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Computed cross sections for electron transfer in Ba* +Ba™ collisions

Stanley J. Sramek and J. H. Macek
Department of Physics, University of Nebraska, Lincoln, Nebraska 68588

G. A. Gallup
Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588
(Received 15 November 1979)

Cross sections have been computed for the electron-transfer process Ba* + Ba*—Ba + Ba**, for collision
energies ranging from 25 to 500 keV. The straight-line classical-trajectory method has been used, with basis
functions obtained by the multiconfiguration valence-bond method. Several numerical procedures applicable
to future treatments of similar large systems were developed. The maximum cross-section value is found to
be around 27w a2 (2.4 X 10~'* cm?), and occurs near collision energy 500 keV. The system’s transient
behavior has also been studied in detail during the collision, and it has been found that most electron-
transfer events involve migration of the electron across internuclear distances considerably larger than the

ionic diameter.

I. INTRODUCTION
A. Purpose of calculation

The heavy-ion heating approach to inertial con-
finement fusion! requires that intense ion beams
be electromagnetically manipulated over signif-
icant times and distances. In particular, some
HIF schemes envision ring storage of these beams
for considerable time intervals prior to their
delivery onto a fusion pellet. Charge-changing
collisions occurring in the stored beam will cause
ion loss from it, and will seriously limit its use-
ful lifetime if the cross sections are too large.

Electron transfer is expected to be one of the
most important charge-changing results of heavy-
ion collisions at energies of hundreds of keV, the
range relevant to the fusion program. Very little
theoretical or experimental work has been done
concerning electron-transfer collisions at these
energies between ions carrying large numbers
of electrons, although knowledge of the cross sec-
tions is essential to the further development of
the HIF concept.
~ We have therefore computed cross sections for

the electron-transfer process Ba® + Ba'~Ba+Ba™’,
for collision energies ranging from 25 to 500 keV.
Our purpose was to obtain reliable cross sections
based on accepted state-of-the-art ab initio theory,
and to gain a qualitative understanding of the phy-
sical processes occurring during the collisions. We
chose the Ba®+ Ba* system because each ion has
an unpaired loosely-bound outer electron; we ex-
pect that these electrons will participate in charge-
changing events so readily that this system should
represent very nearly a worst possible case for
applicability to the fusion program.

B. Basic formalism

We have treated the Ba*+ Ba* collision using the
straight-line classical-trajectory method.? As
basis states, we used molecular eigenstates ob-
tained by the multiconfiguration valence-bond
(MCVB) method.>»* To the best of our knowledge,
our calculation is the first treatment, at this level
of sophistication, of collisional electron transfer
between such heavy ions.

The first step in our treatment, then, is to ob-
tain a set of energies and eigenfunctions for the
molecular system Ba,*’, as functions of the dis-
tance between the two Ba nuclei. That is, we must
obtain approximate solutions to the eigenvalue
problem

AR, (R)=E, (R, (R) , )

where R is the internuclear separation, and the
Hamiltonian A(R) includes the electron kinetic
energies and all electron-electron, electron-:
nucleus, and nucleus-nucleus Coulomb interac-
tions. (Throughout this paper we use notations

of the forms 6, o, O,,., respectively, for opera-
tors, matrices representing operators, and in-
dividual matrix elements of operators.) Relativ-
istic effects are not included. All electron coor-
dinates are treated quantum mechanically, but
the nuclear coordinates are treated as fixed para-
meters of I?(R). In solving Eq. (1), we use a
space-fixed coordinate system with origin at the
center of mass of the two nuclei. We compute
solutions assuming that the two nuclei are located
on this system’s z axis. For homonuclear prob-
lems the two nuclei are thus located at positions
z=+3R. The internuclear separation is written
as a scalar R rather than as a vector R in Eq. (1)
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because of this assumed restriction on the nuclear
positions. The Hamiltonian H(R) and the wave
functions ¥,(R), of course, also depend on all of
the electron cordinates, but our notation suppres-
ses this dependence. The subscript u represents
all symmetry indices and principle quantum num-
bers necessary to characterize the eigenfunction
Yu(B).

The functions ¥,(R) are then used as basis func-
tions in solving the tlme-dependent Schrodmger
equation.

AR) ¥R, )= isr \I'(R t). )

The equation is wrltten in atomic units, which
are used throughout this paper unless otherwise
specified. The internuclear separation is now a
time-dependent vector,
R= b+Vt ,

where v is the relative velocity of the two nuclei
and b is a vector perpendicular to v whose mag-
nitude b is called the émpact parameter. We use
the previously defined space-fixed coordinate
system, with origin at the center of mass of the
two nuclei. The vectors v and b are chosen to
pointinthe+z and — x directions, respectively.
The Hamiltonian ﬁ(R) is now tlme dependent,
because the electron-nucleus and nucleus-nucleus
Coulomb interactions depend on R.

The wavefunction is written as an expansion,

Y(R, t)= ; c, ) @,(R,?), ®3)

where the c,(¢) are unknown coefficients. The
basis functlons tir,,(R t) are obtained from the
molecular eigenfunctions ¥, (R) by a simple time-
dependent rotation and by multiplication by a trans-
lation factor,

&, (R, )= exp[-ia, ()] TR, )
x {exp[-i6(t) 3,19, (R)} @)

where ..7, is the y component of the total electronic
orbital angular momentum, and 6(f) is the angle
between the z axis and the internuclear axis R.
The function exp(- i6 f,) ¥,, produced by a simple
rotation operation, is, of course, aneigenfunction of
amolecule whose internuclear axislies at an angle 6
withrespect to the z axis, rather than along the z axis.
This use of rotating basis functions incorporates
into our calculation the rotation of the internuclear
axis through 7 radians s during the collision.® We
refer to ¥, (R) and <I>,,(R t) as nonrotated and rot-
ated functions, respectively, although the trans-
formation of Eq. (4) involves more than just a ro-
tation. The translation factor 'r(R t) assures that,
in the £ -+ limits, the uniform motion through
space of the electronic cloud around each nucleus

is properly represented by the wavefunction.®

Our notatlon suppresses the dependence of ‘r(R t)
and & (R t) on the electron coordinates. The
phases a, (¢) are chosen for convenience:

o, (t)= f ‘E,R) at’

where
R'=|R'|=|wt'+D] .
By substituting the expansion (3) into Eq. (2),
and projecting onto <@, |, the usual dynamical

equations for the unknown coefficients are obtain-
ed:

i GE= 3 M, &0 00, )
where
M, (R, t)= (@ (R, t),(B(R)-z ) 3, (R, t)>
(6)

The cross section for collisional transition from
the system’s initial eigenstate to molecular eigen-
state u is then, in units of na?,

o,,(u)=z'[ bP,@,b)db,

P,(@v,b)=lim [c,(®)[?.
o+

Throughout this paper our notation for transition
probabilities and cross sections includes no sub-
script designating the initial state, because the
system’s ground state is always taken as the inti-
tial state. The subscript p always designates the
final state,

This short review of the straight-line classical-
trajectory method shows that our calculation div-
ides naturally into three major computational
steps. First, the molecular eigenstates and en-
ergies ¥,(R), E (R) must be obtained by computing
solutions to Eq. (1) as functions of R, using some
appropriate method from molecular quantum
mechanics. Second, these eigenstates and ener-
gies must be used to compute and tabulate num-
erical values for the functions M, (R, ¢) [Eq. (6)].
Third, the set of coupled differential equations
(5) must be repeatedly integrated numerically,
using the tabulated M, (R t) as coupling-matrix
elements, to obtain the transition probabilities
P, (v, b) as functions of the relative nuclear speed
and the impact parameter. Each of these three
steps is described in greater detail in Secs. II,
I, and IV. Within each section the theory, num-
erical methods, and results of one step are des-
cribed in separate subsections.

Our use of the straight-line classical-trajectory
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description of the nuclear motion is easily justif-
ied. For example, at a collision energy of 200
keV the deBroglie wavelength associated with the
nuclear motion of two Ba® ions is only 0.00015a,,
so that the wave packet for the nuclear motion
can be regarded as sharply localized and following
a classical trajectory. The angular deflection of
this classical motion due to the overall Coulomb
repulsion between the ions only 0.000 07 radians
for an impact parameter of 2a,, so that a straight-
line trajectory is an excellent approximation.
There are two advantages gained by using mole-
cular eigenstates rather than atomic eigenstates
in this problem. First, the use of molecular ei-
genstates allows us to gain greater understanding
of the physical processes occurring during the
collision that lead to electron-transfer transitions.
Second, the use of molecular eigenstates generally
reduces the size of the set of coupled differential
equations (5), because the expansion (3) need only
include a few of the lowest-lying eigenstates.

II. MOLECULAR EIGENSTATES
A. Theory

To obtain the molecular eigenstates and energies
¥.(R), E,(R), we have used a specialized form of
the MCVB procedure, which we call the interpo-
lated Hamiltonian multiconfiguration valence-bond
(IHMCVB) method. This method consists of five
steps.

Flrst, a set of one-electron basis functions
{u;(r, R)} is chosen; T is the position of one elec-
tron. These functions, called atomic orbitals
(AO’s) are atom centered and, as R varies, move
rigidly with one nucleus or the other without
distortion.

Second, a set of multielectron basis functions
{¢.(R)} is constructed from the AO’s. These
functions, called tableau symmetry functions
(TSF’s) are constructed so that each has a de-
finite exchange symmetry, spin multiplicity, and
spatial symmetry.® Molecular eigenstates of a
definite symmetry are obtained by using only
those TSF’s of that same symmetry.

Third, for each desired symmetry, the TSF’s
are used to compute a Hamiltonian matrix H(R)
and an overlap matrix S(R):

H,(R)= (¢,®) |AR) | ¢, ®)) ,
Spm(B)= (ba(R) [pm(R)) .

The overlap matrix is not diagonal because the
AO’s (and therefore the TSF’s) are not orthogonal.
Because a large number of two-electron integrals
must be computed and manipulated, the numerical
computation of H(R) and S(R) for a system as large

as Baz“ consumes a large amount of computer
time. Therefore, H(R)and S(R) are computed for
a fairly small set of R values, called the coarse
grid.

Fourth, a suitable interpolation scheme is de-
vised, so that the H(R) and S(R) values computed
on the coarse grid can be used to estimate H(R)
and S(R) values accurately for intermediate R
values. As explained below in Sec. IIIC, the
piecewise analytic functions used in this interpo-
lation must have continuous first and second deri-
vatives across the boundaries defined by the
coarse grid.

Fifth, the interpolated H(R) and S(R) matrices
are used to solve the matrix eigenvalue problem

H(R) a,(R)=E,(R) S(R) a,(R) . M

Solutions are computed for many more R values
than are included in the coarse grid; this larger
set of R values is called the fine grid. a,(R) is a
column matrix whose elements, denoted a,,(R),
define the molecular eigenstate

DuB)=Y 0, (R) 6,(R) . ®)

For our treatment of the Ba,” system, we chose
a set of AO’ s consisting of 70 Gaussian-type or-
bitals (GTO’s), 35 centered at each nucleus.
Each GTO consists of a linear combination of the
form

u,(?,R)=N}k: by 84(@py, T,R)

where N is a normalizing factor and g; is a Gaus-
sian-lobe function’ centered at one nucleus or the
other. At each nuclear center, we used a (7s,

6p, 2d) set of AO’ s. Our values for a,; and by,
are listed in Table I.

We constructed TSF’ s for the Ba,"* system
according to the usual MCVB procedure.® The
AO’s {u,} were first transformed to a new set
{w;]}. At each nuclear center, the {w} were div-
ided into a (5s, 4p,2d) subset called core orbitals,
and a (2s, 2p) subset called valence orbitals. The
core orbitals were obtained as linear combina-
tions of the {u,} using the Roothaan SCF procedure’
The valence orbitals were obtained by selecting
the most spatially diffuse (2s, 2p) subset of {u,}
and orthogonalizing it to the core orbitals, as
prescribed by the MCVB procedure.

The procedure used in constructing the TSF’s
from the {w;} has been adequately described else-
where.® Briefly, each TSF is a linear combination
of products of Slater determinants formed from
selected subsets of {w,}. The manner of selecting
orbitals and forming the linear combinations as-
sures that each TSF has the desired molecular
symmetry, that the core orbitals are always
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TABLE I. The scaling factors oy and coefficients by
used in constructing each AO «;(r,R). For each AO
symmetry, the a values are listed in the first row of
numbers and the b values are listed in the second row.

Scaling factors o

AO Symmetry Coefficients b
1s 2273.6181  404.7034
0.4301 0.6789
2s 144.9256 36.7570
0.1048 1.0260
3s 90.9366 7.9295
-0.1530 1.0514
4s 10.5220 1.7455
-0.3046 1.1469
5s 1.0588 0.2735
-0.5117 1.3075
6s 0.0221
1.0000
s 0.0084
1.0000
2p 506.3780 90,1351
0.4301 0.6789
» 52.6800 13.3610
—0.1828 1.0365
49 26.6866 2.3270
—0.1530 1.0514
5 1.6841 0.2794
—0.3046 1.1469
& 0.2018
1.0000
/4 0.0521
1.0000
3d 148.0645 26.3554 12.0152
0.4301 0.6789 1.4143
4d 3.0474
1.0000

fully occupied, and that each TSF is either a
charge-equal function or an electron-transfer
function. Each Slater determinant in a charge-
equal TSF is formed with equal numbers of elec-
trons occupying orbitals centered at each nucleus.
Each determinant in an electron-transfer TSF

is formed with unequal numbers of electrons oc-
cupying orbitals centered at each nucleus.

For the Ba,’* system, we constructed 26 TSF’s
of symmetry '3 + and 20 of symmetry %% . These
symmetries are the only ones that permit both Ba*
ions to be in their ground states as R -, If the
colliding ions are assumed to be in their ground
states initially, and if the collisional couplings
M, (R, t) are weak between states of unlike sym-

metry, then only these two symmetries must be
included in the collision dynamics computations.

The matrices H(R) and S(R) were computed on
the coarse grid using the method and programs of
Gallup,* which are designed specifically for use
with nonorthogonal TSF’s. The choice of coarse
grid R values, the interpolation method used to
estimate H(R) and S(R) values on the fine grid,
and the choice of fine grid R values are discussed
in Sec. IIB.

The use of interpolated H(R) and S(R) matrices
is an important numerical technique applicable to
future treatments of molecular systems similar
in size to Ba,**. Some previous workers® have also
used interpolated Hamiltonians in molecular cal-
culations. The use of interpolated matrices is
desirable for the following reason. Rapid vari-
ation of the molecular eigenstates with R, espe-
cially near avoided curve crossings, requires
that eigenstates be obtained on a dense grid of
R values. But the computation of exact values
for H(R) and S(R) on such a dense grid is prohib-
itively expensive for so large a molecule; it is
necessary to obtain approximate values. Because
H(R) and S(R) vary fairly slowly and smoothly with
R, it is convenient to obtain these approximate
values by interpolating exact values computed on
a coarse grid.

B. Numerical methods

The R values included in the coarse grid were
(in atomic units) 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 7.0,
8.0, 9.0, 10.0, 11.0, 11.5, 12.0, 13.0, 14.0, 15.0,
16.0, 17.0, 18.0, 20.0, 22.0, 33.166248, and 50.0.
Values smaller than 3.0 could not be treated be-
cause of numerical difficulties: For smaller dis-
tances the overlap between the most diffuse val-
ence AO’s of like symmetry type but centered on
opposite nuclei became sufficiently close to unity
that the H(R) matrix became nearly singular. The
matrix eigenvalue equation (7) then could not be
solved accurately.

The matrices were interpolated using the fol-
lowing scheme. For R<22.0, each matrix ele-
ment was represented on each coarse grid inter-
val by a fifth-order polynomial. Each polynomial
matched the computed matrix-element values at
the interval’s endpoints, and also matched pre-
assigned values of the element’s first and second

derivatives. These derivative values were assigned,

after considerable numerical experimentation,

by a simple procedure that assured a very smooth
nonoscillatory fit to the computed points. For

R >22.0, several interpolation methods were used,
because different groups of H(R) and S(R) matrix
elements behave in radically different ways in the
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large-R limit. The nonconstant S(R) elements
approach their limiting values so rapidly that,

for any element, the values on the three outer-
most coarse grid points are very nearly equal.
We found through numerical experimentation that
any attempt to interpolate these elements with
continuous second derivatives resulted in un-
acceptable oscillatory behavior. Therefore, we
interpolated these elements with linear polynomials
oninterval [33.166 248, 50.0] and with fourth-order
polynomials on [22.0, 33.166 248]. Use of this
scheme assured continuity of the first derivatives
and freedom from oscillations. The H(R) ele-
ments were divided into two classes. The first
class consisted of all elements in which either
both TSF’s involved were charge-equal functions,
or both were electron-transfer functions. The
second class consisted of all elements in which
one TSF was a charge-equal function and one was
an electron-transfer function. Because matrix
elements of the first class, in the large-R limit,
approach their limiting values as inverse powers
of R, these elements were interpolated using
polynomials in R™!, Because elements of the sec-
ond class approach their limiting values extremely
rapidly, they were interpolated using the method
used for S(R).

We computed solutions to the matrix eigenvalue
problem (7) on fine grids consisting of 119 points
on the interval [5.0,50.0] for the 'Z; symmetry
and 173 points on the interval [3.0,50.0] for the
3z: symmetry. Numerical difficulties prevented
the production of meaningful ‘Z; solutions for
R <5.0. Our eigenvalue program produced ob-
viously spurious solutions to Eq. (7) with energies
comparable to those of the molecular eigenstates
of interest, thus producing spurious avoided curve
crossings. The spacings between points varied
considerably across the entire radial range, but
were typically 2.0 for R >34.0 and 0.1 for R<6.0.
Much smaller spacings were sometimes used near
avoided energy curve crossings.

C. Results of eigenstate calculations

We now present the results of our computations
of the 'T} and °Z; eigenstates and energies of the
Ba,** system.

Figure 1 shows our energy curves for the 'Z;
eigenstates. For this discussion we label the
curves and states wtih positive integers, in en-
ergetic order. Curve 1 represents the state in
which, at infinite R, both Ba* ions are in their
ground states. Curve 2 represents the state in
which, at infinite R, and Ba' ion is in its ground
state and the other ion is excited to its lowest 2P
state. Curve 3 represents the lowest eleCtron-
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FIG. 1. Energy curves for the ‘2; eigenstates-of
Ba,**. The energy of the electron-transfer state, state
3, is almost constant for larger R. The other energies
behave as 1/R. States 4 and 5 are degenerate for larger
R.

transfer state, in which at infinite R the molecular
system resolves itself into a neutral Ba atom and
a Ba** ion, each in their respective ground states.
Curves 4, 5, and 6 represent, at infinite R,
higher excitations of the two Ba* ions. None of
these three curves represents an electron-trans-
fer state.

Figure 2 shows our energy curves for the °Z;
eigenstates. At infinite R, five of the six ener-
gies become equal to five of the six ‘Z:, energies,
and represent physically equivalent states of the
separated Ba' ions. The electron-transfer state,
however, is now represented by curve 6 rather
than by curve 3, because at infinite R the neutral
Ba atom cannot be in its ground state for the.
triplet spin symmetry.

Table II lists our computed energies for in-
finite R, relative to the ground state, and com-
pares them with tabulated experimental ener-
gies.!” Also listed are the spectroscopic desig-
nations of the two separated ion states comprising
each molecular eigenstate. The agreement between
theory and experiment is not particularly good;
the theory tends to underestimate the relative
energies by approximately 20%. Also, the theory
fails to produce the correct ordering of the three

E(au)

4

0.0 '
] R(au) 50

FIG. 2. Energy curves for the 3z} eigenstates of
Ba,**. State 6 is the electron-transfer state. States 3
and 4 are degenerate for larger R.
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TABLE II. Comparison between theoretical and ex-~
perimental energies of Ba,** eigenstates for infinite
internuclear separation.

Level Energies (a.u.)

1z} 3%} Spectroscopic designation Theor. Expt.
6 [6p3P(Ba)][5° 'S(Ba*)] 0.198 0.236

6 5 7s2s(Ba*) [6s2S(Ba*)] 0.164 0.193

5 4 |[6p%P(Ba*)][6p 2P (Bat)] 0.144 0.195

4 3 6p %P (Ba*) [[6p ?P (Ba*) | 0.144 0.195
3 6s’1S(Ba)][5¢1S(Batt)] 0.139 0.176
2 2 [6p%P(Ba*)][6s%S(Ba*)] 0.072  0.098

1 1 [6s2S(Ba*)][6s2S(Ba*)] 0.000  0.000

highest charge-equal levels. The level in which
one Ba' jon is excited to the (7s, 2S) state should
lie slightly below the degenerate levels in which
both ions are excited to the (6p, ?P) state, rather
than above them. Near the end of this section,
we discuss the expected effects of these dis-
crepancies on our computational study of the Ba*
+Ba* collision.

The most important features of our ‘E; curves
are the broad avoided crossing between curves
1 and 2 at R=13.50, and the close avoided crossing
between curves 2 and 3 at R =17.00. We anticipate
that, during the collision, transition rates will be
significant only between these pairs of states, and
only when the internuclear separation passes
through these R values. For impact parameters
b much greater than 13.50, few transitions should
occur. For smaller b values, electron transfer
should occur by the following mechanism. Excita-
tion to level 2 should occur when the approaching
nuclei pass through R =13.50, and again when the
nuclei pass through that separation while receding
from each other. Systems excited to level 2
should then make transitions to level 3 when the
receding nuclei pass through R =17.00. Because
we expect the electron-transfer probability to be
significant for b values as large as 13.50, the
corresponding cross section (in units of ma2) could
be as large as (13.50)% ~180.

The most important features of our 3T} curves
are the absence of any avoided crossing between
curves 1 and 2, except possibly for very small
R values, and the extremely close avoided crossings
involving the four upper curves. The crossings at
R =31.75 (curves 5 and 6), R =20.75 (curves 4 and
5), and R=20.00 (curves 3 and 4) are particularly
significant. Because of the absence of avoided
crossings between curves 1 and 2, we expect that,
during the collision, transition rates from state
1 to state 2 will be very small unless the nuclei
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approach closer than about 10.00 a.u. and pass
through the highly repulsive region of the energy
curves. For small impact parameters, we ex-
pect that some transitions to state 2 will occur.
Transitions to state 3 will then occur when the
receding nuclei pass through the region inside the
local minimum in curve 3, at R=13.00. As the
nuclei recede further the system should pass
through the close avoided crossings diabatically.
Most molecules excited to state 3 at small sep-
arations will thus move to state 6 at infinite sep-
aration, and very few will move to states 3, 4,
and 5. We expect that the electron-transfer cross
section for triplet collisions will be considerably
smaller than that for singlet collisions.

Our °Z; curves also show extremely close avoided
crossings at R =14.75 (curves 4 and 5), and at
R =11.875 (curves 5 and 6). These features could
affect the electron-transfer process if significant
excitation to the upper three states occurs when
the nuclei pass through the repulsive region.

We expect that our theory’s average 20% under-
estimate of the infinite R relative energies will
produce an overestimate of the electron-transfer
cross sections, of similar magnitude. Because
of this energy underestimate, the important avoided
curve crossings will occur at R values larger
than those at which they should occur. The en-
ergy gaps at the avoided crossings, however,
should not be seriously affected. Therefore, the
maximum impact parameter for which the inter-
nuclear separation passes through the important
crossings during the collision is increased, but
the transition rates while passing these regions
are not seriously changed.

We could, of course, arbitrarily add constant
values to the energies E (R) in order to match
exactly the infinite R experimental energies, as
is often done with energy curves presented in the
literature. In the present case, however, such
an adjustment would not alter the slightly erro-
neous radial positions of the avoided crossings,
but would drastically and unphysically increase
the energy gaps at these crossings. The transi-
tion rates while passing these regions during the
collision would then be unrealistically altered.

The erroneous ordering of the three upper
charge-equal levels should not seriously affect
our collision results. For singlet collisions, these
levels all lie above the electron-transfer level
and do not interact very strongly with it except
perhaps for very small R. For triplet collisions,
these levels lie below the electron-transfer level,
but because the avoided crossings involving these
levels are so extremely close, the erroneous
ordering should not affect the transfer mecha-
nism discussed in this section.
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III. COLLISIONAL COUPLING MATRIX ELEMENTS
A. Exact expressions

We first manipulate Eqs. (5) and (6) into forms
suitable for direct numerical use. We make the
change of variables

z=vt

and write the coupled differential equations as

%: PRMOTIO ©)
Ku,(z)=-<q>u (&‘i—+ i— ﬁ(ﬁ)) «1>,>. (10)

Our notation suppresses the dependence of ¢,
and K, on the collision speed v and the impact
parameter b.

For the translation factor appearing in Eq. (4)
we initially choose the form appropriate when
working in a molecular eigenstates basis'!:

®,0)=[],®,0),
: i

factor. T; is the position of the jth electron, and
2v? is the kinetic energy associated with the elec-
tron’s overall translation at speed 3v. The func-
tion (¥, R) is chosen for mathematical conven-
ience. It can be any function, differentiable to
second order, satisfying the following conditions.

(i) f is invariant under rotation about R axis.

(ii) f is antisymmetric under inversion of T.

(iii) f(F, R)~t1 if R is larger than the atomic
diameter and |¥#3 R| is smaller than the atomic
radius.

The first two conditions are simply consequences
of the molecular symmetry. The third condition
expresses the fundamental requirement that, for '
large internuclear separations, the wave function
W('ﬁ, t) must properly represent the uniform spatial
motion of the electronic cloud around each nucleus.
Further conditions on f are discussed by the ori-
ginal authors.! In the present work we choose
no specific form for f.

By substituting Eqs. (4) and (11) into (10), we
obtain, after straightforward but lengthy manip-
ulation, an expression for K, (2):

1)

T,(ﬁ, t)=expli %f(Y‘j, RV .?I—%v'«’t] . KW(Z)=eXP[iBu,(Z)/v][K‘,’,,,(Z)+ivKt,(z)], (12)
We refer to 7; as the one-electron translation where K° and K* are independent of v, and real:
J
B0 = [ [E,R)-E®R)YE
0

R'=[(z"2+p*)]/2,
K°,(2)=-(z/R){(d/dR )w—N(b/Rz)(ijz)w -N(z/R)(%,(E))W ._N(b/R)@j(,}))w , (13)

F/@)=19%(E, 9/F,,RD]+:{V,(F, )/F, RO T,,
K., (2) =3 N6, = 3 NO/RP(G,R)P),,+ s N(bz/R)Q,(,id, ), + s N®*/R)Q,k,id 1)),

-§N(@/RP*{[G,(2) P +4Q,(z,8/8R)}),, - s N(bz/R*)([G,) - G,(x) +2Q;(x,8/8R)],, ,

G,()=Y,[F, $)(F,,R2)],
§,5,0)=F,-9)[OfF,,R2)].

In all of the above expressions, N is the number of
electrons and T, is the position of any one elec-
tron. Jj is the y component of the orbital angular
momentum of the jth electron. The operator d/dR
in Eq. (13) differentiates both the coefficients a(R)
and the TSF’s ¢(R) in Eq. (8). Also, in Egs. (13)
and (14),

©)u=W.10],).

We strongly emphasize that, by writing our
coupling matrix elements in the form chosen, we
have gained a very important computational ad-
vantage. All of the individual matrix elements

(14)

[

(0),, appearing in Egs. (13) and (14) are expressed
in terms of wave functions and operators which de-
pend only on the internuclear distance and not on
the molecular orientation. Therefore, all quantit-
ies requiring laborious computation are functions
of only one independent variable R. Their numer-
ical values can be tabulated once and then used in
all integrations of Eq. (9). The b dependence of
K,, enters only through the energy difference inte-
gral 8,,(z) and through the simple factors (z/R),
(b/R), etc., appearing in Eqs. (13) and (14). The
v dependence enters only as written explicitly in
Eq. (12).
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B. Simplifications and approximations

We computed values of K, (z) using several sim-
plifications and approximations rather than using
Eqgs. (12) through (14) exactly. We have presented
the exact expressions because, to the best of our
knowledge, such expressions in terms of the ori-
entation-independent nonrotated molecular eigen-
states have not previously appeared in the liter-
ature in a form suitable for direct computational
use.

First, because ¥, and y, are T states, several
terms in K° and K*' are exactly equal to zero. The
matrix elements of iJ7, F,(x), §,,iJ!), and
[G,z) - G,(x) +2Q,(x, 8/8R)] all vanish in the pres-
ent case,

Second, we assumed that ivK* was small in mag-
nitude compared with K° and could be neglected.
For small speeds v this approximation is, of
course, always valid. But for collision energy
100 keV, for example, v =0.242 for the Ba*+Ba"*
system, which is small but not negligibly so. Our
neglect of the nonzero terms of K' therefore re-
quires further justification.

If f(¥, R) is chosen properly then, for suffic-
iently large R and for Fj near either nuclear pos-
ition, the terms [G,(¥)]* and [G,(z)? combine to-
gether to form a very nearly constant operator
-3N8,,, which cancels the leading term in K*.
The terms Qj(;?,ijg) and Q,(z, 8/8R) vanish be-
cause in both cases the differential operator act-
ing on f(F,,R) produces a result that becomes
small rapidly near the nuclear positions as R
becomes large. Thus, because all parts of K!
are small for reasonably large R, our neglect
of ivK' remains valid for intermediate v values.

Third, the first term of F,(z) in K° vanishes
for large R, again because the differential oper-
ator involved produces a small result near the
nuclei for large R.

Fourth, we consider that part of (d/dR),, gen-
erated by differentiation of the TSF’s. This func-
tion-consists of two terms: The first generated
by differentiation of the TSF’s R-dependent nor-
malization factor, and the second generated by
differentiation of the AO’s from which the TSF
is constructed. We determined that the first
term is negligible by actually computing its val-
ues on the coarse grid. The second term can be
shown, ‘by the following argument, to very nearly
cancel the second term of ¥ ;(Z). For sufficiently
large R, the second term of F,(z) behaves as
+59/9z ; near either nuclear position. But the
AO’s are functions of the arguments (F, ¥ Rz).
Therefore, near either nuclear position, the
d/dR operator is equivalent to ¥.N8/9z ;and is
canceled by the second term of NF (2).

Thus, all that remains of our coupling matrix
elements is that part of (d/dR) .» generated by
differentiating a,(R):

K%, (R) ~-(z/R)D,(R),
. (15)
D,,R)=Y a,,(R)S,,(R)da, R)/dR . '

The approximations described above are not
equivalent to complete neglect of the translation
factor. Rather, they simply reflect the fact that,
for reasonably large internuclear separations,
the effects of the Schneiderman-Russek transla-
tion factor!! must be physically equivalent to those
of the simpler Bates-McCarroll factor.® The lat-
ter is used in atomic-basis collision calculations
rather than in molecular-basis work. In calcu-
lations using the Bates-McCarroll factor, the
electronic kinetic energy associated with the
overall translational motion of the colliding atoms
disappears exactly from the diagonal elements’/of
the collisional coupling matrix. Our approximate
cancellation of =N, by [G,(x)F and [G,(z)]® em-
bodies this same effect. In Bates-McCarroll cal-
culations, coupling terms generated by differen-
tiation of the atomic-basis functions with respect
to nuclear position are exactly canceled by terms
produced by a single differentiation with respect
to the electron coordinates. Without this cancel-
lation, the calculations would make a totally un-
physical prediction of large transition rates even
in the limit of infinite internuclear distance. Our
approximate cancellation of the second term of
NF (z) by part of (d/dR),, embodies this same ef-
fect. The other neglected terms in our coupling
matrix are nonzero only because the wavelength
associated with the Schneiderman-Russek trans-
lation factor is not constant over the volume of
either colliding atom. However, except for fairly
small internuclear separations, this variation
over each atom’s volume is very slight and van-
ishes completely in the infinite separation limit.
Coupling terms produced by this variation must
also become negligible.

C. Numerical methods

The integrals g,, were obtained by first inter-
polating the energies E, (R) and then analytically
integrating. The interpolations were constructed
using the energy values computed on the fine grid.
On each fine grid interval E ,(R) was assumed lin-
ear in R.

In computing 5, the derivatives da/dR could be
obtained by directly interpolating the a(R) values
computed on the fine grid. However, as mentioned
in Sec. ITA, the coefficients often vary quite rap-
idly, especially near avoided curve crossings, so
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that they cannot be interpolated reliably. We in-
stead used a procedure which produced exact val-
ues of da/dR in terms of the interpolated H(R)
and S(R) matrices, thus exploiting further these
matrices’ relatively slow and smooth variation
with R. By differentiating the matrix eigenvalue
equation (7) with respect to R and requiring that
the eigenvector’s norm not vary with R, an ex-
pression for da/dR is easily obtained. It then
follows that

(4 R)E,R)S'R)-H (R)]a,®B) .
E,R)-E,R) » TR
D,,(R)= (16)

-3af(R)S’(R)a,(R), v=u.

The derivatives S’(R) and H'(R) were computed
using the interpolations for H(R) and S(R) de-
scribed in Sec. IIB. These interpolations must
have continuous second derivatives, as asserted
previously. Otherwise, the use of H’(R) and S’(R)
in computing D would cause unphysical cusps to
appear at the coarse grid points. Our procedure,
which avoids direct interpolation of da/dR in com-
puting D, is another technique valuable in future
treatments of large colliding systems.

Because D is not anti-Hermitian, we replace
the approximation (15) with

K, (2)=~~=(z/R)D,,(R),
Duv(R)= % [ﬁuv(R)- bvu(R)] .

The original K° matrix [(Eq. (13)] is exactly anti-
Hermitian. Because (d/dR),, is also exactly anti-
Hermitian but D is not, the matrix consisting of
those parts of (d/dR),, generated by differentiation
of the TSF also deviates from anti-Hermiticity.
Our approximation that this matrix cancels the
second term of F,(Z) [Eq. (13)], which is anti-
‘Hermitian, is the approximation that causes the
loss of anti-Hermiticity. In Sec. IID we show
that D’s deviation from anti-Hermiticity is not
excessively serious for larger R values,

D. Computational results

Using Eq. (16), we computed numerical values
of D, (R) and D, (R), for all R values included in
the fine grid, for couplings among the six lowest
'z, states and among the six lowest °Z; states.
Figures 3, 4, and 5 show plots of D, (R) for
couplings among the three lowest 'Z; states.

Coupling element D, (R) is considerably smaller
in magnitude than D,, (R) and D, (R), for most R.
Therefore, direct transitions from state 1 to state
3 should not be significant. Element D, (R) shows
a broad valley with its minimum at R=13.00, cor-
responding to the broad avoided crossing between
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FIG. 3. Singlet collisional coupling matrix element
Dy (R).

energy curves 1 and 2 in Fig. 1, Element D4, (R)
shows a sharp peak at R =17.00, corresponding to
the close avoided crossing between energy curves
2 and 3. In addition, D,,(R) shows a narrow val-
ley at R=11.25. This valley reflects changes in
¥,(R) due to its interaction with state 1 near the
broad avoided crossing between curves 1 and 2.
The positions of these peaks and valleys at R
values corresponding to avoided curve crossings
supports the qualitative conclusions of Sec. IIC.

The D, (R) matrix elements for the T states,
which are not plotted here, show extremely sharp
peaks or valleys in elements Dy (R), D.,(R), and
D, (R) at R=31.75, 20.75, and 20.00, respectively.
These features correspond to the extremely close
avoided crossings discussed in Sec. II C, involv-
ing the four upper energy curves (see Fig. 2).
Their extreme sharpness and narrowness supports
our a priovi expectation that, once excited to a
higher state at smaller R, the system should pass
through these avoided crossings diabatically. The
structure of the coupling elements for smaller R
is confusing, and does not clearly indicate what
excitation pattern should dominate at small R,

We also computed numerical values of the func-
tion

Tuv(R) = % [D-uv(R) +5vu(R)] ’

in order to test the seriousness of the D matrix’s

7

o R (au) 50

FIG. 4. Singlet collisional coupling matrix element
Dy (R).
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o R (au.) 50

FIG. 5. Singlet collisional coupling matrix element
Dyp(R).

deviation from anti-Hermiticity. If D were ex-
actly anti-Hermitian, then T would be a zero ma-
trix. Figure 6 shows the common logarithms of
|D,, | and |T,, | plotted as functions of R, for
singlet coupling. Clearly, T, vanishes much more
rapidly as R becomes large than does D,,. Also,
T,, never becomes larger in magnitude than about
one-third of the D,, magnitude, even for R values
near the important broad coupling valley (which
appears as a rounded peak in this logarithmic
plot). Our computations showed that all of the
important 7, functions behaved similarly. We
conclude that our replacement of the matrix D
with the anti-Hermitian matrix D will not cause
serious error in our collision dynamics results.

IV. Collision dynamics
A. Procedure

Using the coupling matrix elements computed
as described in Sec. III, we have numerically
integrated the coupled differential equations (9),
for both singlet collisions and triplet collisions.
The integrations were performed for energies
ranging from 25 to 500 keV; these energy range
limits correspond to speeds of 0.121 and 0.540,
respectively. The singlet integrations were per-
formed for impact parameters ranging from 5 to

1Tail, loglDzl (a.u.)

-55
5'O 50

R(a.u.)

FIG. 6. The common logarithms of |Dy(R)| (upper
curve) and | Ty (R)| (lower curve).

20; the triplet range was 3 to 20, For the triplet
computations, all six states represented in Fig.
2 were included in the coupling. Initially, the
singlet computations included only the three low-
est states represented in Fig. 1. Additional com-
putations were then performed which included all
six singlet states, in order to test the sensitivity
of the singlet electron-transfer process to the in-
clusion of the higher states. All computations
used the Runge-Kutta method.

In performing these computations, the functions
E_(R) and D, (R) were assumed linear in R on
each fine grid interval. Figures 1-5 were plotted
assuming this same interpolation scheme. These
plots clearly demonstrate that such a linear inter-
polation produces acceptably smooth results on the
fine grid.

For each spin degeneracy, collision speed, and
final state u, we computed two values for the as-
sociated cross section, in units of 7a2. We denote
these values o/ (v) and o,(v):

b!
oL)=2 [ “bP,(v,b)ab,
bo

where b, =20, and b,=5 for singlet collisions and
3 for triplet collisions. P,(v,d) is our computed
transition probability. Clearly, ol is an estimated
lower limit on the cross-section value.

To compute o{, , we extrapolated the functions
E,(R) and D, (R) to R=0 and performed numerical
integrations of the coupled equations for impact
parameters from b, down to zero:

b
o{,(u)=o;(v)+2f *bP,(v,b)db ,
]

and is a cross-section value that includes an esti-
mate of the contribution due to small-impact-para-
meter collisions. Each E (R) was extrapolated to
R=0 as a second-order polynomial in R with con-
tinuous slope at R=b, and zero slope at R=0.
Each D, (R) was extrapolated as a third-order
polynomial with zero slope at R=b, and approach-
ing zero linearly as R—~0. These extrapolations
are very approximate but their purpose is to pro-
vide no better than a very rough estimate of the
transition probabilities at small impact para-
meters.,

B. Singlet results

Figure 7 illustrates a sample of our singlet
collision, three-state coupling results. The cur-
ves represent the system’s probabilities P, (2, b)
of finishing the collision in each of the three low-
est ‘E; states, as functions of impact parameter
b, for fixed collision energy 100 keV.

For the largest b values, the probability P, of
remaining in state 1 approaches unity and the
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o b (au) 20

FIG. 7. Singlet collisional excitation probabilities as
functions of impact parameter, for energy 100 keV.

probabilities of transition to states 2 and 3 ap-
proach zero. As anticipated in our discussion of
Sec. II C, significant loss of probability from the
initial channel does not occur until b decreases to
around 13. For b values near 13, the colliding
system passes once tangentially through the broad
valley in coupling matrix element D,, (see Fig. 3),
giving rise to the first local minimum in P,. For
smaller b values, the colliding system passes
twice through this valley, giving rise to an oscilla-
tory interference pattern in P,. As b varies, the
distance traveled between these two passages
varies, so that transitions occurring during the
second passage sometimes interfere construc-
tively and sometimes destructively with transi-
tions occurring during the first. The oscillations
in curves P, and P, are of course due to this same
interference effect. Our computations show this
effect occurring for all energies, with the spacing
between oscillation peaks increasing with collision
energy.

Figures 8 and 9 illustrate the system’s behavior
during the collision, as a function of distance z
along the collision path, for energy 100 keV, and
impact parameters 6.00 and 7.75. These b values
correspond to the innermost peak and valley in
curve P, of Fig. 7. Each curve represents the
system’s probability p,(z,v, b) of being in state
i ot each point z along the collision path. The
left-hand sides of the plots (2 = -20) correspond
to the collision’s initial conditions: The nuclei
are approaching each other from a long distance,
and the probabilities p,, p,, andp;are unity, zero,
and zero, respectively. The centers of the plots
(z2=0) correspond to the point of closet approach
between the nuclei. The right-hand sides (z =20)
correspond to the collision’s final conditions:

The nuclei are receding from each other at a
long distance, and the probabilities p,(z,v,b)
have stabilized at the values P, (v, b) plotted in
Fig. 7 for the appropriate b values. The vertical
dashed lines represent the points at which the
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FIG. 8. Behavior of the colliding singlet system as
function of position along collision path, for energy
100 keV and impact parameter 6.00. Each curve rep-
resents the system’s probability of being in the state
indicated, at each moment during the collision.

system passes through the important peaks and
valleys in the coupling matrix elements. In each
plot, the outermost pair (extreme left and right)
represents the sharp peak in U,, at R=17.00, the
next pair represents the broad valley in D,, at
R=13.50, and the innermost pair represents the
narrow valley in U,, at R=11,25,

For both b values, Figs. 8 and 9 show that elec-
tron transfer occurs largely by the mechanism
anticipated. Viewing the plots from left to right,
we see that, as the nuclei approach, state 1 loses
no probability until the system passes through the
broad valley in U,, (second dashed line), where
state 1 loses significant probability to state 2, as
anticipated. As the system passes through the
narrow valley in D,, (third dashed line), state 3
gains significant probability, an effect that was
not anticipated.

As the nuclei approach still closer, pass their
point of closest approach, and begin receding, the
plots show thatlittle ¢hange occurs in the proba-
bilities until the system again passes through the
important coupling peaks and valleys. As antici-
pated, transition rates during the collision are
significant only when the system passes through
the avoided crossings in the energy curves.

RPN

state 3

S

° 1
»

- T — —T T

= I [ o '

= ' [ v '

!

- 1 i state 2 Vo '

a ' [ Vo i

° ' [ [ 1
Lo HE e e S

T T — T
l4*‘\5\L___————————————h-‘___J____

I o 1 T

i Vo [ i

b s

i T "o '

' [ [ i

[ H i - s
-20 z (au) 20

FIG. 9. Same as Fig. 8, for impact parameter 7.75.
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As the receding nuclei pass through the narrow
D,, valley and the broad U,, valley, different be-
havior occurs for the two different b values. For
b=6.00, state 1 loses large probability to state
2, while the probability of state 3 remains almost
unchanged. For b=7.75, state 2 temporarily loses
almost all of its probability to states 1 and 3, and
then regains it. This behavior difference is caused
by the interference effect described earlier.

Finally, when the receding nuclei pass through
the sharp D, peak, the probability of state 1
remains almost unchanged while considerable
probability is transferred between states
2 and 3, as anticipated. For b=6.00, state 2
loses most of its probability to state 3, so that
a large degree of electron transfer occurs. For
b=1.75, state 3 loses most of its probability to
state 2, so that very little transfer occurs. Again,
this behavior difference is caused by the inter-
ference effect described previously.

Table III lists our computed values, in units of
nai, of the cross sections ¢%, and o as functions
of collision energy, for =2 and L =3; these
values were computed using three-state coupling,
The electron-transfer cross section o,, as the
energy increases from zero, at first rapidly in-
creases and then levels off for energies around
250 keV or higher, Above 500 keV o, probably
decreases, so that o, exhibits a broad peak in the
250-500-keV range. For E =500 keV the collision
speed v =0.540, so that for higher energies our
neglect of the #wK® term in the collision coupling
matrix elements is probably not valid. The ratio
(03/0}) averages 1.25 over the 250-500-keV-
range, indicating that b <5 collisions contribute
only about 25% of the peak values of the electron-
transfer cross section.
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TABLE III. Computed excitation and electron~transfer
cross sections, as functions of energy, for singlet
collisions. These values were computed using three-
state coupling.

Energy
(keV) o} o} o} d
25 1.21 2.19 2.35 3.84
50 5.52 10.82 10.69 13.45
75 8.26 17.58 15.41 19.93
100 13.10 16.00 22.94 25.38
150 18.67 20.56 28.75 35.56
200 21.29 23.91 41.81 44.64
250 23.85 25.94 51.24 54.50
300 26.92 28.46 54.64 63.74
350 30.12 31.41 55.09 70.05
400 33.17 34.51 54.84 73.20
450 35.96 37.61 54.86 74.08
500 38.50 40.63 55.35 73.65

We conclude that, for singlet collisions, the
maximum electron-transfer cross section occurs
for energies around 250-500 keV. Its maximum
value is around 70 a2 (6.2 X 107!° cm?), which is
much larger than the Ba* ion’s geometric cross
section. Most electron-transfer events involve
migration by the transferred electron across
distances of several ionic diameters, Because
03> 0, over our entire energy range, we further
conclude that singlet collisional interaction be-
tween two Ba' ions is somewhat more likely to
result in electron-tranfer than in nontransfer
excitation,

Table IV compares our cross sections computed
using six-state coupling [0(6)] with those com-
puted using three-state coupling [0(3)]. Only the
estimates of are listed; the o’ are not listed.

TABLE IV. Comparison between singlet cross sections computed in three-state coupling
scheme with those computed in six-state coupling scheme. The listed ratios reflect the im-

portance of the three higher excited states.

Three-state coupling

Six-state coupling

Energy
(keV) o} ol o o} ol ol ok
“ =2 p =4 . “:2

50 10.82 13.45 24.27 8.44 13.00 4.01 25.45
100 16.00 25.38 41.38 16.11 21.27 6.04 43.42
200 23.91 44.64 68.56 19.51 38.05 14.29 71.85
300 28.46 63.74 92.21 25.46 52,01 18.76 96.23
400 34.51 73.20 107.71 31.05 53.68 23.69 108.41
500 40.63 73.65 114.27 35.04 58.87 25.51 119.42
Ratio Maximum Minimum Average

[o4(6)/04(3)] 1.01 0.78 0.88

[e§(6)/05(3)] 0.97 0.73 0.83

(f} ol (6/270}‘(3)) 1.05 1.01 1.04

p=2 u=2
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Also listed are various ratios between six-state
and three-state cross sections. The ratio [0‘;(6)/
0}(3)] averages 0.88 and [03(6)/0}(3)] averages
0.83, so that inclusion of the three upper 'Z;
states in the collisional coupling reduces the magni-
tudes of our cross sections somewhat, but does not
alter our qualitative conclusions concerning the
physical characteristics of the electron-transfer
process. The ratio (23, 0% (6)/ 20,0%(3)) averages
1.04, so that inclusion of the higher 'Z; states
has almost no effect on the fotal cross section for
collisional excitation from the ground state. This
conclusion is reasonable, because the ground
state couples only very weakly with these higher
states,

C. Triplet results

Figures 10(a) and 10(b) illustrate a sample of
our triplet collision results. The curves repre-
sent the system’s probabilities of finishing the
collision in each of the six *Z} states, as functions
of impact parameter, for energy 200 keV.

We see that significant loss of probability from
state 1 does not occur until b decreases to around
9. As anticipated from our inspection of the 3%}
energy curves (Fig. 2), significant excitation from
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FIG. 10. (a) Triplet collisional excitation probabilities
as functions of impact parameter, for energy 200 keV.
Probabilities are plotted for states 1, 2, and 3 only.

(b) Same as (a), but for states 4, 5, and 6. Note change
in scale of ordinate.

state 1 does not occur unless the system passes
through the higher repulsive region of the curves.
The lack of avoided crossing between curves 1
and 2 at larger R prevents the occurrence of long-
distance collisional excitation. The triplet and
singlet collision processes differ from each other
in this respect.

Figures 10(a) and 10(b) also show that, contrary
to our expectations, molecules excited above level
2 at small separations do not predominantly move
to state 6 as the nuclei recede from each other.
Rather, most such molecules finish the collision
in state 3. )

Figures 11(a) and 11(b) illustrate the system’s
behavior during the collision, as a function of
distance along the collision path, for energy 200
keV and impact parameter 6.00. This b value
corresponds to the peak in curve P, of Fig. 10(a).
The outermost, intermediate, and innermostpairs of
vertical dashed lines represent the points at which
the system passes through the avoided curve
crossings at R =20,00, 14,75, and 11.875, respec-
tively.

Figures 11(a) and 11(b) show that, when the nu-
clei are very close together, major excitation to
state 6 occurs. The similarity in shape of the p,
curve and the p, curve near z =0 suggests that
state 6 is being populated by direct transitions
from state 2, while simultaneously state 2 is
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FIG. 11. (a) Behavior of colliding triplet system as
function of position along collision path, for energy 200
keV and impact parameter 6.00. Probabilities are
plotted for states 1, 2, and 3 only. (b) Same as (a), but
for states 4, 5, and 6.
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being populated by transitions from state 1. Con-
trary to expectations, the system emerges from
the highly repulsive region of the energy curves
(Fig. 2) with state 6 rather than state 3 the most
heavily populated of the four upper states. As the
nuclei recede and the system passes diabatically
through the avoided crossings at R=11.875, 14,75,
and 20.00, this probability in state 6 first flows
sharply to state 5, then from state 5 to state 4,
and then from state 4 to state 3, where it remains
as the nuclei recede to infinity. Very little elec-
tron transfer occurs because very little excitation
to state 3 occurs near z2=0. Consequently, very
little probability flows diabatically to state 6 as
z=, QOur failure to anticipate direct excitation
to state 6 from a much lower state, while the
nuclei are very close, led to our erroneous pre-
diction stated in Sec. IIC ‘that most molecules
excited above state 2 would finish the collision

in state 6.

Table V lists our computed values of the cross
sections o}, and o} as functions of collision energy,
for =2 and u=6. These values were computed
using six-state coupling. The electron-transfer
cross section o, increases monotonically but ra-
ther slowly with energy over the entire energy
range. As anticipated, its values are consider-
ably smaller than the singlet electron-transfer
cross-section values, typically by a factor of
around 8. The ratio (0}/0}) averages 1.04 on the
250-500-keV energy range, indicating that b<3
collisions contribute only about 4% of the transfer
cross-section value,

The o, values tabulated indicate that the cross
section probably peaks broadly in the 500-1000-
keV range. We thus conclude that, for triplet
collisions, the maximum electron-transfer cross
section occurs for energied in this range. Its
maximum value is around 10-15 7a2 (0.9-1.3

TABLE V. Computed excitation and electron-transfer
cross sections for triplet collisions.

Energy
(keV) o} o} o} of

25 0.83 1.78 0.28 0.72

50 2.95 4.32 1.39 2.15

75 6.79 8.23 2.64 3.46
100 11.41 12.94 2.83 3.19
150 20.85 21.40 2.66 2.76
200 22.54 23.26 2.92 3.00
250 21.33 21.78 3.91 4.08
300 20.30 20.61 5.36 5.61
350 20.07 20.43 6.95 7.25
400 20.57 21.03 8.45 8.80
450 21.58 22.10 9.73 10.08

500 22.88 23.42 10.78 11.11

X 107!% ¢cm?), which is comparable to the Ba® ion’s
geometric cross section. Most electron-transfer
events involve migration by the electron across
distances comparable to the ionic diameter. Be-
cause 0,<0, over our entire energy range, we
further conclude that triplet collisional interac-
tion between two Ba*® ions is considerably more
likely to result in nontransfer excitation than in
electron transfer. These conclusions differ
sharply from our conclusions concerning the
singlet collision.

Table VI compares o}, o}, and the sum o}+ o}
+0i. For all energies this sum is much larger
than or:; our failure to correctly anticipate the
excitation mechanism illustrated by Fig. 11 applies
over the entire energy range. Of those molecules
collisionally excited to states higher than state 2,

. only about 28% enter the electron-transfer state.

D. Further discussion of results

Our results, as discussed in sections IVB and
IV C, show that the singlet and triplet collisional -
electron-transfer processes differ radically from
each other, both in the numerical magnitudes of
the cross sections and in the physical processes
leading to electron transfer. These differences
occur because, in the triplet transfer process,
the neutral Ba atom produced cannot be in its
ground state. T'herefore, an avoided crossing
between the ground state and the first excited state
occurs at a large separation in the singlet system,
but not in the triplet system. This crossing’s
presence leads to the dominance of large impact
parameters in singlet collisions. Its absence
leads to the dominance of somewhat smaller im-
pact parameters in triplet collisions.

Figure 12 shows the total electron-transfer
cross section, computed as a statistically weighted

TABLE V1. Comparison between electron-transfer
cross section and total cross section for nontransfer
excitation in triplet collisions.

Energy
(coV) o 3o o}
u=3

25 1.78 1.34 0.72

50 4.32 4.60 2.15

75 8.23 5.50 3.46
100 12.94 5.37 3.19
150 21.40 8.05 2.76
200 23.26 12.67 3.00
250 21.78 17.04 4.08
300 20.61 21.06 5.61
350 20.43 24.13 7.25
400 21.03 25.97 8.80
450 22.10 27.00 10.08
500 23.42 27.64 11.11
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FIG. 12, The total electron-transfer cross section
ot, computed as a statistically weighted sum of the
singlet and triplet cross sections.

sum of the singlet and triplet cross sections:

o*(total) = 0.25 of(singlet) +0.75 of(triplet) .

As the energy increases from zero, the cross
section at first increases fairly rapidly and ap-
pears to level off for energies near 500 keV. We
conclude that the maximum electron-transfer
cross section occurs for energies around 500 keV.
Its value is around 27 7a2(2.4 X 10™'° cm?), This
value is somewhat larger than the Ba* ion’s geo-
metric cross section, and may be unacceptable
for some of the envisioned HIF schemes.
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