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Relaxation in magnetic nanostructures
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The damping of magnetization processes in nanostructures is investigated by Fokker—Planck-type
model calculations and quantum-mechanical considerations based on Fermi's golden rule. In the
absence of energy barriers, the problem reduces to a magnetic diffusion equation with a
particle-size-dependent diffusivity which is indirectly proportional to the relaxation-time parameter
7. FoOr small particles, the relaxation time is proportional to the particle volume, but when the
particle size reaches a few nanometers, it approaches a constant bulk va20®5GAmerican
Institute of Physics[DOI: 10.1063/1.1847854

I. INTRODUCTION tions, (ii) Fokker—Planck or generalized diffusion equations,

. . . _ nd (ii) Langevin or random-force equations. These equa-
The relaxation behavior of magnetic nanostructures is Ofilons are physically largely equivaleht: and their applica-
interest in many areas of advanced technology, including; '

. . S JN%on to magnetic systems is well establisHéd” For ex-
magnetic recoding and sensor applications, and a key inpy

. . : . . tmple, the Arrhenius or Néel-Brown law
in numerical simulations. An important and largely unsolved
issue is the origin of damping-paramekemwhich determines 7= 75 eXp(Ed/KgT), (2
the relaxation time of the spin precess?o%w.

An exact way of treating relaxation starts from the
Liouville—von Neumann equation and includes both relevan

magnetic and irrelevant heat-bath degrees of freetidior the relaxation time in the absence of energy barriers. As the

sufficiently slow magnetization processes, there is a Separ?éspective Landau-Lifshitz and Gilbert damping parameters
tion of macroscopic and microscopic time scales, and thg\ and 7717 1/7, is essentially proportional t&V;, but the
’ [0}

. . |J1
relaxathn timer an.d related pgrameters, such)a;have a guantification of relaxation parameters has remained a com-
well-defined meaning. In addition, the separation of time

. e . licated issue, and, is usually considered as a phenomeno-
scales yields a Landau—Lifshitz-type precession term and B % y P

L i f ivle for the th | . E)gical parameter. Here we use the magnetic Fokker—Planck
angevin force responsible for the thermal activation OVerequation to explairr, in terms of spin diffusion.

energy barriers, which are observed as magnetic viscosity
and as the sweep-rate dependence of the Coergivity.
The magnetization precession, the damping, and thg' CALCULATION AND RESULTS
thermal forces depend on the magnetic system in consideA. Damped precession and diffusion in spin space

ation. The strength of the thermal forces is given by the . . . .
7 o Consider a magnetic nanoparticle containiNgatoms.
temperature of the heat bathyhereas the precession is, es- : ot .
When the particles are sufficiently small, the spins are

sentially, a deterministic zero-temperature property. The_trongly exchange coupled, and the particle’s magnetization

damping reflects the interaction between magnetic and heaf1as the character of a macrospin of magnitSte The mag-

bath degrees of freedom, as described by Fermi's golden ru Netization reversal can then be rationalized in terms of mag-

netization anglesp and 6. The magnetization dynamics has
two aspects: a damped precession towards the local effective
. N . field and a random thermal motion of the magnetization vec-
HereW;; is the transition rate between two quantum states o Figure 1 illustrates the two limits. The damped preces-
andj, and(¥;|V[¥;) is the matrix element between the two gjgp i, essentially, a zero-temperature phenomenon, whereas
states. These matrix elements lead to the time-dependent dg¢e randomness ab) reflects the interaction with the heat
cay of the original modes. It conserves the total energy of thgath. Note the opposite direction of the motions: the relax-
system but includes energy redistributions between differemtion moves towards a local energy minimum, whereas the
subsystems. Fermi's golden rule applies to a large variety ofandom motion is diffusive and generally points away from
physical transitions and includes, for example, transitions beg,e starting point.
tween magnetic and phononic degrees of freeath. Physically, Fig. 1) is realized for low temperatures and
The transition rate$\j; determine the dynamics of the pronounced effective fields, as encountered in typical reso-
system. Simplifying somewhat, there are descriptions basefance experiments. The diffusive regime, Figo)1is real-
on three different types of equatior(s: master or rate equa- jzed in the case of very weak effective fiel@sherical par-
ticles, no applied field, and zero magnetic anisotjopiere
¥Electronic mail: rskomski@unlserve.unl.edu we are interested in the diffusive regime. PuttiBg=0 in

is a low-temperature solution of the Fokker—Planck
equatior>*® Here 7 is the relaxation time for a thermally
betivated process over an energy barfgandr,~107° s is

2
W = {lwilvw,»lza(a -E). (1)
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FIG. 1. Magnetization dynamics of a nanopartidl@: damped precession aritd) random thermal motion. The curves are simulations for typical but not
critical parameters, covering a time of order 0.1 ns. In both polar plots, the direction of the motion is from the white circles to the black circles.

Eg. (2) yields 7=1,, so that the solution of the diffusion C. Relaxation time

problem of Fig. 1b) amounts to the determination &j. The next step is to relatBo=1/7, to the properties of

the particle. In particulad s may depend on the number of
particlesN, so thatl'ss=I"c(N). For simplicity, we consider
B. Fokker—Planck analysis N exchange-coupled spins characterized by one rotational
Rﬂegree of freedond, per spin(i=1, ... N). The dynamics of

In the absence of an effective field, the Fokker—Planc X X .
equation governing the spin diffusion reduces to an ordi2 System described by Eq3) is then equivalent to the

nary diffusion equatiof! In the present case, the diffus- -@N9evin equation
ivity depends on the matrix elements¥;|V|¥;) o
=(y(¢",0")|V|P (¢, 0)) between neighboring spin states. Al- — = \2IL&(1), (4)
ternatively, the path shown in Fig(l) can be modeled as a ot
random walk where 6(t+&)=60(t)te, and ¢G(t+)
=¢(t)xsin}(f)e,. In this approach, there are two param-
eters,st ande,. The parametet, is fixed by the requirement
that the equilibrium solution of the underlying Fokker—
Planck equation reproduces equilibrium statistical
mechanic. lllustratively speaking, the higher the tempera-
ture, the largeg,. The paramete15t~\/\ifjl describes the dy-
namics of the system; it can be interpreted as the time ne
essary to proceed frorh and ¢ to 6’ and ¢'.

Starting from#=0 and ¢=0, as indicated in Fig. (b),
we now calculate the magnetization projectiov(t) N—= \"ﬁ&(t). (5a)
=M(cod 6(t)]). SinceM(t) is independent ofA(t), we can A

restrict ourselves to the diffusion of the varialsleThe prob- In this equation, the square-root dependence of the random-

ability2 P(6) obeys thze diffusion  equation dP/dt  ¢4.-a term onN originates from;S(&(t)&(t'))=Na(t-t’).
=T e?Pl96°, wherel o=g5/24t, so that Dividing Eq. (5) by N yields

wherel',=I"¢4(1) and§(t) is a delta-correlated random force
obeying(&(1))=0 and(&(1)¢(t"))=8;at-t').”** Of course,
from a quantum-mechanical point of view, Eq3) and (4)
are crude approximations for single or few spin systéfs,
but we are not interested in this limit and assume thatl.

Next, we assume that thé spins are strongly exchange
Cc_oupled, so that all spins are parallel and theref@reé.
Adding all contributions?6,/ 4t in Eq. (4) leads to

P(6,t) = *1 expl - i ) 3
’ VA7 ot At )

Evaluating the integraM(t)=M, f P(6,t)coq #)d6, where 6

extends from o to +o, yieldsM(t)=M, exp(-I'gqt). Essen-  where I'es=I'y,/N. In other words, the square-root depen-

tially, this simple result amounts to a functional integrationdence orN in the source term of Ed5) translates into a M

over all possible diffusion paths, Fig(l), and means that dependence of ..

the average magnetization projection decays with a relax- The same result is obtained by a quantum-mechanical

ation time 7,=1/T g argumentation. Equatiofi) involves integrations of the type

0
=), (50
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o, e, PN L= a micromagnetic point of view, the length scale of the mag-
p AN v A netization inhomogenities in soft materidts energy barri-
w,: ¥ ’z‘ W L, Y ers is of the order of 10 nm, that i$y,~ 10°*~1C. In terms
Ny T T of Sec. Il, and taking into account that typical measurements
; X ¥ ; RPN are taken at room temperature, this corresponds to the very
- T e N rough estimate,~ 101! Ks.
R (\ :ﬂ - 'W In conclusion, we have used quasiclassical model calcu-
P N A Ne soi lations and quantum-mechanical arguments to investigate the
-~ R )‘, vy o SPINS particle-size dependence of the relaxation-time paramgter

For small particles, the relaxation time is proportionaN,o

FIG. 2. Cooperative spin blocks. When the shtef the particle becomes Ut when the particle size becomes comparable to a few na-

too big, then thermal activation leads to the formation of cooperative unittnometersy, approaches the bulk value. Our calculations elu-

of sizeNo. cidate some aspects of magnetic relaxation in nanostructures,
but a detailed quantitative description and a comprehensive

Jy* (r)V(r)y(r)dV, and since thermal forces are operative experimental analysis remain as important challenges to fu-

on a local scaleW; is linear rather than quadratic in the ture research.

particle size.
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