Spring 2016

THE MEASURE OF NEMATODE DIVERSITY IN RESPONSE TO VARYING MANAGEMENT PRACTICES AND FEATURES IN RESTORED AND REMNANT PRAIRIE ECOSYSTEMS

Heaven A. Hulshizer

University of Nebraska - Lincoln, heaven.hulshizer@live.com

Follow this and additional works at: http://digitalcommons.unl.edu/ucareresearch

Part of the Environmental Indicators and Impact Assessment Commons, Environmental Monitoring Commons, Natural Resources and Conservation Commons, and the Sustainability Commons

http://digitalcommons.unl.edu/ucareresearch/8

This Poster is brought to you for free and open access by the UCARE: Undergraduate Creative Activities & Research Experiences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in UCARE Research Products by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
THE MEASURE OF NEMATODE DIVERSITY IN RESPONSE TO VARYING MANAGEMENT PRACTICES AND FEATURES IN RESTORED AND REMNANT PRAIRIE ECOSYSTEMS

Heaven Hulshizer

Environmental Studies Program

Introduction:

"Tallgrass prairies are the most endangered ecosystem in North America" (Helen et al. 2013). "Surveys suggest that since European settlement, declines in area of native prairie range as high as 99.9%" (Sampson, Fred and Fritz Knopf 1994).

Prairie ecosystem services:
- Seed dispersal
- Drought/flood mitigation
- Maintain biodiversity
- Wildlife habitat
- Generate/preserve soils
- Carbon intake
- Control agricultural pests
- Recreational/aesthetics
- Regulate invasives
- Nutrient cycling
- Detoxify waste
- Protect watersheds

(USSDA Forest Service).

Given these benefits, restoring prairies and maintaining native areas should be an important conservation priority. Evaluating the success of a prairie restoration may be more complex than it seems. Most prairie assessments include evaluative measurements using the Florigistic Quality Index, Shannon's and Simpson's Diversity Indexes, frequency of woody cover, closeness to other prairies, and other above ground metrics (James and DeBaker 2007). Should we be concerned with the diversity belowground? Nematodes, the most abundant animal species on earth, have been used as bio-indicators of soil quality (Neher, Todd). To better understand the dynamics of nematode diversity in native and restored prairies we examine the following question: Is there a relationship between age of a restored prairie and belowground nematode diversity?

Objective:

The purpose of this research is to assess the changes in soil nematode communities following an initial effort to restore tallgrass prairies.

Methods:

Four tallgrass prairie sites were chosen in Lancaster County with differing features in ecology and management:
A. Homestead National Monument – the second oldest restored prairie in North America.
B. Spring Creek Prairie – an Audubon site with native, restored, and degraded prairie.
C. Prairie Pines – a privately owned prairie with restored and native prairie.
D. Nine-Mile Prairie – one of the largest remnants of Central Tallgrass Prairie.

Field Sampling:
1. 40x40m grids were established within the prairie using hand held GPS devices.
2. Soil was sampled using a Oakfield tube corer, extracting a 20cm deep core every 10 steps across the grid until 500cc of soil was obtained (Neher 2001).
3. Cores were mixed in a bucket, placed in plastic sampling bags, and stored in a cold room until analysis.

Lab Analysis:
1. Nematodes were isolated from the soil using a modified flotation, sieving, and centrifugation method (Jenkins 1964).
2. Total nematode numbers and number of nematodes in the plant parasitic family Criconematidae were counted using a dissecting stereo-microscope.
3. Nematodes were identified morphologically and molecularly.
4. The Criconematidae were subjected to a high–resolution DNA barcode sequence analysis to determine the number of nematode lineages and haplotypes (genotypes) (Powers et al. 2014).
5. Haplotype diversity is calculated using the following formula:

\[\frac{(N-1)}{2} = \frac{H}{1 - \frac{1}{N}} = H \]

\[\text{Haplotype Diversity Avg.} \]

Results:

When comparing total averages for nematode haplotype diversity between restored and native sites, there is a higher average diversity seen in native sites, with error bars overlapping to a small degree.

Discussion/Conclusions

This study presents evidence that there is a relationship between nematode diversity and the age of a restored prairie. As shown in Figure 2, there is a positive trend of haplotype diversity of criconematid nematodes and increasing age of the prairie restoration. Figure 1 indicated that on an average native prairies have more nematode diversity than restored prairies. Age of restoration, however, may not be the only factor influencing nematode diversity. Figure 5 suggests that plant diversity may also correlate with nematode haplotype diversity. What is clear in this study is that restorations less than 10 years old and prairies converted to agricultural ecosystems have no diversity and generally no criconematid nematodes.

Not examined in this study was the role of proximity to a native prairie source in restoration success. All of these prairies except Homestead National Monument had restored prairies adjacent to native sites. However, Homestead prairie included soil from native prairie in their restoration; a factor that most likely enhances nematode diversity. More research is necessary to disentangle all the interacting factors that influence belowground nematode diversity in prairie restorations.

References

Acknowledgements:

The authors acknowledge the support of the National Park Service and the City of Lincoln for providing the study area and financial support.

Averaged Haplotype Diversity Restored VS Native

Haplotype Diversity With Increasing Age of Prairie

Haplotype Diversity Between Restored Prairie Sites

Discussion/Conclusions

This study presents evidence that there is a relationship between nematode diversity and the age of a restored prairie. As shown in Figure 2, there is a positive trend of haplotype diversity of criconematid nematodes and increasing age of the prairie restoration. Figure 1 indicated that on an average native prairies have more nematode diversity than restored prairies. Age of restoration, however, may not be the only factor influencing nematode diversity. Figure 5 suggests that plant diversity may also correlate with nematode haplotype diversity. What is clear in this study is that restorations less than 10 years old and prairies converted to agricultural ecosystems have no diversity and generally no criconematid nematodes.

Not examined in this study was the role of proximity to a native prairie source in restoration success. All of these prairies except Homestead National Monument had restored prairies adjacent to native sites. However, Homestead prairie included soil from native prairie in their restoration; a factor that most likely enhances nematode diversity. More research is necessary to disentangle all the interacting factors that influence belowground nematode diversity in prairie restorations.

References

Acknowledgements: