Measurement of the Λ_{b}^{0} Lifetime Using Semileptonic Decays

V. M. Abazov
Joint Institute for Nuclear Research, Dubna, Russia

Kenneth A. Bloom
University of Nebraska - Lincoln, kbloom2@unl.edu

Gregory R. Snow
University of Nebraska-Lincoln, gsnow1@unl.edu

D0 Collaboration

Follow this and additional works at: http://digitalcommons.unl.edu/physicssnow

Part of the Physics Commons

Abazov, V. M.; Bloom, Kenneth A.; Snow, Gregory R.; and Collaboration, D0, "Measurement of the Λ_{b}^{0} Lifetime Using Semileptonic Decays" (2007). Gregory Snow Publications. 11.
http://digitalcommons.unl.edu/physicssnow/11

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Gregory Snow Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Measurement of the Λ_0^b Lifetime Using Semileptonic Decays

0031-9007/07/99(18)/182001(7) 182001-1 © 2007 The American Physical Society

(D0 Collaboration)

1Universidad de Buenos Aires, Buenos Aires, Argentina
2LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
3Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
4Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil
5University of Alberta, Edmonton, Alberta, Canada,
Simon Fraser University, Burnaby, British Columbia, Canada,
York University, Toronto, Ontario, Canada, and McGill University, Montreal, Quebec, Canada
6University of Science and Technology of China, Hefei, People's Republic of China
7Universidad de los Andes, Bogotá, Colombia
8Center for Particle Physics, Charles University, Prague, Czech Republic
9Czech Technical University, Prague, Czech Republic
10Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
11Universidad San Francisco de Quito, Quito, Ecuador
12Laboratoire de Physique Corpusculaire, IN2P3-CNRS, Université Blaise Pascal, Clermont-Ferrand, France
13Laboratoire de Physique Subatomique et de Cosmologie, IN2P3-CNRS, Université de Grenoble I, Grenoble, France
14CPPM, IN2P3-CNRS, Université de la Méditerranée, Marseille, France
15Laboratoire de l’Accélérateur Linéaire, IN2P3-CNRS and Université Paris-Sud, Orsay, France
16LPNHE, IN2P3-CNRS, Universités Paris VI and VII, Paris, France
17DAPNIA/Service de Physique des Particules, CEA, Saclay, France
18IPHC, Université Louis Pasteur et Université de Haute Alsace, CNRS, IN2P3, Strasbourg, France
19IPNL, Université Lyon I, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France
20III. Physikalisches Institut A, RWTH Aachen, Aachen, Germany
21Physikalisches Institut, Universität Bonn, Bonn, Germany
22Physikalisches Institut, Universität Freiburg, Freiburg, Germany
23Institut für Physik, Universität Mainz, Mainz, Germany
24Ludwig-Maximilians-Universität München, München, Germany
25Fachbereich Physik, Universität Wuppertal, Wuppertal, Germany
26Panjab University, Chandigarh, India
27Delhi University, Delhi, India
We report a measurement of the Λ_b^0 lifetime using a sample corresponding to 1.3 fb$^{-1}$ of data collected by the D0 experiment in 2002–2006 during run II of the Fermilab Tevatron collider. The Λ_b^0 baryon is reconstructed via the decay $\Lambda_b^0 \rightarrow \mu^- \nu \Lambda^+_c X$. Using 4437 ± 329 signal candidates, we measure the Λ_b^0
The lifetimes of b hadrons provide an important test of models describing quark interaction within bound states. The experimental measurements of the lifetimes are in reasonable agreement with the theoretical predictions [1–4], but further improvement in the experimental and theoretical precision is essential for the development of quantum chromodynamics.

The lifetime of b hadrons has recently attracted special interest. The PDG-2006 world average lifetime is $\tau(\Lambda^0_b) = 1.230 \pm 0.074$ ps, and the ratio of the Λ^0_b baryon and B^0 meson lifetimes is $\tau(\Lambda^0_b)/\tau(B^0) = 0.80 \pm 0.05$ [5], in good agreement with the theoretical prediction $\tau(\Lambda^0_b)/\tau(B^0) = 0.86 \pm 0.05$ [4]. However, the Λ^0_b lifetime measurement from the CDF collaboration in the $\Lambda^0_b \rightarrow J/\psi \Lambda$ decay gives a significantly larger value: $\tau(\Lambda^0_b) = 1.59 \pm 0.08 \pm 0.03$ ps [6]. The D0 measurement in the same decay gives a value consistent with the PDG-2006 world average: $\tau(\Lambda^0_b) = 1.218^{+0.130}_{-0.015} \pm 0.04$ ps [7]. These two results are not included in the quoted world average. Additional Λ^0_b lifetime measurements could provide a potential resolution of this inconsistency.

This Letter presents a measurement of the Λ^0_b lifetime using the semileptonic decay $\Lambda^0_b \rightarrow \mu \bar{\nu} \Lambda^+_c X$, where X is any other particle. Charge conjugated states are implied throughout this Letter. The Λ^+_c baryon is selected in the decay $\Lambda^0_c \rightarrow K^0_S p$. The sample corresponds to approximately 1.3 fb$^{-1}$ of data collected by the D0 experiment in run II of the Fermilab Tevatron Collider.

The D0 detector is described in detail elsewhere [8]. The components most important to this analysis are the central tracking and muon systems. The central tracking system consists of a silicon microstrip tracker and a central fiber tracker, both located within a 2 T superconducting solenoidal magnet, with designs optimized for tracking and vertexing at pseudorapidities $|\eta| < 3$ and $|\eta| < 2.5$, respectively, (where $\eta = -\ln[\tan(\theta/2)]$ and θ is the polar angle of the particle with respect to the proton beam direction). The muon system is located outside the calorimeters and has pseudorapidity coverage $|\eta| < 2$. It consists of a layer of tracking detectors and scintillation trigger counters in front of 1.8 T iron toroids, followed by two similar layers after the toroids [9]. The trigger system identifies events of interest in a high-luminosity environment based on muon identification and charged tracking. Some triggers require a large impact parameter for the muon. Since this condition biases the lifetime measurement, the events selected exclusively by these triggers are removed from our sample. All processes and decays required for our analysis are simulated using the EvtGen [10] generator interfaced to PYTHIA [11] and followed by full modeling of the detector response using GEANT [12] and event reconstruction.

Reconstruction of the Λ^0_b decay starts from the selection of a muon, which must have at least two track segments in the muon chambers associated with a central track, with transverse momentum with respect to the beam axis $p_T > 2.0$ GeV/c. All charged particles in the event are clustered into jets using the Durham clustering algorithm [13]. The products of the Λ^+_c decay are then searched for among tracks belonging to the jet containing the identified muon.

The primary vertex is determined using the method described in Ref. [14]. The K^0_S meson is reconstructed as a combination of two oppositely charged tracks that have a common vertex displaced from the $p\bar{p}$ interaction point by at least 4 standard deviations of the measured decay length in the plane perpendicular to the beam direction. Both tracks are assigned the pion mass and the mass of the $\pi^+ \pi^- X$ system is required to be consistent with the K^0_S mass to within 1.8 standard deviations. Any other charged track in the jet with $p_T > 1.0$ GeV/c and at least two hits in the silicon detector is assigned the proton mass and combined with the neutral extrapolated K^0_S candidate to form a Λ^+_c candidate. The Λ^+_c candidate is combined with the muon to make a Λ^0_b candidate, and its invariant mass is required to be between 3.4 and 5.4 GeV/c^2. The transverse distance d_T^{bc} between the Λ^0_b and Λ^+_c vertices is calculated and is assigned a positive sign if the Λ^0_b vertex is closer to the primary vertex, and a negative sign otherwise. The Λ^0_b candidate is required to have $-3.0 < d_T^{bc}/\sigma(d_T^{bc}) < 3.3$, where $\sigma(d_T^{bc})$ is the uncertainty of the d_T^{bc} measurement. The upper bound on the distance between the Λ^0_b and Λ^+_c vertices reduces the background significantly, since the Λ^+_c lifetime is known to be very small: 0.200 ± 0.006 ps [5]. These selection criteria were chosen to optimize the signal to background ratio while avoiding any lifetime bias.

To further improve the Λ^0_b signal selection, a likelihood ratio method [15] is utilized. This method provides a simple way to combine many discriminating variables into a single variable with an increased power to separate signal and background. The variables chosen for this analysis are the Λ^0_b isolation, the transverse momentum of the K^0_S, proton and Λ^+_c candidates, and the mass of the $\mu \Lambda^+_c$ system. The isolation is defined as the fraction of the total momentum of charged particles within a cone around the $\mu \Lambda^+_c$ direction carried by the Λ^0_b candidate. The cone is defined by the condition $\sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} < 0.5$, where $\Delta \eta$ and $\Delta \phi$ are the difference in pseudorapidity and azimuthal angle from the direction of the Λ^0_b candidate.
Figure 1 shows the invariant mass $M(K_{S}^{0}p)$ for the selected Λ_{b}^{0} candidates. The fit to this distribution is performed with a signal Gaussian function and a fourth-order polynomial function for the background. The Λ_{c}^{+} signal contains 4437 ± 329(stat) events at a central mass of 2285.8 ± 1.7 MeV/c^2. The width of the mass peak is $\sigma = 20.6 ± 1.7$ MeV/c^2, consistent with that observed in the simulation.

Simulation shows that the contribution from the $B_{d} \rightarrow K_{S}^{0} \pi$ decay when a pion is assigned the proton mass has a broad $M(K_{S}^{0}p)$ distribution with no excess in the Λ_{c}^{+} mass region.

Since the final state is not fully reconstructed, the Λ_{b}^{0} proper decay length cannot be determined. Instead, a measured value from the primary vertex, Λ_{c}^{+}, is used. $\Lambda_{c}^{+} = mc(L_{T} \cdot p_{T}(\mu \Lambda_{c}^{+})) / |p_{T}(\mu \Lambda_{c}^{+})|^2$. L_{T} is the vector from the primary vertex to the Λ_{b}^{0} vertex in the plane perpendicular to the beam, $p_{T}(\mu \Lambda_{c}^{+})$ is the transverse momentum of the $\mu \Lambda_{c}^{+}$ system and $m = 5.624$ GeV/c^2 is taken as the Λ_{b}^{0} mass [5].

To determine the Λ_{b}^{0} lifetime, the selected sample is split into a number of $M(\Lambda^{M})$ bins. The mass distribution in each bin is fitted with a signal Gaussian and a fourth-order polynomial background. The position and width of the Gaussian are fixed to the values obtained from the fit of the entire sample (see Fig. 1). The Gaussian normalization and background parameters are allowed to float in the fit. The range of $M(\Lambda^{M})$ and the number of signal events fitted in each bin n_{i}, together with its statistical uncertainty σ_{i} are shown in Table I.

The expected number of signal events in each bin, n_{i}^{e}, is given by $n_{i}^{e} = N_{tot} \int f(M(\Lambda^{M}))dM(\Lambda^{M})$, where N_{tot} is the total number of $\mu \Lambda_{c}^{+}$ events, and $f(M(\Lambda^{M}))$ is the probability density function (PDF) for $M(\Lambda^{M})$. The integration is done within the range of a given bin.

In addition to $\Lambda_{b}^{0} \rightarrow \mu \nu \Lambda_{c}^{+} X$, decays, the Λ_{c}^{+} baryon can also be created in $c\bar{c}$ or $b\bar{b}$ production, along with a muon from the decay of the second c or b hadron. In what follows, these processes are referred to as peaking background, since they produce a Λ_{c}^{+} peak in the $K_{S}^{0}p$ mass spectrum imitating the signal. Such events are reconstructed as Λ_{b}^{0} candidates, and have a fake vertex formed by the intersection of the muon and Λ_{c}^{+} trajectories. The simulation shows that the distribution of Λ^{M} for such a fake vertex has a mean of zero and a standard deviation of ≈ 150 μm.

The expression for $f(M(\Lambda^{M}))$ takes into account the contributions from signal and peaking background: $f(M(\Lambda^{M})) = (1 - r_{bck})f_{sig}(M(\Lambda^{M})) + r_{bck}f_{bck}(M(\Lambda^{M}))$. Here r_{bck} is the fraction of peaking background, and $f_{sig}(M(\Lambda^{M}))$ and $f_{bck}(M(\Lambda^{M}))$ are the PDFs for signal and background, respectively. The background PDF is taken from the simulation. The signal PDF is expressed as the convolution of the decay probability and the detector resolution: $f_{sig}(M(\Lambda^{M})) = \int dKf(K) \times \{ \theta(\lambda K/(c\tau)) \exp[-K\lambda/(c\tau)] \} \otimes R(M(\Lambda^{M} - \lambda, s))$. Here, τ is the Λ_{b}^{0} lifetime, and $\theta(\cdot)$ is the step function. The factor $K = p_{T}(\mu \Lambda_{c}^{+})/p_{T}(\Lambda_{b}^{0})$ is a measure of the difference between the measured $p_{T}(\mu \Lambda_{c}^{+})$ and true momentum of the Λ_{b}^{0} candidate, and $H(K)$ is its PDF. The $R(M(\Lambda^{M} - \lambda, s))$ is a function modeling the detector resolution. A scale factor s accounts for the difference between the expected and actual Λ^{M} resolution.

The $H(K)$ distribution is obtained from the simulation. The contribution of decays $\Lambda_{b}^{0} \rightarrow \mu \nu \Lambda_{c}^{+}$ and $\Lambda_{b}^{0} \rightarrow \mu \nu \Sigma_{c}^{+} \pi$ with $\Sigma_{c} \rightarrow \Lambda_{c}^{+} \pi$ is taken into account. The contributions of $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} D_{s}^{(*)}$ with the $D_{s}^{(*)}$ decaying semileptonically, $\Xi_{b} \rightarrow \mu \nu \Lambda_{c}^{+} X$ and $\Lambda_{b}^{0} \rightarrow \tau^{-} \bar{\nu}_{\tau} \Lambda_{c}^{+}$, with $\tau^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu} \gamma$ are found to be strongly suppressed by the branching fractions and low reconstruction efficiency. To obtain $H(K)$, the K factor distribution of each process is weighted with its expected fraction in the selected sample. This is computed taking into account both the reconstruction efficiency and the branching fraction of each process. The fraction of $\ell^{-} \bar{\nu}_{\ell} \Lambda_{c}^{+}$ in semileptonic Λ_{b}^{0} decays has been measured recently to be 0.47$^{+0.12}_{-0.10}$ [5]. We use this result in our analysis.

The resolution function is given by $R(M(\Lambda^{M} - \lambda, s)) = \int f_{res}(\sigma)G(M(\Lambda^{M} - \lambda, \sigma, s))d\sigma$, where $f_{res}(\sigma)$ is the PDF.

Table I. Fitted signal yield in different $M(\Lambda^{M})$ bins.

<table>
<thead>
<tr>
<th>Λ^{M} range (cm)</th>
<th>Number of signal candidates $n_{i} \pm \sigma_{i}$ (stat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0.06, 0.04]</td>
<td>62 ± 48</td>
</tr>
<tr>
<td>[0.04, 0.02]</td>
<td>66 ± 69</td>
</tr>
<tr>
<td>[0.02, 0.00]</td>
<td>587 ± 156</td>
</tr>
<tr>
<td>[0.00, 0.02]</td>
<td>1172 ± 173</td>
</tr>
<tr>
<td>[0.02, 0.04]</td>
<td>999 ± 99</td>
</tr>
<tr>
<td>[0.04, 0.06]</td>
<td>540 ± 69</td>
</tr>
<tr>
<td>[0.06, 0.08]</td>
<td>299 ± 54</td>
</tr>
<tr>
<td>[0.08, 0.10]</td>
<td>225 ± 44</td>
</tr>
<tr>
<td>[0.10, 0.20]</td>
<td>454 ± 64</td>
</tr>
<tr>
<td>[0.20, 0.30]</td>
<td>47 ± 34</td>
</tr>
</tbody>
</table>
for the expected resolution of λ^M, and G is a Gaussian function

$$G(\lambda^M - \lambda, \sigma, s) = 1/(\sqrt{2\pi}\sigma s) \exp[-(\lambda^M - \lambda^2)/(2\sigma^2s^2)].$$

Here, σ is the decay length uncertainty, which is determined for each candidate from the track parameter uncertainties propagated to the vertex uncertainties.

To determine $f_{res}(\sigma)$, signal and background subsamples are defined according to the mass of the $K^0_S p$ system. All events with $2244.7 < M(K^0_S p) < 2326.9$ MeV/c^2 are included in the signal subsample, and all events with $2183.9 < M(K^0_S p) < 2225.0$ MeV/c^2 and $2346.6 < M(K^0_S p) < 2387.7$ MeV/c^2 are included in the background subsample. In addition, the events in both subsamples are required to have a measured proper decay length exceeding 200 μm. This cut reduces the background under the Λ_c^+ signal and the contribution of peaking background. The $f_{res}(\sigma)$ distribution is obtained by using the distribution of expected resolution in the background subsample from the distribution in the signal subsample, and the integration in the definition of $R(\lambda^M - \lambda, s)$ is replaced by the sum over the bins of $f_{res}(\sigma)$ distribution.

The Λ^0_c lifetime is determined by the minimization of

$$\chi^2 = \sum_{i=1}^{N_{bins}} (n_i - n_i^0)^2/\sigma_i^2,$$

where the sum is taken over all bins of measured proper decay length (Table I). The free parameters of the fit are N_{obs}, $\tau(\Lambda^0_c)$, and r_{bck}. A separate study is performed to measure the resolution scale factor using the decay $D^{++} \rightarrow D^0\pi^+$ with $D^0 \rightarrow \mu^+ K^0_S\pi^-$. It has a similar topology to that of the $\Lambda^0_c \rightarrow \mu^- \Lambda_c^+$ decay. Since the D^{++} meson comes mainly from $c\bar{c}$ production, its decay vertex coincides with the primary interaction point. The distribution of the D^{++} proper decay length is mainly determined by the detector resolution and can be used to measure the resolution scale factor. A value of 1.19 \pm 0.06 is found. The scale factor in the lifetime fit is fixed to this value and varied later in a wide range to estimate an associated systematic uncertainty.

The lifetime fit gives $\tau(\Lambda^0_b) = 1.290^{+0.119}_{-0.110}$(stat) ps, and the fraction of peaking background $r_{bck} = 0.160^{+0.068}_{-0.074}$(stat). Figure 2 shows the distribution of the number of Λ^0_c μ events versus λ^M together with the result of the lifetime fit superimposed. The lifetime model agrees well with data with a χ^2/d.o.f. = 5.5/7. The dashed line shows separately the contribution of the peaking background.

The method used to fit the mass distribution in each of the λ^M bins is the most significant source of systematic uncertainty. The fit sensitivity is tested by refitting each λ^M bin for the mass interval between 2.17 and 2.40 GeV/c^2 with a linear parametrization of the background. Binning effects of the mass histograms are checked by performing fits to the data with bins of half the nominal width and with the lowest and highest bins excluded. The lifetime fit is performed again for each test. The largest deviation of $\tau(\Lambda^0_b)$ is 0.067 ps, which is given as the systematic uncertainty due to the mass-fitting procedure. The parameters describing the peaking background are varied by 0.012 ps in the Λ^0_b lifetime.

The selected sample can also contain a contribution from $B \rightarrow \mu^- \Lambda^+_c X$ decay. Its branching fraction is unknown; only the upper limit $\text{Br}(B \rightarrow e\Lambda_c^+X) < 3.2 \times 10^{-3}$ at 90% C.L. is available [5]. The possible contamination from this decay would reduce the fitted Λ^0_c lifetime, since the K factor for these events is smaller. The upper 90% C.L. limit on the fraction of this decay in the selected sample is estimated to be 5%, which would result in the reduction of the Λ^0_b lifetime by 0.027 ps.

The value of the scale factor is varied by \pm20%, and shifts of approximately \pm0.36 ps are observed in the fitted lifetime. This value is also included in the systematic uncertainty. The overall systematic uncertainty due to the K factor distribution is estimated to be 0.036 ps. It includes the uncertainty in the fraction of $\Lambda^0_b \rightarrow \mu^- \Lambda_c^+$ decay in semileptonic Λ^0_b decays, the dependence of the K factor on the muon momentum and the uncertainty in generation and decay of Λ^0_b hadrons [16,17]. The effect on lifetime measurement due to misalignment of elements of the tracking detector is determined by rescaling the geometrical position of all detectors within uncertainties of the alignment procedure. The resulting variation of the Λ^0_b lifetime is estimated to be 0.018 ps.

The total systematic uncertainty of this measurement is estimated to be $+0.087 -0.091$ ps.

Extensive consistency checks using the simulation demonstrate that this analysis gives an unbiased measurement of the Λ^0_b lifetime and the correct statistical uncertainty. We also split the data sample into two roughly equal parts using various criteria and measure the Λ^0_b lifetime in each sample independently. The sample is split according to the muon charge, the muon direction, the K^0_S decay length or
the chronological date of data taking. All such tests give statistically consistent values of the Λ_b lifetime.

In conclusion, our measurement of the Λ_b lifetime using the semileptonic decay $\Lambda_b \rightarrow \mu\bar{\nu}\Lambda^+X$ results in $\tau(\Lambda_b) = 1.290^{+0.119}_{-0.110} \text{(stat)}^{+0.087}_{-0.091} \text{(syst)} \text{ ps}$. It is consistent with the current world average Λ_b lifetime and with our measurement in the exclusive decay $\Lambda_b \rightarrow J/\psi\Lambda$ [7]. These two D0 results are statistically independent and the correlation of known systematic effects between them is small. Their combination results in $\tau(\Lambda_b) = 1.251^{+0.010}_{-0.006} \text{ ps}$.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CAPES, CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACYT (Argentina); FOM (The Netherlands); Science and Technology Facilities Council (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); Alexander von Humboldt Foundation; and the Marie Curie Program.

*Visiting scientist from Augustana College, Sioux Falls, SD, USA.
†Visiting scientist from The University of Liverpool, Liverpool, United Kingdom.
‡Visiting scientist from ICN-UNAM, Mexico City, Mexico.
\dagVisiting scientist from Helsinki Institute of Physics, Helsinki, Finland.
\dagVisiting scientist from Universität Zürich, Zürich, Switzerland.