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Magnetoelectric Ndel anisotropies 
Ralph Skomski" 

Max-Planck-Institut fur Mikrostrukturphysik, Weinberg 2,06120 Halle, Germany 
Present address: Department of Physics and Astronomy, University of Nebraska, Lincoln, NE 68588-01 11 

Abstract - The applicability of Nkel's pair mod- 
el to metallic 3d surfaces and interfaces is ex- 
plained in terms of the tight-binding moments- 
theorem. The Nee1 model reproduces itinerant 
magnetism so long as the band structure is ap- 
proximated by third-moment atomic-pair contri- 
butions. This establishes an atomic NCel descrip- 
tion of interfaces and impurities. The NCel para- 
meter g depends on the d-band filling and, t o  
some extent, on the atomic structure. 

Index terms - anisotropy, itinerant magnetism 

I .  INTRODUCTION 

Since NCels pioneering work on magnetic surface 
anisotropy [ 11, the expansion of pair anisotropy 
energies into Legendre polynomials has become a 
widely-used tool in thin-film and surface magnet- 
ism. This refers in particular to complicated struc- 
tures and morphologies such as ultrathin transition- 
metal films [2], multilayers [3], rough surfaces [4], 
[SI, and surface steps [SI, [6], where first-principle 
calculations are difficult to perform. 

In lowest order, the N6el energy of a pair of 
magnetic atoms located at Ri and Rj is 

Here a i j  is the angle between the common 
magnetizationdirectionandR = Ri - Rj, and g is a 
coupling constant. For example, the magnetostatic 
pair interaction 

where m = lmil is the moment of the interacting 
dipoles, yields g = - pOm2/kR3. 

As early as 1931, Bloch and Gentile [7] recog- 
nized that magnetic anisotropy does not reflect mag- 
netostatic interactions but is caused by largely atom- 
ic spin-orbit and electrostatic crystal-field interac- 
tions. Here we will use the name magnetoelectric 
rather than magnetocrystalline, because the mecha- 
nism is not restricted to crystals. Note that NCel was 
well aware of the limitations of (2) but assumed that 
a better theory would merely yield improved values 

In spite of frequent reference to the NCel model, 
there is considerable disagreement about its ap- 

of g U]. 

Manuscript received October 16,1997. 

plicability to 3d metals. Some authors consider 
band-structure and N6el calculations as complemen- 
tary rather than competitive 121, [4], [6]. On the 
other hand, it has been argued that the N6el theory 
is too simple or incomplete, because g depends on 
the electronic structure of the atoms [5], [SI-[ 101. 

To answer the question why and to what extent 
N6el's theory is compatible with band-structure cal- 
culations we will use a real-space approach. A par- 
ticular problem is how many atomic neighbors need 
to be considered to explain itinerant anisotropy. 

11. SINGLE-ION ANISOTROPY 

The crystal-field splitting of atomic levels gives 
rise to single-ion anisotropy [9], [11]-[14], which 
is generally compatible with the NCel model. For 
example, the semiquantitative screened-charge mod- 
el [13], [14], which describes rare-earth ions in a 
screening gas of conduction electrons, yields 

g = - n2 8 (1 + q R  + 1 q2R2) (3) 

Here n2 = aJ tr2>4f(252 - J) is  the electrostatic qua- 
drupole moment of the Hund's-rules rare-earth ions 
[ 1 11, q = 2.3 A-1 [ 151 is an inverse Thomas-Fermi 
screening length, and Q is the charge of the mag- 
netic or nonmagnetic crystal-field creating atom. 

A minor single-ion effect in 3d metals is that 
magnetic and nonmagnetic atomic neighbors shift 
the centers of gravity of the subband densities of 
states (DOS). The subband shifts are given by Vfip 
= <p IVIp ,  where I p  is the corresponding atomic 
orbital and V is the anisotropic crystal-field poten- 
tial. For example, the lowest-order uniaxial expres- 
sion V(r) = A20 (322-9) [11] yields the energy 
shifts -2A (alg: z2), - A  (elg: yz and zx) and 2 A  
(e2g: xy and x2-y2). Due to electronic repulsion, 
crystal-field charges tend to be negative [ 131, so 
that A > 0, and a typical order of magnitude, esti- 
mated from Ni band-structure calculations [16], is 
A = 0.3 eV. Similar arguments apply to crystal 
fields in Co/Cu and Co/Pd multilayers [9], [ 101 as 
well as to interface interactions parametrized by 
constants [3]. Note, however, that the leading 
contribution to the metallic 3d level splitting is 
interatomic hopping rather than single-ion crystal- 
field splitting. 

0018-9464/98$10.00 0 1998 IEEE 
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111. M O M E N T S  D E S C R I P T I O N  

The starting point is the tight-binding Hamiltonian 

where S,,t = h<$plI.flcp '> describes the spin- 
orbit interaction (h =: 50 me$) [ 101 and the TPp~(R) 
are known functions of the fundamental hopping 
integrals Vddr~, V h ,  and Vw [ 171. 

In the simple case of interacting xy and x2 - y2 .1 
orbitals one has to diagonalize the matrix 

where 6 is the angle between the film normal and the 
magnetization and A contains both hopping and 
crystal-field intera s. Equation (5) yields the 
energy levels I [A& 4 0  cos2 61112 and, for h << A, 
anisotropy energies of order h2 cos2 6/A. From this 
equation we see that subband anisotropies decrease 
with increasing subband width W N 2A. However, 
the sign of the anisotropy contribution depends on 
the matrix elements S, 1. Typical band-structure an- 
isotropy calculations Gee e.g [lo] and references 
therein) are based on perturbation theory with res- 
pect to S, !, but in that approach the real-space 
meaning oranisotropy is hidden in numerical part of 
the calculation. 

A systematic real-space description starts from 
the moments theorem [ 181, [19], which deals with 
the m-th moments pi(m) = J(E - &Jm Dl(E) dE of 
the local densities of states D,(E) of an N x N matrix 
Hamiltonian '&k [20]. It states that exact moments 
are obtained by counting closed real-space m-hop 
loops, even if m<< N. Fixing the zero-point energy 
by putting &i = 0 yields ~ ~ ( 2 )  = Cjgl '&j rde,i and 

d3) = CJ#l,k#l %Jk %kl (6) 

In the context of magnetic anisotropy, the indices 
are multi-indices denoting not only the atomic site 
but also the spin and the magnetic quantum number 
of d electrons [21]. In particular, due to spin-orbit 
coupling the subband moments (and the total en- 
ergies for a given number n of 3d electrons) depend 
on the magnetization direction. 

Straightforward calculation yields the second 
moment [22] 

(7) 

whose graphical meaning is shown in Fig. l(a). 
The third moment is 

)-hECnh2sin28+ tin (8) 

Fig. 1. Elementary hopping loops. 

where Vj is the average 3d energy on the site j and 
AE = I d p g  is the Stoner exchange splitting (I =: 1 
eV). When the magnetization is confined to the x-z 
plane then cxy = cXzy2 = - 314, cm = 
cz2 = 314. The term i&, describes real-space con igu- 
rations of the type Fig. l(c) and goes beyond the 
N6el model (see below). 

Since the p(2)n are independent of h, there is no 
second-moment anisotropy. Lowest-order itinerant 
anisotropy arises from the AE term in Eq. (8) ,  
which gives rise to a small 6-dependent DOS asym- 
metry. Now we approximate the true subband den- 
sities of states by rectangles whose widths Wn = 
(12pC(')n)1'2 are obtained from Eq. (7) and obtain 
[22] analytic anisotropy expressions. In ultrathin 
films and at surfaces, the pronounced in-plane inter- 
atomic hopping means that the xy and x2-y2 sub- 
bands are wider than the 22, yz, and zx subbands. 
For a (001) monolayer (square lattice), the aniso- 
tropy Fig. 2 is obtained. The anisotropy is of order 
WW, but its exact magnitude (the K1 scale in Fig. 
2) and, to a minor extent, the positions of the zeros 
reflects the number of nearest neighbors, their 
coordination, and the interatomic distances. 

In agreement with numerical band-structure cal- 

O, and ? = 

L I 
7 8 9 10 

Number of 3d electrons 

Fig. 2. Schematic band-filling dependence of the anisotropy. 
As a guide for the eyes, approximate atomic meanings of the 
band filling are shown at the top of the figure. 
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culations and experimental data [5], [ 10],[23], [24], 
the anisotropy oscillates as a function of n, but due 
to the restriction to pair interactions the n resolution 
is poor. Furthermore, as mentioned the curves show 
some dependence on the film or surface structure. 

Note that the present solid-state moments ap- 
proach is related to the quasimolecular diatomic pair 
model 1231. The moments approach works best for 
small exchange splittings but requires the inclusion 
of higher-order graphs to reproduce the diatomic 
pair limit of strong exchange splitting. 

Iv. DISCUSSION AND CONCLUSIONS 

Since the number of magnetic and nonmagnetic 
neighbours and their spatial coordinations are 
contained in (7), the NCel model is able to dis- 
tinguish between monolayers, surfaces, bulk mag- 
nets and clusters. Ultimately, it yields an expansion 
of the magnetic energy into spherical harmonics and 
gives a proper account of the symmetry of ordered 
and disordered surfaces. For example, in disor- 
dered magnets it yields not only s i n 3  contribu- 
tions, as it is well-known for ,surfaces vicinal to fcc 
(Ool), but also sin + contributions. 

However, the pair model is unable to reproduce 
band-structure details which involve more than two 
atoms. For example, the real-space triangle term 

shown in Fig. l(c) is nonzero in fcc (1 11) mono- 
layers but zero in fcc (001) monolayers. Higher- 
order terms such as 6n are necessary to tune the 
Fermi level when it lies between two quasi- 
degenerate states (A I h). Similarly, the Vj term in 
(8) is nonzero for nonmagnetic or chemically dif- 
ferent magnetic neighbors (Fig. l(b)) [19]. In 
general, the inclusion of higher-order terms improve 
the resolution of the Kl(n) curve and may even 
yield additional zeros. 

Since compressive surface relaxations and Pois- 
son contractions of films can be interpreted as tetra- 
gonally distorted c/a -= 1 environments, as compared 
to cubic structures (c/a = 1) and monolayers (c/a = 
CO), we expect that c/a < 1 configurations and mono- 
layers yield opposite anisotropy contributions. The 
reason is that intraplane and interplane overlaps 
dominate for c/a > 1 and cla < 1, respectively. 

In conclusion, we have shown that the NCel 
model goes far beyond the original assumption of 
quasi-dipolar pair interactions between localized 
atoms. This refers not only to rare-earth ions but 
also to 3d metals, where NCel-type: contributions are 
explained in terms of third-moment atomic-pair con- 
tributions. This means that the NCel theory contains 

the metallic band structure and the influence of 
interface atoms on a rudimentary level. 
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