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A cross-section potential which models the interaction of two planar objects of prescribed shape 
is developed and used to model the interactions of amphiphiles in vertical phases of Langmuir 
monolayers. The results of Monte Carlo simulations of an isobaric-isothermal ensemble show 
qualitative agreement with experiment. The model system undergoes a continuous, 
bound-to-free rotator transition between phases of the same symmetries as the solid (S) and 
super liquid (LS) phases exhibited by fatty acid films. 

I. INTRODUCTION 

Phase transitions in Langmuir monolayers, films 
formed by spreading molecules with both hydrophilic and 
hydrophobic regions on an aqueous surface, are relevant to 
research ranging from molecular switches exploitable for 
nanotechnology to lipid membranes fundamental for sus- 
taining life.’ The current status of the subject has been 
reviewed elsewhere.” The component molecules of such a 
film, commonly referred to as amphiphiles, may ,be ordered 
conformationally, orientationally, and translationally by 
applying a surface pressure rr at a sufficiently low temper- 
ature T. Although much detail concerning these systems’ 
V, T phase diagrams has now been determined experimen- 
tally,“6 the mechanisms of the various phase transitions 
examined remain unclear due, in part, to a lack of success- 
ful simple models. This paper presents a simple model for 
the transition between two of the untilted phases. 

The preponderance of experimental, theoretical, and 
computational work published on Langmuir monolayers 
has been performed on amphiphiles composed of fatty ac- 
ids or their derivatives. Langmuir originally proposed that 
the intermolecular packing of these monolayers is deter- 
mined primarily by the hydrophobic tails of the am- 
phiphiles.’ Lundquist’ showed that monolayer solid phases 
form by employing arguments based upon the chirality of 
amphiphiles with structures similar to those of fatty acids. 
Recently, Eckhardt et al. utilized chirality arguments’ in 
interpreting results of experiments performed on films 
composed of chiral rigidified amphiphiles with chemical 
structures radically different from that of fatty acids. 
Atomic force microscopy images of transferred films con- 
firm that the chirality of the amphiphile significantly con- 
strains the possible symmetries of the resulting lattice. 

These results indicate that the intermolecular packing 
exhibited by such tilms is dictated primarily by the cross 

‘)Author to whom correspondence should be addressed. 

section of the constituent amphiphile. For amphiphiles 
with a regular shape, this model gives a first-order indica- 
tor of the expected film packing. The resulting two- 
dimensional space groups of several systems have been ex- 
plained utilizing simple geometric arguments, coupled with 
straightforward atom-atom potential calculations, that as- 
sume a rigid, vertical molecule.lO~” These assumptions are 
reasonable for condensed phases at sufficient pressure. If 
one additionally constrains the head groups of such a film 
to a plane, it is clear that any planar slice parallel to the 
film plane contains uniform cross sections. This will not be 
true if the molecular conformation or tilt is not constant 
for the phase under consideration. This paper investigates 
these arguments by creating a particularly simple model. If 
the cross section of the amphiphile indeed determines 
packing, a two-dimensional simulation of particles with 
appropriate cross section should give results analogous to 
those found for Langmuir monolayers. 

Though there has been some discussion of the charac- 
ter and universality of fatty acid monolayer phases,4712 the 
untilted phases, which have the long axis of the am- 
phiphiles parallel to the film normal, are consistently ob- 
served.6*13714 These high-pressure phases are often referred 
to as the super liquid (LS), solid (S), and crystalline solid 
(CS) phases.15 They are analogous to several of the phases 
found in three-dimensional parathn crystals.‘“‘* The LS 
phase has hexagonal symmetry and liquid-like viscosity. It 
is analogous to the free rotator phase (rotator II) that 
exists at higher temperatures in paratlins of sufficient 
length. The S and CS phases both pack in a centered rect- 
angular net, but the S phase has more orientational disor- 
der and slightly different intermolecular spacings. Its aver- 
age structure, also centered rectangular, is analogous to 
that of the rotator I phase in paraffin crystals in which 
molecular rotations are restricted. It is the S to LS transi- 
tion that is modeled here. 

An early two-dimensional molecular dynamics simula- 
tion applied to fatty acid monolayers was carried out by 
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Cotterill.’ His model was composed of diatomic molecules 
and exhibited an order-disorder phase transition. Tox- 
vaerd” derived an equation of state for a two-dimensional 
fluid, but was limited in the evaluation of his results by the 
lack of experimental data at the time. A simple model that 
has recently received considerable attention is the system 
of rigid rods2’ It has had considerable success, but it does 
not reproduce all of the features of the observed phase 
diagrams. Specifically, it does not give transitions between 
different untilted phases because of the assumption of a 
circular cross section for the rods. 

It is now almost routine to allow for all intra- and 
intermolecular degrees of freedom and to have the atoms 
interact through realistic and complex potential energy 
functions.22 However, we agree with the observation of 
Knobler and Desai4 that “theoretical progress will be 
linked more likely to simulations on model systems that 
are made progressively more complex as the results of sim- 
pler models are analyzed and understood theoretically.” In 
the spirit of this, we consider the following simple model: 

N two-dimensional objects, or molecules, are allowed 
to rotate and translate freely in a plane under the influence 
of an anisotropic pair potential and an applied external 
pressure. The pair potential is chosen to approximate the 
interaction of two rigid objects with the cross section of an 
amphiphile molecule projected onto the plane of the film. 
We assume that the forces holding the amphiphiles parallel 
to the film normal effectively constrain each molecule to 
rotate as a rigid object. The translational freedom allows 
the system to take on different space group symmetries. At 
low temperatures, one expects such objects to be locked 
into a structure that is determined by the anisotropy of 
their profiles, while at temperatures for which kT is greater 
than the energy needed to rotate an object, one expects the 
objects to rotate freely and the system to take on the close- 
packed hexagonal structure. These expectations are borne 
out by our simulations. 

A Monte Carlo simulation of the isobaric-isothermal 
ensemble was used to investigate the implications of the 
model. Evidence was found for a continuous phase transi- 
tion from a lower temperature, centered rectangular struc- 
ture to a higher temperature, hexagonal structure. The ori- 
entations of the objects were found to be correlated in the 
lower temperature phase, but not in the higher temperature 
one. Shih et al. have used synchrotron x-ray methods to 
study several films along isobars that intersect the three 
high pressure phases. 13P14 The results of the simulations are 
in qualitative agreement with this high quality data. 

II. CROSSSECTION POTENTIAL MODEL 

Our hypothesis is that the cause of phase transitions 
between different untilted phases in Langmuir monolayers 
is the anisotropy of the cross sections of the molecules. To 
model this, we consider a collection of N two-dimensional 
anisotropic objects that are free to rotate and translate in a 
two-dimensional region which can vary in size and shape. 
The profile of the objects is chosen to approximate the 
cross section of an amphiphile molecule. An excluded vol- 
ume plot of a paraffin molecule projected onto the plane 
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FIG. 1. A fatty acid cross section surrounded by an idealized perimeter 
representing the equation p(y) =po[l +a cos(4r)], where a= l/30. 

perpendicular to its long axis is shown in Fig. 1. The pro- 
jection has the shape of a rounded rectangle. Since the 
length is only slightly different from the width, and since 
the emphasis here is on simplicity, objects with fourfold 
symmetry were considered. Extension to other cross- 
sectional shapes is, however, straightforward. 

The profile of a plane figure can be specified by a func- 
tion p(y) that gives the dependence of p, the radial dis- 
tance from the center, on y, the angle from the direction of 
the x axis. If the profile is close to circular, it is convenient 
to let 

p(Y)=po[1+w(y)l9 (1) 
where p. is the nominal radius of the object and where a 
and g(y) determine the magnitude and the type of the 
deviation from a circle, respectively. The profile given by 
the solid line in Fig. 1 was obtained with a = l/30 and 

g(y) =cos 4Y, 

which has fourfold symmetry. 

(2) 

Figure 2 shows the profiles of two molecules with the 
squarish shape described by Eqs. ( 1) and (2) and a= l/ 
30. The perimeters of the molecules are in contact in Fig. 2, 
and the point of contact between them is on the straight 
line between their centers. This will not, in general, be the 
case. However, the displacement of the point of contact 
from the line between the centers will in general be small if 
a is small. For efficiency, the potential is evaluated in the 
limit where intermolecular contact is on the line between 
molecular centers. This limits the amount of anisotropy 
that can effectively be modeled, since highly anisotropic 
molecules will often collide in a nonlinear arrangement of 
the contact point and molecular centers. Further iterations 
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FIG. 2. Model system coordmates. 

to account for such a nonlinear arrangement are possible, 
but were not performed to be consistent with the extreme 
simplicity of the model. 

The angles di and +i in Fig. 2 give the orientation of 
reference directions fkd in each of the molecules relative 
to a direction iixed in space, namely, the direction of the x 
axis. yi and yj are the angles between these reference di- 
rections and a line drawn to the point of contact. The angle 
bij g&s the orientation of the vector between the centers 
of molecules i and j and is defined by 

COS #ij=rij l ii?/rij 3 (3) 

where rij = ri- rf . Here, ‘ii is the magnitude of rij , and f 
is a unit vector m  the x direction. It follows that ~ji=~ 
++ij, and from the figure, it may be seen that 

#i+Yi+#ij=2r and 4j+3/j+#ji=2r* (4) 
By using the fact that angles are only significant up to an 
additive constant of 2rr times an integer, these relations can 
be rearranged as 

Yi=+ij-di and Yj=+ji-#js (5) 
which, with Eq. (3)) gives the dependence of the angles yi 
and yj on the canonical variables, which are Xi, Yi, and 6i, 
whereri=(xi,ui) and i=1,2 ,..., N. 

A modified Lennard-Jones potential is used. The 
method used to incorporate anisotropy is similar to, but 
simpler than, the method used by Kihara.23 The Lennard- 
Jones pair potential has the form 

4(r) =$-; 9 (6) 

where A and B are constants. We take r to be the distance 
between the centers of the molecules and associate the 
touching of the perimeters with the separation r = rpm that 
m inimizes the potential. It follows from Eq. (6) that the 
potential m inimum (pm) separation is 

rpm= (2A/B)1’6. (7) 

The radii of the two molecules are assumed to be additive 

r,,=p(Yi) +p(Yj) (8) 

and the attractive - B/r6 term is assumed isotropic, so 
that all of the anisotropy appears in the repulsive A/r12 
term. These ideas are implemented by setting 
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A=(2po)6[p(Yi)+P(*/i)16E and B=2(2pd6~. (9) 
Substituting these into Eq. (6) gives an intermolecular po- 
tential that depends on the relative positions of the centers 
of the molecules and on their orientations 

4( rij,yi,yj) =E 2po I2 P(yigop(*/I) I( H rij ]6-2(?$]. 

(10) 
By using Eqs. ( 1) and (2) for p(y), expanding in 

powers of a, neglecting higher order terms, and using IQ. 
(5) terms, one obtains 

where 4ij = T+ #ii is defined by Eel. (3 ) . This is the cross- 
section potential that was used. It was smoothly truncated 
to zero at 1 rijl=2.245pc. The interpretation of 
+(rij, #ij+i,#j) in terms of the touching of the perimeters 
of rigid objects is only accurate when a is small. However, 
even when a is not small, Eq. ( 11) gives an anisotropic 
pair potential that can be used for studying the behavior of 
the untilted phases of monolayers. The value of a can be 
varied to investigate different experimental situations with 
larger values of a corresponding to greater anisotropy. 
When a = 0, there is no angular anisotropy and the poten- 
tial reduces to the Lennard-Jones form. If a= l/6, the 
repulsive term vanishes when 4ij - 4i = 4ji - 4j = r/4, SO 

that the potential has become unphysical. 
Figure 3 shows the potential #(rij,$ij,+i,4j) as a 

function of rij and the angle (pi when 4j is set to z-/4 and 
the direction of rij is parallel to the x axis SO that 4ij=O. 
The first cosine term in Fq. ( 11) is then replaced by 
cos 4( -4;) and the second cosine term is replaced by - 1. 
For this direction of rij, the global m inima of the potential 
occur when 4i, 4j=T/4, 3~/4, k/4, and 7~/4. The en- 
ergy difference between these m inima and the intervening 
saddle points is A4=7.5ae. 

The potential energy function used in the Monte Carlo 
simulation was 

where the sum is over all pairs and the potential is given by 
Eq. ( 11). rr is the external surface pressure and A,B, is the 
area to which the N molecules are conflned. By adding the 
kinetic energy to E, one obtains the m icroscopic enthalpy. 
Canonical averages based on the isobaric-isothermal en- 
semble24f25 were approximated by using the Metropolis al- 
gorithm and by dete rmining the energy difference in the 
Boltxnnum’s factor exp( -AE/kT) with the above expres- 
sion for E. 

As diagrammed in Fig. 4(b) the direction of A was 
chosen as the direction of the x axis, so that A, and B, are 
the x and y dimensions of the parallelogram within which 
the molecules were confined. Periodic boundary conditions 

J. Chem. Phys., Vol. 99, No. 10, 15 November 1993 

Downloaded 12 Apr 2007 to 129.93.16.206. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



a 

b 

FIG. 3. (a) Reduced potential mergy surface plotted as a function of rij 
and +i. +,=TT/~ and I$~~=O. The hard core of the potential is cropped for 
clarity. (b) A contour plot of the potential energy surface. The contour 
lines along the hard core resemble the shapes drawn in Figs. 1 and 2. 

were used, so that the point r and the points r f AA B are 
equivalent. Energy changes AE were calculated for ran- 
dom changes of the 3 N canonical variables Xi, yi, and 4i 
and for random changes of A,, B,, and B,. 

III. CALCULATIONS AND RESULTS 

Figure 4(a) is a typical snapshot of the system at high 
temperature and shows molecules to be oriented randomly 
in a hexagonal arrangement. Figure 4(b) is a snapshot at 
low temperature where the molecules are all oriented in 
approximately the same direction and the structure is cen- 
tered rectangular. 

The principal canonical averages calculated were the 
ratio (b/a) of the nearest to the next-nearest neighbor 
distances and its variance ([ ( b/a) - ( b/a)12). Distances a 
and & are indicated in Fig. 4(b). In the hexagonal struc- 
ture, b/a=v‘X The lattice was found to always have one 
molecule per unit cell. For an array of N* molecules in the 
A direction by NB molecules in the B direction, one has 
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a 

b 

T . 0 . . 
b l . 

/ 

. C 

FIG. 4. (a) A snapshot of the high temperature (T=0.200) phase. (b) 
A snapshot of the low temperature ( T=O.OOl ) phase. A and B indicate 
vectors used to generate the periodic space. (c) A diagram illustrating b 
and u, which for the systems studied, correspond to next-nearest and 
nearest neighbor distances, respectively. Average primitive lattice vectors, 
shown as bold arrows, may be derived directly from the periodic space 
vectors A and B. 

a= Ax/N* and b=2B,JN, [see Fig. 4(c)]. The variance 
is a generalized susceptibility. We also calculated the 
constant-pressure specific heat 

c,=([E-(E)12)/(NkT2)+qk, (13) 

where the second term contains momentum contributions. 
To test the hypothesis that the molecules are free to 

rotate in the higher, but not in the lower temperature 
phase, we calculated the angular correlation coefficients 
deiined by 

Cg=$ C (WS 4(4ie4j))9 (14) 
B 8 

where the number 4 is included to account for the fourfold 
symmetry of the molecules. The sum in JZq. ( 14) is over all 
pairs of molecules i andj within a particular group and N, 
is the number of pairs in the group. Two groups were 
considered. The first group with g= 1 contains all pairs 
such that 1.78pO< rij<2.85po. In the hexagonal phase, 
these are the nearest neighbor pairs. The second group 
with g=2 contains all pairs such that 2.85~0 < rij<4.63po. 
In the hexagonal phase, these are the next-nearest neighbor 
pairs. No pairs were found in the immediate vicinity of 
1.78, 2.85, or 4.63~~. When the orientations of the mole- 
cules are ordered [Fig. 4(b)] the angles di are all approx- 
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b 

FIG. 5. (a) Siulated values of (b/u) and its variance as a function of 
reduced temperature. (b) Experimental values of b/a as a function of 
temperature from Shim er al. (Ref. 13). 

imately the same, SO that #i-#jzO and Cg=: 1. When the 
orientations are random Fig. 4(a)], the angles (pi and the 
differences 4i-4j take on all V&.KJS between 0 and 27r and 
cgzo. 

The results given in Figs. 5, 6, and 7 are for a= l/30, 
rr=O, and N= 100. Other values of a and r were invcsti- 
gated, but no qualitatively different behavior was found. 
The transition temperature increases only slightly when 
either a or w is increased. This is consistent with the sim- 

4.0 

a 3.5 
5 
8 3.0 

Zk2.5 

* 

2.0 

1.5 
J 

1.01,. I’ I ‘, I 
0 20 40 60 80 100 120 140 160 

Reduced Temperature X 1000 

FIG. 6. Simulated values of c, as a function of reduced temperature 
(momentum contributions subtracted). 

a 3 

0.0 1 
na=OOOO 

AAAAC.. r& 
L 4 

0 50 100 150 200 
Reduced Temperature X 1000 

!n ! ! 
1’:’ I / 
j 25i 

FXG. 7. Correlation measure Cr as a function of reduced temperature for 
two groups of neighbors. The first group, which is the nearest neighbors 
for the hexagonal phase, includes all molecules found between 1 .O and 1.6 
molecular diameters. The second group, which is the next nearest ncigh- 
bon for the hexagonal phase, includes all molecules found between 1.7 
and 2.6 molecular diameters. These groups contain the same molecules 
throughout the temperature range plotted. 

plitication that evaluates anisotropy only along the line 
between molecule centers. The initial b/a value decreases 
with increasing a, but increases slightly with increasing r. 
This m irrors the fact that the potential is more anisotropic 
near the m inima than in the hard core region. Each data 
point represents an average over at least 10’ attempted 
moves per particle. After every N attempted particle 
moves, one boundary move was attempted. The estimated 
statistical error in the data points is less than the size of the 
symbols used to plot them in the figures. 

To verify that the model phase transition was not dic- 
tated by the periodic boundaries used, N was varied from 
64 to 400 and no significant differences were found. Fur- 
thermore, an attempted boundary move consists of making 
random changes in A,, B,, and B, and resealing the po- 
sitions of the centers of all the molecules without rotating 
them. This ensures that rectangular symmetry is not pre- 
determined by the periodic space. 

For comparison, the experimental results of Shih 
et al. l3 for the ratio (b/u) are plotted in Fig. 5 (b). Though 
this simple model does not scale to experimental values, 
the qualitative shape of this curve is obtained. 

IV. DISCUSSION AND CONCLUSIONS 

The qualitative agreement between the experimental 
and Monte Carlo results in Fig. 5 suggests that the essen- 
tial mechanism causing the transition between the S and 
LS untilted phases in Langmuir monolayers is the aniso- 
tropy of the cross sections of the molecules. The simulation 
also suggests that the phase transitions are probably con- 
tinuous, although the detailed study of size dependence 
needed to verify this has not been carried out. Neverthe- 
less, no hysteresis was observed at the transition and both 
the variance and the specific heat diverge in the character- 
istic way. 

The results for the correlation coefficients Cg in Fig. 7 
indicate that the orientations of the molecules are strongly 
correlated in the low temperature phase and rapidly be- 

J. Chem. Phys., Vol. 99, No. 10, 15 November 1993 
Downloaded 12 Apr 2007 to 129.93.16.206. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Swanson, Hardy, and Eckhardt: Phase transition of Langmuir monolayers 8199 

come uncorrelated as the temperature increases through 
the phase transition. Also, the correlations drop faster for 
next-nearest neighbors (triangles) than for nearest neigh- 
bors (squares). The value of kT at which the orientations 
become essentially random is of the same order as the en- 
ergy difference A+ between the m inima of the potential and 
the saddle points between them; for the case considered, 
kT=O.O9e and A4=0.036. 

The specific heat data in Fig. 6 tend to the equiparti- 
tion value of (4) k as T goes to zero. This is expected since 
each molecule has two translational and one rotational de- 
gree of freedom and, at sufficiently low temperatures, one 
expects the forces to be approximately harmonic. 

The model gives a simple picture of the S to LS tran- 
sition in fatty acid monolayers that is consistent with ex- 
perimental results. At low temperatures, the anisotropy in 
the intermolecular potential prevents the molecules from 
rotating. As the temperature is increased, this constraint 
on molecular rotations becomes weaker until, at the phase 
transition, the molecules become effectively isotropic and 
pack in the hexagonal structure. 

The quantitative discrepancy between experiment and 
simulation is not surprising considering the extreme sim- 
plicity of the model. The fact that the model system tran- 
sition begins at lower temperature than the experimental 
transition is consistent with the approximation of nearly 
circular objects. Increasing a does increase the anisotropy 
in the potential, but this anisotropy is evaluated only along 
a line between centers for efficiency and simplicity. This 
lim its the barrier to rotation, as evidenced by the imrnedi- 
ate decrease in Cs in Fig. 7. Further quantitative improve- 
ment may be achieved by extension from planar cross sec- 
tions to cylindrical shapes of appropriate cross section. 
Nevertheless, the success of this model argues for the 
premise of Langmuir that monolayer packings are deter- 
m ined predominantly by the cross section of the compo- 
nent amphiphiles and offers a simple model for under- 
standing the S and LS phases and the transition between 
them. 
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