEG, which is interesting for spintronics applications.

5.1 Introduction

5.1.1 Overview of spin-polarized 2DEG

Recently it was found that at ultra-low temperatures the 2DEG occurring at the interface between the non-magnetic LaAlO$_3$ and SrTiO$_3$ materials may become magnetic [48]. This behavior was attributed to the exchange splitting of the induced electrons in the Ti-3d conduction band, which is corroborated by spin-polarized first-principles calculations of LaAlO$_3$/SrTiO$_3$ [33, 36], as well as LaTiO$_3$/SrTiO$_3$ interfaces [31]. It was also proposed that it may be possible to create a fully spin-polarized 2DEG by
replacing one monolayer of SrO by LaO in SrMnO$_3$ [131]. The magnetic ground state of SrMnO$_3$ is G-type antiferromagnetic (AFM) with Mn$^{4+}$ ($t^3_{2g} e^0_{2g}$), while the ground state of LaMnO$_3$ is A-type antiferromagnetic with Mn$^{3+}$ ($t^3_{2g} e^1_{eg}$). The 2DEG is introduced by the extra charge of the LaO$^+$ layer at interface, where the 2DEG occupies the Mn-e_g states near the interface. Zener double exchange helps to stabilize the ferromagnetic structure of Mn at the interface, while further layers away from interface retain antiferromagnetic configuration, and thus a spin-polarized 2DEG is created [131].

Here, we pursue a different route to achieve a spin-polarized two-dimensional electron gas, by employing a ferromagnetic insulator as one of the constituents in the oxide heterostructure. Spin-polarized properties of the 2DEG are, in this case, expected to be inherited from the ferromagnetism of the oxide, and consequently, this approach may lead to a more robust magnetism in the 2DEG, which is beneficial for applications. To illustrate the idea we consider EuO as a representative ferromagnetic insulator in conjunction with LaAlO$_3$ to form a spin-polarized 2DEG at the LaAlO$_3$/EuO(001) interface.

5.1.2 Ferromagnetic insulator EuO

EuO has a rocksalt crystal structure (Figure 5.1) and is a ferromagnetic insulator (semiconductor) with a bulk Curie temperature (T_C) of 69 K. The divalent Eu ion in EuO has a half filled 4f shell leading to the $^8S_{7/2}$ ground state and the magnetic moment of 7μ_B per Eu ion. The Heisenberg exchange coupling between the localized 4f electrons causes
the ferromagnetic ordering in EuO below T_C. The half-filled $4f$ band is separated from the $5d$-$6s$ conduction bands by a bandgap of 1.12 eV at room temperature [132]. In the ferromagnetic state of EuO, the direct exchange interaction between the localized $4f$ moments and the delocalized $5d$ conduction band states leads to the spin splitting of the latter. The spin splitting of the $5d$ states as large as 0.6 eV produces the full spin polarization near the bottom of conduction band [133]. These features can also be seen from the electronic density of states of bulk EuO shown in Figure 5.2, which are obtained by the first-principles calculation with general description in the next section.

Figure 5.1 Rocksalt crystal structure of EuO.
Figure 5.2 The density of states (DOS) of bulk EuO for different orbitals. The positive and negative values show the DOS for the spin-up and spin-down electrons, respectively. Fermi energy is located at zero, indicated by the dashed line.

The large splitting between spin-up and spin-down states at the bottom of the EuO conduction band allows creating a highly spin-polarized electron gas by appropriate n-doping of the material. Experimentally it was found that the transport spin polarization of conduction electrons in EuO doped with La exceeds 90% [134]. In particular, recently it has been observed that in La-doped EuO, the Curie temperature can be as high as 200 K due to the enhanced coupling between Eu 4f states and itinerant electrons in Eu 5d states [135].

5.2 Spin-polarized 2DEG in EuO based heterostructures
5.2.1 LaAlO$_3$/EuO

Here we demonstrate that the electron doping may be achieved locally at the LaAlO$_3$/EuO(001) interface to create a spin-polarized 2DEG. The mechanism responsible for the 2DEG formation is similar to that known for the LaAlO$_3$/SrTiO$_3$ interface [53]. LaAlO$_3$ consists of alternating (LaO)$^+$ and (AlO$_2$)$^-$ charged planes, whereas EuO consists of (EuO)0 neutral planes. When LaAlO$_3$ is deposited on top of EuO the divergence in the electrostatic potential can be avoided by transferring half an electron per two-dimensional unit cell to the LaO/EuO terminated interface. A charge transfer to the interface also occurs if the LaAlO$_3$ layer is non-stoichiometric and terminated with the LaO monolayers on both sides. In this case an “extra” electron is introduced into the system due to the uncompensated ionic charge on the additional (LaO)$^+$ monolayer. This electronic charge is accommodated by partially occupying conduction band states near the interface, producing a 2DEG. In ferromagnetic EuO the conduction band is formed by exchange split Eu-5d states and so the 2DEG is expected to be spin-polarized. Thus, by forming the LaAlO$_3$/EuO(001) interface, one can achieve a spin-polarized 2DEG below the Curie temperature of EuO or for even higher temperature.
Figure 5.3 Atomic structure of the LaO/EuO interface in the \((\text{LaAlO}_3)_{8.5}/(\text{EuO})_{15}\) (001) superlattice containing 8.5 unit cells of LaAlO\(_3\) and 15 monolayers of EuO within the supercell. Indices \(l\) and \(m\) denote atomic monolayers and are increasing with separation from the interface. \(l = 8\) in EuO and \(m = 9\) in LaAlO\(_3\) correspond the middle of the respective layers.

To quantitatively demonstrate our prediction we perform first-principles calculations of the electronic structure of the LaAlO\(_3\)/EuO (001) interface within the framework of density functional theory (DFT). Self-consistent calculations are performed using a plane wave basis set limited by a cutoff energy of 520eV and the \(6\times6\times1\) Monkhorst-Pack \(k\)-point mesh [80] with energy converged to \(10^{-5}\) eV/cell. Atomic relaxations are performed until the Hellmann-Feynman forces on atoms have become less than 30 meV/Å.

On-site correlations for the Eu-4\(f\) orbitals are included within the local density approximation (LDA)+\(U\) approach [73]. The value of \(J = 0.6\) eV is calculated using the
constrained occupation method [136] by considering the 4f states as an open-core shell and finding the LDA energy difference between the $4f^74f^0$ and $4f^64f^1$ configurations [137]. We find, however, that the value of $U = 5.3$ eV obtained by this method appears to be too small and leads to the 4f states being too shallow with respect to the conduction band of EuO. This discrepancy is due to the underestimation by DFT of the intrinsic insulating gap between the O-2p and Gd-5d states. Therefore, we adjusted the value of U empirically and found that $U = 7.5$ eV results in a very reasonable agreement with experiment. In particular, $U + 6J = 11.1$ eV agrees well with the occupied-unoccupied 4f state splitting observed in photoemission-inverse photoemission for Eu metal; the optical band gap at the X point of 0.94 eV is consistent with the zero-temperature experimental value of approximately 0.95 eV [138]; and the lattice constant $a = 5.188$ Å agrees with the experimental value of $a = 5.144$ Å. The exchange splitting of the Eu 5d orbitals is found to be $\Delta_d = 0.75$ eV. Since the La-4f bands lie at higher energy than that predicted by LDA, we impose $U = 11$ eV and $J = 0.68$ eV on these orbitals to avoid their spurious mixing with the conduction bands of LaAlO$_3$.
Figure 5.4 The density of state (DOS) of bulk EuO under strain by LaAlO₃ (blue) and without strain (red).

We consider the LaO/EuO terminated interface of a (LaAlO₃)₈.₅/(EuO)₁₅ superlattice (i.e., the interface containing 8.5 unit cells of LaAlO₃ and 15 monolayers of EuO within the supercell) stacked in the [001] direction, as shown in Figure 5.3. We use periodic boundary conditions and impose mirror plane symmetry at the central EuO monolayer. The in-plane lattice constant of the superlattice is fixed to the calculated lattice constant of cubic LaAlO₃, \(a = 3.81 \, \text{Å} \), which is in good agreement with the experimental value \(a = 3.79 \, \text{Å} \). Under this constraint EuO exhibits tetragonal distortion of \(c/a = 0.947 \). This
distortion does not change significantly the electronic structure of bulk EuO in the interested energy region as shown in Figure 5.4. In particular, the band gap of EuO becomes $E_g = 1.15$ eV and the exchange splitting of the d orbitals becomes $\Delta_d = 0.66$ eV. The out-of-plane lattice constant of the supercell is determined by optimizing the interface separation distance between the LaAlO$_3$ and EuO sub-units keeping their bulk lattice constants fixed. Then, we fix the supercell dimensions and relax the atomic positions of all the atoms in the (LaAlO$_3$)$_{8.5}/$(EuO)$_{15}$ superlattice.

Figure 5.5 Atomic displacements in the (LaAlO$_3$)$_{8.5}/$(EuO)$_{15}$ (001) superlattice with respect to the atomic “bulk” positions. The latter are determined by fixing the in-plane lattice constant and optimizing the interlayer distance, as described in text. The vertical
lines indicate interfaces.

Figure 5.5 shows the calculated atomic displacements within the \((\text{LaAlO}_3)_{8.5}/(\text{EuO})_{15}\) supercell. It is seen that the largest structural relaxations occur in the vicinity of the \(\text{LaO/EuO}\) interfaces and involve a polar distortion in which the negatively charged \(\text{O}\) anions are displaced with respect to the positively charged cations (either \(\text{La, Al or Eu}\)). When moving away from the interface, the magnitude of the displacements reduces and the \(\text{La-La and Eu-Eu}\) distances revert to constant values close to those in the bulk.
Figure 5.6: Layer- and spin-resolved density of states (DOS) on EuO (a), LaO (b) and AlO$_2$ (c) monolayers located at different planes l and m away from the LaO/EuO interface (as labeled in Figure 5.3). Top (bottom) panels show the majority(minority)-spin. In panel (a) the majority-spin states at energies below -1eV are the occupied Eu-4f states. The vertical lines denote the Fermi energy (E_F).

Figure 5.6 shows the layer resolved majority- and minority-spin densities of states
(DOS) on the EuO (a) and LaO (b) monolayers located at different planes l and m away from the LaO/EuO interface (see labeling in Figure 5.3). It is seen that there are occupied states below the Fermi energy on both the LaO and EuO monolayers near the interface, which indicate the formation of the n-type 2DEG at the LaO/EuO interface. This 2DEG comes from the occupation of the conduction band. Although it is pointed out that metallic phase could exist at surface of EuO [139], here the DOS near the CBM varies smoothly which distinguishes itself from the sharp surface DOS. The DOS on AlO$_2$ monolayers (Figure 5.6c) is negligible near the Fermi energy compared to that on the LaO and EuO monolayers. Far away from the interface, the DOS at the Fermi energy on both the LaO and EuO monolayers drops to zero reflecting the insulating nature of bulk LaAlO$_3$ and EuO.

The central result of our calculation is the formation of spin-polarized 2DEG at the LaAlO$_3$/EuO (001) interface. This fact is evident from Figure 5.6a indicating a significant difference in the occupation of the EuO majority- and minority-spin conduction bands near the interface. This is the direct consequence of the exchange splitting of the conduction 5d states in EuO and the occupation of these states due to the electron doping of the interface. As seen from Figure 5.6a, starting from the second EuO monolayer away from the LaO/EuO interface only majority-spin states are occupied in the conduction band of EuO indicating tendency to half-metallicity known for the n-doped bulk EuO [133]. Figures 5.6b and 5.6c also indicate the spin splitting of the conduction bands of LaAlO$_3$ near the interface, which is the result of the exchange
interaction between the Eu-4f and La-5d states across the interface.

Figure 5.7 Spin-dependent charge distribution across the (LaAlO$_3$)$_{8.5}$/(EuO)$_{15}$ (001) supercell. The notation for the atomic layers is the same as in Figure 5.3. The dashed lines indicate interfaces.

Similar to the case of the LaAlO$_3$/SrTiO$_3$ interface, where the O-2p valence bands of LaAlO$_3$ and SrTiO$_3$ are nearly lined up (e.g., Ref. [38]), we find for the LaAlO$_3$/EuO interface that the top of the O-2p valence band lies at –3.0eV in EuO and at about –3.6eV in LaAlO$_3$ with respect to the Fermi energy. Due to a larger energy gap between the O-2p valence bands and the conduction bands in LaAlO$_3$ than in EuO (the calculated values are 3.7eV and 2.7eV, respectively, and the experimental values are 5.6eV and
4.4eV [140], respectively), the conduction band minimum lies lower in EuO than in LaAlO$_3$ resulting in the charge accumulating mainly within the EuO layer. This is evident from Figure 5.7, which shows the distribution of the spin-dependent charge across the unit cell. The latter is calculated by integrating the spin- and layer-resolved DOS from the conduction band minimum up to the Fermi energy*. The large spin polarization of the 2DEG is seen at the EuO monolayers near the LaAlO$_3$/EuO interface. The estimated value of the spin polarization of the free charge density is about 50%.

We note that our calculation is performed for the non-stoichiometric LaAlO$_3$ layer which is assumed to be LaO terminated on both sides. Similar to the previous theoretical studies [29, 30], in this geometry an “extra” electron is introduced in the system due to the uncompensated ionic charge on the additional (LaO)$^+$ monolayer. For a stoichiometric LaAlO$_3$ layer deposited on top of EuO, it is demonstrated that a 2DEG is formed at the interface due to the electronic reconstruction resulting from the charge transfer to the interface that eliminates the increasing electrostatic potential in LaAlO$_3$ [141].

Due to the enhanced coupling between nearest 4f Eu by itinerant electron, the Curie temperature of this spin-polarized 2DEG at interface of stoichiometric EuO/LaAlO$_3$ can be as high as 105K, as predicted in Ref. [141]. For the same reason, we can expect an enhanced Curie temperature in our non-stoichiometric systems.

* The local charges are evaluated within the Wigner-Seitz spheres, as specified by VASP.
5.2.2 EuO/LaO/EuO

Figure 5.8 Atomic structure of LaO/(EuO)$_{19}$ (001) superlattice containing one monolayer LaO and 19 monolayers of EuO. Indices l denote atomic monolayers and are increasing with separation from the interface layer LaO.

Due to the experimental difficulties of growing both EuO and LaAlO$_3$ in the same environment, in addition to the heterostructure studied above, here we investigate another heterostructure EuO/LaO/EuO (001) at the interface of which electron doping may be achieved locally and spin-polarized. This structure could be grown experimentally by inserting one layer of LaO in the growing process of bulk EuO. The considered LaO/(EuO)$_{19}$ superlattice (i.e., one monolayer LaO and 19 monolayers of EuO) is stacked in the [001] direction, as shown in Figure 5.8. We use periodic boundary conditions and impose mirror plane symmetry at the central EuO monolayer. The lattice constants used are the same as those used for LaAlO$_3$/EuO. The optimization of the superlattice spacing follows the same procedure for LaAlO$_3$/EuO. Figure 5.9 shows the calculated atomic displacements within the LaO/(EuO)$_{19}$ (001) superlattice. A clear Eu-O
relative displacement occurs near the interface and reduces when moving from the interface. The associated dipole distortion pointing away from the (LaO)$^+$ ionic layer, which is the same direction of the electric field produced within this layer. This distortion is the result of the inoic screening effect in addition to the possible electronic screening. This distortion makes the dielectric constant of EuO in this superstructure very different from the bulk value, and thus significantly affects the wedge-shaped electric potential, and finally strongly influences the carrier distribution near the interface [29].

Figure 5.9 Atomic displacements in the LaO/(EuO)$_{19}$ (001) superlattice with respect to the atomic “bulk” positions. The latter are determined by fixing the in-plane lattice constant and optimizing the interlayer distance, as described in the text. The vertical
dashed line indicates the interface layer LaO.

By examining layer resolved density of state in our calculations, the electron doping is found locally near the interface of EuO/LaO/EuO(001) structure. Using the same approach of calculating the spin-dependent charge distribution in Figure 5.7, we demonstrate in Figure 5.10 that a spin-polarized 2DEG is formed in both LaO and EuO layers near the interface of LaO/EuO with a decay length smaller than that in LaAlO₃/EuO. The relatively smaller spin polarization in this superlattice compared with that in LaAlO₃/EuO is due to the large occupation of small spin-polarized states in the LaO layer.
Figure 5.10 Spin-dependent charge distribution across the LaO/(EuO)$_{19}$ (001) supercell. The notation for the atomic layers is the same as in Figure 5.8. The dashed lines indicate the LaO interface layer.

5.3 Summary

In summary, based on first-principles calculations we have predicted the possibility to create a spin-polarized 2DEG at the LaO/EuO interface in the LaAlO$_3$/EuO (001) heterostructure. We demonstrated that this polar interface favors electron doping into the Eu-5d conduction bands rendering a 2DEG formed at the interface. Due to the exchange splitting of the Eu-5d states the 2DEG becomes spin-polarized. The predicted mechanism for the formation of a spin-polarized 2DEG at the interface between polar and ferromagnetic insulators may lead to a robust magnetism of a 2DEG which is interesting for spintronics applications.
References

[27] O. Copie, V. Garcia, C. Bodefeld, C. Carretero, M. Bibes, G. Herranz, E. Jacquet, J. L. Maurice, B. Vinter, S. Fusil, K. Bouzehouane, H. Jaffres, and A. Barthelemy,

Template engineering of Co-doped BaFe$_2$As$_2$ single-crystal thin films, Nature Materials 9, 397 (2010).

Publications

1. “Metallic and insulating oxide interfaces controlled by electronic correlations”

2. “Tailoring a two-dimensional electron gas at the LaAlO$_3$/SrTiO$_3$ (001) interface by epitaxial strain”

3. “Ferroelectric dead layer driven by a polar interface”

4. “First-principles studies of a two-dimensional electron gas at the interface in ferroelectric oxide heterostructures”
5. “Prediction of a spin-polarized two-dimensional electron gas at the LaAlO$_3$/EuO(001) interface”

6. “Prediction of a switchable two-dimensional electron gas at ferroelectric oxide interfaces”

7. “Tunneling electroresistance in ferroelectric tunnel junctions with a composite barrier”

8. “Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale”

Presentations

6. **Yong Wang**, Manish K. Niranjan, Sitaram S. Jaswal and Evgeny Y. Tsymbal, “Prediction of a switchable two-dimensional electron gas at ferroelectric KNbO₃/ATiO₃ (A = Sr, Ba, Pb) interfaces”, *MRS Fall Meeting*, Boston, MA,
November 2009

