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Strains of Lysobacter enzymogenes, a bacterial species with biocontrol activity, 

have been detected via 16S rDNA sequences in soil in different parts of the world. In 

most instances, however, their occurrence could not be confirmed by isolation, 

presumably because the species occurred in low numbers relative to faster-growing 

species of Bacillus or Pseudomonas. In this study, we developed DNA-based detection 

and enrichment culturing methods for Lysobacter spp. and L. enzymogenes specifically. 

In the DNA-based method, a region of 16S rDNA conserved among Lysobacter spp. (L4: 

GAG CCG ACG TCG GAT TAG CTA GTT), was used as the forward primer in PCR 

amplification. When L4 and universal bacterial primer 1525R were used to amplify DNA 

from various bacterial species, an 1100-bp product was found in Lysobacter spp. 

exclusively. The enrichment culturing method involved culturing soils for 3 days in a 

chitin-containing broth amended with antibiotics. Bacterial strains in the enrichment 

culture were isolated on yeast-cell agar and then identified by 16S rDNA sequence 

analysis. A strain of L. enzymogenes added to soils was detected at populations as low as 

102 and 104 CFU/g soil by PCR amplification and enrichment culturing, respectively. In a 

survey of 58 soil samples, Lysobacter was detected in 41 samples by PCR and 

enrichment culture, out of which 6 yielded strains of Lysobacter spp. by enrichment 

culture. Among isolated strains, all were identified to be L. enzymogenes, with the 



 
 

exception of a strain of L. antibioticus. Although neither method alone is completely 

effective at detecting L. enzymogenes, they are complementary when used together and 

may provide new information on the spatial distribution of the species in soil. 
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Chapter 1 Literature Review 

Taxonomy of Lysobacter 

Christensen and Cook proposed genus Lysobacter in 1978. Before that, strains later 

classified as Lysobacter spp. were grouped in myxobacteria because they share some 

distinctive traits, including gliding motility and micropredatory behavior. Christensen 

and Cook (1978) considered Lysobacter to be related to other myxobacteria because 

of gliding motility but distinguished this genus from other myxobacteria by it being 

non-fruit forming and having high G+C content. Lysobacter is now grouped in γ-

proteobacteria, and belonging to the family Xanthomonadaceae. Lysobacter is very 

closely related with the genera Xanthomonas, Stenotrophomonas, 

Pseudoxanthomonas, Thermomonas and Xylella by phylogenetic analysis (Bae et al. 

2005). However, Lysobacter spp. also display a number of traits that distinguish them 

from other related bacterial genera including oxidase activity, 28°C optimum growing 

temperature, varying cell length (2 to 70 µm), high genomic G+C content (typically 

ranging between 65-72%) and the lack of flagella (Christensen and Cook 1978).  

 

There are four species originally proposed by Christensen and Cook (1978) in the 

genus Lysobacter: L. enzymogenes, L. antibioticus, L. brunescens, and L. gummosus. 

Within these species, L. enzymogenes is the type species and the most commonly 

reported and studied. Within just the last four years, there were twelve new species 

reported: L. concretionis (Bae et al. 2005), L. koreensis (Lee et al. 2006), L. defluvii 
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(Yassin et al. 2007), L. niabensis (Weon et al. 2007), L. niastensis (Weon et al. 2007), 

L. daejeonensis (Weon et al. 2006), L. yangpyeongensis (Weon et al. 2006), L. 

spongiicola (Romanenko et al. 2008), L. capsici (Park et al. 2008), L. oryzae (Aslam 

et al. 2009), L. daecheongensis (Ten et al. 2008) and L. ginsengisoli (Jung et al. 

2008). All new species were suddenly burst during recent 4 years, which is brought 

by advanced molecular biology techniques, including PCR amplification, molecular 

cloning, sequencing tool, and so on, to ignite the great revolution of species 

identification. 

Physiology of Lysobacter spp. and L. enzymogenes 

During years of research on Lysobacter, there were three main areas of extensive 

research: use as biological control agents for plant diseases, production of antibiotics 

for human medicine, and enzymes for commercial applications. Strains of Lysobacter 

spp. were reported to have broad spectrum antagonism in vitro against bacteria, fungi, 

unicellular algae and nematodes. The range of diseases controlled by biocontrol 

strains is extensive. L. enzymogenes has the most reported biocontrol effective strains 

than other species over time. For example, strain C3 of L. enzymogenes was reported 

to control diseases caused by fungal pathogens, including Rhizoctonia solani (Giesler 

and Yuen 1998), Bipolaris sorokiniana (Zhang and Yuen 1999 and 2000, Kilic-Ekici 

and Yuen 2004.), Magnaporthe poae (Kobayashi and Yuen, 2005), Uromyces 

appendiculatus (Yuen et al. 2001), and Fusarium graminearum (Yuen, et al. 2003). 

Strain C3 and others also were inhibitory to oomycetous pathogens in the genera 

Aphanomyces and Pythium (Kobayashi et al. 2005; Palumbo et al. 2005; Islam 2009; 
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Postma et al. 2009), to bacterial pathogens (Jiang et al. 2005) and also nematodes 

(Chen et al. 2006; Katznelson et al. 1964). This broad spectrum of biocontrol activity 

can be attributed to a wide variety of possible mechanisms: extracellular enzymes 

(Palumbo et al. 2003; Ahmed et al. 2003; Chohnan et al. 2004), secondary 

metabolites (Yuen et al. 2005), induced resistance (Kilic-Ekici and Yuen 2003), and 

hyperparasitism involving types III, IV and VI secretion systems (Reedy et al. 2003; 

Blackmoore et al. 2009; Patel et al. 2009) 

 

The lytic activity by enzymes is the one of the systems contributing to broad spectrum 

antagonism. Proteases, chitinases, glucanases, lipases and phospholipases produced 

by Lysobacter together can degrade the cell walls of all groups of plant pathogens. 

Proteases were the earliest enzyme group studied for biocontrol activity and were first 

thought to be involved in against nematodes (Katznelson et al. 1964). Later, proteases 

were also reported to be active against some gram-positive and gram-negative 

bacteria (Ensign and Wolfe 1965 and 1966). And it is still studied as a very important 

mechanism of biocontrol in recent years (Ahmed et al. 2003, Chohnan et al. 2004). 

Chitin is a very important component of fungal cell walls; hence most biocontrol 

agents for fungi possess chitinase activity. Chitinase activity of L. enzymogenes strain 

C3 has been reported to be involved in biological control activity for Bipolaris 

sorokiniana(Zhang and Yuen 2000). β-1,3-Glucans are critical components of cell 

wall structure in fungi and oomycetes, comprising over 80% of the cell wall 

polysaccharides (Blaschek et al. 1992). Palumbo et al. (2005) proved that L. 



4 
 

enzymogenes strains C3 and N47 have β-1, 3-glucanase producing systems, which 

enable C3 to have potential to decompose cell wall. 

 

Besides enzyme activity, antibiotics produced by Lysobacter spp. are also contributed 

significantly to its biocontrol system. As early as 1966, Peterson et al. found myxin 

produced by Lysobacter strain, which was classified as Sorangium, as a broad-

spectrum phenazine antibiotic inhibiting bacteria and fungi. Antibiotics of β-lactams 

containing substituted side chains, macrocyclic lactams, and macrocyclic peptides to 

control MRSA (caused by Staphylococcus aureus) were reported to be produced by 

Lysobacter spp. (Kato et al. 1997; Kato et al. 1998). Later, Christensen (2001) 

reported an antibiotic with a wide spectrum produced by L. antibioticus identified as 

1-hydroxy-6-methoxyphenazine. A family of antibiotics consisting of 

dihydromaltophilin, called heat-stable antifungal factor (HSAF), is produced by L. 

enzymogenes strain C3 and was proved to be responsible for control of fungi and 

oomycetes by disruption of the fungal polarized growth (Yu et al. 2007, Li et al. 

2006). A similar compound was also found that is produced by L. enzymogenes strain 

3.1T8 showing inhibitory activity against oospores and cyst germination (Folman 

et al. 2004). At the same time, xanthobaccins A, produced by Lysobacter sp. SB-K88 

was identified as a macrocyclic lactam and a structural analogue of 

dihydromaltophilin (Nakayama et al. 1999, Yu et al. 2007). Broad production of 

maltophilin-related antibiotics is a possible shared trait by Lysobacter spp., which 



5 
 

implies the ecological importance of Lysobacter biocontrol strains since these 

antibiotics are known to be effective on fungal inhibition. 

Role of Lysobacter spp. in Nature 

Christensen and Cook (1978) described Lysobacter spp. to be ubiquitous inhabitants 

of soil and water. All L. brunescens strains were isolated from water in Christensen & 

Cook’s paper (1978). After that, several Lysobacter strains were found in diverse 

environments by ribosomal nucleic acid analysis or enriched isolation. 16S ribosomal 

RNA sequences found in hydrothermal vents and Mt. Pinatubo mud flows (Folman et 

al. 2003; Ogiwara unpublished) were later reported to correspond to those of 

Lysobacter spp. (Folman et al. 2003; Sullivan et al. 2003). Similarly, Lysobacter-

indicative 16S rRNA gene sequences were reported from tar pits (Kim and Crowley 

2007). The occurrence of living cells of Lysobacter in these extreme environments, 

however, was not confirmed. Strains of Lysobacter were isolated from diverse 

sources in different parts in the world, including Kentucky Bluegrass foliage in 

Nebraska (Giesler and Yuen 1998); root tips of hydroponic cucumber plants in the 

Netherlands (Folman et al. 2003); groundwater of a basement tile drain in Michigan, 

USA (Sullivan et al. 2003); upflow anaerobic blanket sludge reactors, Korea (Bae et 

al. 2005); plant rhizosphere soils, China (Jiang et al. 2005); Kartchner Caverns 

limestone cave, AZ, USA (Ikner et al. 2006); ginseng field near Daechung lake, 

Korea (Lee et al. 2006); greenhouse soils of Daejeon and Yangpyeong regions in 

Korea (Weon et al. 2006); deep-sea sponge in Philippine Sea (Romanenko et al. 

2008); and field rhizosphere of rice, Korea (Aslam et al. 2009). These results 
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collective suggest that Lysobacter spp. are cosmopolitan, and that they inhabit not 

only ordinary aerobic environments, but also could occur in extreme and anaerobic 

environments. It has not been verified that under these conditions, there are actually 

live cells of Lysobacter or just residual DNA fragments. 

 

Lysobacter spp. have been shown to be non-fastidious as to their nutrient 

requirements. Various media have been used routinely for culturing Lysobacter, such 

as Luria Bertani (LB) agar, nutrient broth (NB), sporulation agar (SA) (Sullivan et al. 

2003), Difco R2A medium (Ikner et al. 2007) and 10% tryptic soy agar (TSA) 

(Giesler and Yuen 1998). Being highly chitinolytic and aggressive in lysing fungal 

hyphae, Lysobacter strains have been isolated from nature using chitin medium 

(Christensen and Cook 1978) and enrichment culture with fungal mycelia as a bait 

(Kobayashi and El-Barrad, 1996). However, none of these media is selective for 

Lysobacter. Selective medium are used for the growth of only select microorganisms, 

which is very important for bacterial population study. Lysobacter strains are slow 

growers and are under low population in nature, thus they are not very competitive 

than other natural microorganisms. Therefore, selective medium for Lysobacter can 

enable isolation of Lysobacter from nature by enriching their population and 

minimizing competition brought by other organisms. 

Prospect 
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While anecdotal evidence show Lysobacter spp. occur in different parts and various 

environments in the world, but there has been no systematic study on the population 

distribution of the genus Lysobacter or Lysobacter enzymogenes within certain 

geographic location. Although Christensen and Cook (1978) described Lysobacter to 

be ubiquitous inhabitants of soil, they did not document the locations from which 

samples were collected nor did they provide direct quantitative data as proof of the 

frequency at which Lysobacter spp. could be isolated from soils. The information on 

population distribution is very important to prove the hypothesis that Lysobacter are 

ubiquitous in soils. 

 

Current studies on Lysobacter in the environment focus on two aspects:  colonization 

and antagonism activity of biocontrol strains applied to soils and plant surfaces; and 

the presence of Lysobacter spp. as a component of the bacterial community in unique 

habitats. However, there is no research that connects the concepts of where 

Lysobacter can be found and the expression of biocontrol-related traits. Lysobacter is 

known to be potential biocontrol related group, so that it provides ideas further 

enhance study on ecology of Lysobacter in agricultural crop soil system by means of 

assessing Lysobacter population in agricultural field and understanding relationship 

with agricultural crops or field plants. Directly evaluating Lysobacter population in 

agricultural field system could be proposed as a new approach to better understand 

Lysobacter’s role in nature. 
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Chapter 2 Introduction 

When the bacterial genus Lysobacter was first described by Christensen and Cook 

(1978), it was known to inhabit soil and water and be antagonistic to a wide range of 

microorganisms. It was not until 20 years later when species and strains of Lysobacter 

were recognized to be of biological control importance (Sullivan et al. 2003). One 

explanation for the delay of recognition for Lysobacter is that it was difficult to 

distinguish from many other gram-negative genera on the basis of physiological tests. 

In fact, biological control strains of Lysobacter were classified in related genera 

Stenotrophomonas (Giesler and Yuen, 1998) and Xanthomonas (Sakka, et al. 1998) 

until they were reclassified using 16S rDNA sequence analysis (Sullivan et al. 2003). 

Another possible explanation is that Lysobacter species may be localized in 

distribution, and thus, biocontrol effective strains would be found only in certain 

locales. To date, however, there has been no systematic study to determine the 

distribution of a given Lysobacter sp. or the frequency of its occurrence within a 

particular geographic area. Christenson and Cook (1978) did not provide quantitative 

or geographic data to support their description of the genus being common in soils 

and water. A third explanation is that members of genus may commonly occur but 

strains with biological control ability are unique or uncommon in occurrence. 

Bacterial diversity studies using 16S rDNA have revealed the presence of Lysobacter 

spp. throughout the world and in very diverse environments (Lee et al. 2006, 

Schmalenberger and Tebbe 2003, Sigler and Turco 2002, Moyer, C., et al. 1995, 

Ikner et al. 2007, Ikner et al 2007, Kim and Crowley 2006), suggesting that they are 
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indeed widely distributed. However, there has been no systematic comparison made 

across strains of any Lysobacter sp. for any given trait, with the exception of a study 

by Kilic-Ekici and Yuen (2003) that examined three strains of L. enzymogenes for the 

ability to activate induced resistance.  The biggest hurdle to testing the validity of 

second and third hypotheses is the absence of reliable methods to detect and isolate 

Lysobacter strains from nature. PCR with taxon-specific primers offers an 

opportunity as a non-culture detection method (Scarpellini et al. 2004 and Sanguin et 

al. 2008) but Lysobacter specific primers have not yet been found. At the same time, 

conventional isolation methods used for genera such as Pseudomonas and Bacillus 

are thought to be ineffective for isolating Lysobacter from environmental samples 

such as soil because this group shows slower growth and exists in lower populations 

compared to other bacteria such as Bacillus and Pseudomonas. Christensen and Cook 

(1978) isolated Lysobacter strains using by first enriching soils with chitin, but their 

methodology was not clearly described nor validated by other researchers.   

 

 This study examines methods to detect and isolate Lysobacter spp. from the 

environment, which are the critical first steps toward answering the questions as to 

where Lysobacter species occur (distribution) and whether populations or strains vary 

in biocontrol related traits (diversity).  Therefore, the objectives of this study were: 

 

 1.  To create a non-culture based method for detecting Lysobacter in soils using 

Lysobacter specific PCR primers.  
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2. To develop a method to isolate L. enzymogenes, the most commonly reported 

species from soil based enrichment with chitin.   

3. To compare the sensitivity of the two methods for detecting Lysobacter in soil. 

4. To use the two methods to assess the distribution of Lysobacter spp. and L. 

enzymogenes in soil within Nebraska. 
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Chapter 3 Materials and Methods 

Bacterial strains and culturing conditions 

All bacterial strains (Table 1) were obtained from Gary Yuen’s collection. They 

were stored at -75°C and cultured on tenth-strength tryptic soy agar (10% TSA) at 

28°C for 2 days before use.  

Development of a PCR based detection method for Lysobacter 

Lysobacter specific primers were designed by first aligning 16S ribosomal DNA 

sequences from 250 Lysobacter strains listed in GeneBank using ClustalW 

multiple alignment program (http://workbench.sdsc.edu/). Conserved sequences 

were screened according to the number of nucleotides (15-50 bp total length, 3-10 

binding length was desired), predicted size of the PCR product when the 

conserved sequences are paired with a universal reverse primer (350-1400 bp was 

desired), and location of conserved sequences (sequences at either 5’ or 3’ end of 

the 16S rDNA sequence map were excluded). Then, candidate sequences were 

searched for potential Lysobacter specificity (only Lysobacter shows in >85% 

identity) by nucleotide BLAST tool towards nr/nt nucleotide sequence database in 

NCBI website.  

(http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?CMD=Web&PAGE_TYPE=BlastH

ome). Finally, sequences with potential specificity and appropriate size were 

analyzed by MacVector primer design software (New Haven, CT) for primer 

quality.  Putative primers were synthesized from the candidate sequences by 
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Invitrogen (CA, USA). They were evaluated for specificity by using them as the 

forward primers, along with universal bacterial 1525R as the backward primer, in 

comparative PCR amplification of DNA from strains of Lysobacter spp, (L. 

enzymogenes C3, N4-7 and 495, L. antibioticus type strain UASM 3C) and other 

bacterial species (Stenotrophomonas maltophilia 34S1, 13270. 19867, 

Xanthomonas campestris pv. Campestris 2A49, Enterobacter cloacae E1, 

Escherichia coli XL1, and Bacillus pumilus INR7). The PCR reagents and 

conditions in these tests are reported in Table 2.  Lysobacter specific primer pairs 

will be discovered by only showing expected sized band in Lysobacter DNA 

amplification, but not in reactions with other bacterial species. 

 

One primer (L4) from above procedure identified to be specific to Lysobacter was 

used in PCR-based detection of Lysobacter in soil. DNA was extracted from 0.5 g 

amounts of soil using Mo Bio UltraClean Soil DNA Isolation Kit (Carlsbad, CA 

USA). Extracted DNA then was subjected to PCR amplification using L4 and a 

universal primer 1525R as the forward and backward primers, respectively. The 

existence of Lysobacter-indicative amplification products was confirmed by 

electrophoresis.  

Development of enrichment culturing method for isolating L. enzymogenes 

from soil 
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Common antibiotics were screened for effects on strains of L. enzymogenes and 

other bacterial species to identify those that could be used as selective agents in 

media. Filter discs (10 mm diameter) were saturated with aqueous solution of 

ampicillin, penicillin, tetracycline, kanamycin, rifampicin or streptomycin, each at 

50μg/ml or 200μg/ml. The disks were placed on the surface of agar plates on 

which strains of S. maltophilia or Lysobacter spp. (L. antibioticus, L. 

enzymogenes C3, N4-7, and 495) had been freshly transferred were cultured on 

media plates, on surface of which antibiotic filter discs were applied. The size of 

the growth inhibition zone developed around each disk was measured after 3 and 

6 days of incubation. 

 

Two substrates, chitin and yeast cells, were compared as carbon sources for 

growth of L. enzymogenes. Broth media containing ground chitin (Sigma, 

practical grade) or yeast cells (Red Star Active Dry Yeast, Milwaukee, WI) were 

prepared with 0.1, 0.25, 0.5, or 1.0 g of the carbon source in 1L double-distilled 

water and amended with the antibacterial drugs penicillin and kanamycin at 

50mg/L and the fungicidal drug cycloheximide at 100mg/L. To evaluate the 

media for enrichment of L. enzymogenes, strain C3R5 (a spontaneous rifampicin-

resistant mutant of C3) was added to an autoclaved soil to 0, 100, 101, 102 CFU/g, 

and then 50 ml volumes of each broth medium was seeded with 1 g of a soil 

sample. After 0, 3, and 6 days incubation (shaking under 28 °C), 200 µL of each 
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culture were spread on plates of 10%TSA amended with rifampicin and 

cycloheximide (TSARC) to confirm the presence of C3R5 in the broth cultures.  

Sensitivity comparison between detection methods 

Preliminary forms of the PCR based detection and enrichment isolation methods 

were compared for sensitivity in detecting L. enzymogenes in soil. Samples of raw 

and autoclaved soil were amended with strain C3R5 at cell concentrations varying 

in ten-fold increments from 1 to 105 CFU/g. The control was soil to which sterile 

water was added.  For the PCR based method, DNA was extracted from 0.5 g of 

soil, and the extract was PCR-amplified as described above using sequence L4 as 

the forward primer. Positive detection of Lysobacter was based on the presence a 

1,100 bp length PCR product in the electrophoresis. For the enrichment culture 

method, 1 g of soil sample was incubated in chitin broth, containing 0.5 g/L chitin 

for 3 days, and then spread or streaked onto TSARC. 

Comparison of PCR and enrichment culturing methods on field soil samples  

Soil samples were collected from 38 Nebraska sites within 21 counties with 

different plant cover, including turfgrass, agricultural crops (wheat, dry bean, corn, 

sorghum, sunflower and etc.) and forest (Table 3). One to 3 samples were 

collected from each site, with a total of 58 samples being collected.  Each sample 

was taken from plant root area, containing two scoops (200 gram) of soil, with 

little to no root material, by a hand trowel and pooled together. Each soil sample 

were mixed, sealed and refrigerated before processing. Each sample was analyzed 
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once by the two detection methods. If a method failed to detect Lysobacter in a 

soil sample, then the process was repeated using another subsample of the same 

soil. The PCR based detection method was applied as described above. The 

enrichment culturing method involved drug-amended chitin broth, with 0.5 g/L 

ground chitin, as the enrichment medium and yeast-cell agar (YCA; 18 g Sigma 

agar, 5 g active dry yeast in 1 L ddH2O, autoclave for 40 min add 50 mg/l 

penicillin, 50 mg/l kanamycin, and 100 mg/l cycloheximide) as the isolation 

medium. After 1 g of a soil sample was cultured in 50 ml chitin broth with 

shaking for 3 days, a loopful of the broth was streaked on a YCA plate. After 3 

days, bacterial colonies surrounded by clear zones in which yeast cells were 

digested were purified by streaking on new YCA plates three times to get single 

colonies. Then non-Lysobacter isolates were eliminated using by a series of 

physiological tests (Table 4) as described in Schaad et al., 2001. 

 

Putative Lysobacter isolates were cultured in Luria-Bertani broth and total DNA 

was extracted using UltraClean Microbial DNA Isolation Kit (Mo Bio 

Laboratories, Inc.). Universal bacterial primers 27F and 1525R were used for 

PCR amplification of 16S rDNA. Universal bacterial primers 27F and 530F were 

used for sequencing. Samples of amplified DNA were sequenced by Center for 

Biotechnology, UNL, and the results were subjected to BLAST search to 

determine the closest identity.  
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Chapter 4 Results 

PCR based detection method for Lysobacter 

When 16S ribosomal DNA sequences from 250 Lysobacter strains were aligned 

and examined, six potential primer sequences are found to be conserved with 

appropriate size and location. These sequences are list below (location in C3 16S 

rDNA sequence map shown in Fig. 1).  

L1: 3’-TGTTGGGGGCAACTTGGCCCTCA; 

L2: 3’-CCTTGGGTGGCGAGTGGCGGACGGGTGAGGAATACG; 

L3: 3’-TCGGAATCTGCCTATTTGTGGGGGATAAC; 

L4: 3’-GAGCCGACGTCGGATTAGCTAGTT; 

L5: 3’-GAGGAACATCTGTGGCGAAGGCGAC; 

L6: 3’-TACTAGAGTGCGGTAGAG. 

 

As shown in Fig. 2, all 6 potential conserved regions are in bacterial 

hypervariable region site (Neefs, et al. 1990), which suggests big chance to find 

Lysobacter specific sequence among those six candidates. Using each of these 

sequences separately as a forward primer, with 1525 universal bacterial primer as 

the reverse primer, in PCR amplification of 16S rDNA from Lysobacter spp. and 

other bacterial genera, sequence L4 was found to exclusively amplify DNA from 
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Lysobacter strains, producing a 1,100 bp product as revealed in electrophoresis 

(Fig. 3 and 4). Amplification using the other 5 sequences as primers produced 

non-specific PCR product from DNA of other bacteria strains as well as 

Lysobacter spp. Based on alignment between Lysobacter strains and closely 

related species Stenotrophomonas maltophilia around L4 area in 16S rDNA 

sequence, L4 shows high specific conservation in Lysobacter strains, but not in S. 

maltophilia, which has multiple nucleotide variations (Fig. 5).  

 

Based on the initial results with L4, an experiment was conducted in which the 

primer was used to amplify DNA extracted from six field soil samples in which 

the existence of Lysobacter spp. was suspected. For nearly all of the soil samples 

tested, either a 1,100 bp band or no PCR product was found in the electrophoresis. 

The exception was a 1,500 bp band amplified from one soil (Fig. 6). Upon 

sequencing of the DNA in these bands, the 1,100 bp bands were found to be 

Lysobacter. Using 1525R as primer, the 1,500 bp band corresponded to 

Stenotrophomonas maltophilia (92% identity) by sequencing and BLAST search. 

Enrichment culturing for L. enzymogenes  

In the screening of antibacterial drugs for activity against L. enzymogenes and 

other bacterial species, all strains of L. enzymogenes, L. antibioticus, and 

Stenotrophomonas maltophilia were insensitive to penicillin and kanamycin at 
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200 mg/L. Therefore, these antibiotics, along with the fungicide cycloheximide, 

were added to all subsequent media used in culturing L. enzymogenes from soil.  

 

In comparing chitin and yeast cells as carbon substrates for enrichment culturing 

of L. enzymogenes C3R5 from soil, the two substrates were similarly effective in 

enriching populations of C3R5 so that it could be detected by growth on TSARC. 

For either substrate, 0.5 g/L as sufficient for use in a broth form. Both required 

that the L. enzymogenes population in the soil be at least 100 CFU/g. (Table 5)  

 

Because chitinolysis is one distinguishing feature of L. enzymogenes (Christensen 

& Cook 1978) and yeast cells, which contain high concentrations of proteins and 

other carbohydrates, is presumably a much less exclusive substrate, chitin was 

chosen as the carbon source for the enrichment broth, while yeast cells was used 

as the carbon source in the agar medium (YCA) for isolating chitinolytic bacteria 

growing in the enrichment broth. 

Comparative sensitivity of enrichment culturing and PCR in detecting L. 

enzymogenes in soil 

When the two methods were used to assay the same soils containing various cell 

concentrations of L. enzymogenes C3R5, PCR amplification using sequence L4 as 

a primer was much more sensitive in detecting C3R5. As in the previous 
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experiment, populations of C3R5 higher than 102 CFU/g could be cultured and 

isolated from a sterilized soil, but effective culturing of C3R5 added to raw soil 

required that its population be at least 104 CFU/g (data not shown). The PCR 

method on the other hand, could detect C3R5 in sterilized or raw soil at 

populations as low as 102 CFU/g (Fig. 7).  

Validation of enrichment culturing and PCR methods using Nebraska field 

soils 

PCR was more effective of the two methods in detecting Lysobacter spp. in field 

soil samples (Table 6). Two rounds of DNA extraction and PCR amplification 

were required for the PCR method. In the first round, Lysobacter was detected in 

19 (33%) of the 58 samples by PCR. A second round of PCR amplification  on 

soil samples that were negative  in the first round more than doubled the total 

number of PCR-positive samples to 40 (69% of all samples). In contrast, only 6 

(10%) of the 58 soil samples proved positive for Lysobacter by enrichment 

culturing, five of these were in the first round and in samples that were also 

positive by PCR.  One soil sample (number 51) was positive by the enrichment 

culturing method but not by the PCR method. Out of 15 strains of Lysobacter 

isolated from the six soil samples, all were classified as L. enzymogenes related 

based on >95% identity in 16S rDNA sequence with known strains except for one 

strain that was more closely related to  L. antibioticus and L. gummosus (97% and 

96 % identity, respectively). 
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The distribution of Lysobacter and L. enzymogenes in soil within Nebraska  

Lysobacter spp. and L. enzymogenes appeared to be generally distributed 

throughout Nebraska in that positive soil samples were not restricted to any 

particular region in the state. However, detection number for grass field sample is 

24 out of 31, whereas 17 out of 27 for non-grass samples (Fig. 8). Based on chi-

square test, probability is only 0.1891, which suggests that detection numbers for 

those two sample types are significantly different, and detection in grass samples 

is more frequent. The genus and species, however, were not found in all areas of 

the state, nor were they found in all of the multiple samples collected from any 

given area. 

 

Sample 27 yielded a strain of L. enzymogenes and also strain that was equally 

identical to L. gummosus and L. antibioticus by way of its 16S rDNA sequence. 

The remaining 13 strains of Lysobacter isolated from Nebraska soil corresponded 

to L. enzymogenes. Since enrichment culturing method is biased towards L. 

enzymogenes, it is not surprising that most isolates are related with L. 

enzymogenes. Relationships between 16S rDNA sequences of isolates and known 

Lysobacter species was studied by phylogeny analysis (Dereeper et al. 2008) 

using HKY85 model (Fig. 9).  From phylogeny analysis result, there is no clear 

correlation between subgroups and different plant cover types, or geographic 

locations. 
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Table 1. Bacterial strains used in this study. 

Bacterial Species Strain 
Lysobacter enzymogenes  C3 
L.  enzymogenes C3R5 
L.  enzymogenes OH11 
L.  enzymogenes N4-7 
L.  enzymogenes 495 (type strain) 
Lysobacter antibioticus UASM 3C (type strain) 
Stenotrophomonas maltophilia 34S1 
Stenotrophomonas maltophilia 13270 
Stenotrophomonas maltophilia 19867 
Enterobacter cloacae  E1 
Escherichia coli  XL1 
Xanthomonas campestris pv. campestris A249 
Bacillus pumilus INR7 
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Table 2. PCR reagents and conditions in these tests are reported in  

PCR reagents PCR cycles 
ddH2O: 37μL 
10XPCR Buffer: 5μL 
dNTP: 1μL 
Taq DNA polymerase: 0.5μL 
MgCl2: 2.5μL 
Primer 27F: 1μL 
Primer 1525R: 1μL 
Taq DNA polymerase: 0.5μL 
DNA Template: 2μL 

Lid temperature: 105°C 
1: T=94°C  0:1:00  
2: T=94°C  0:00:15 
3: T=52°C  0:00:30  
4: T=72°C  0:02:00 
2-4 repeat 30 cycles 

5: T=72°C  07:00 
6: Hold, 4°C 

PCR reagents sources 
Taq DNA polymerase, Recombinant (Invitrogen Catalog #: 10342-020) 
 100 mM dNTP (Invitrogen Catalog #: Set 10297-018)  
1 Kb Plus DNA Ladder™ (Invitrogen Catalog #: 10787-018) 
TrackIt™ Cyan/Orange Loading Buffer (Invitrogen Catalog #: 10482-028) 
Universal bacterial primer 27F: AGAGTTTGATCCTGGCTCAG (20mM) 

(Invitrogen) 
Universal bacterial primer 1525R: AGGAGGTGATCCAGCC (20mM) (Invitrogen) 
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Table 3. Soil samples collected from Nebraska locations and tested for presence of Lysobacter spp. 

Sample 
number(s) 

Location  County Plant cover  Collection 
Date 

1,4,6 Halsey National forest  Thomas Grasses under conifer trees 10/2006 

2,3,5 Halsey National forest  Thomas Grasses  10/2006 

7 Barlette Wheeler Grasses 5/2007 

8 Chambers Holt Grass with trees 5/2007 

9 Spalding Greeley Grass with trees 5/2007 

10 St. Edward Boone Grasses  5/2007 

11 Silver creek Merrick Grasses 5/2007 

12 Shelby Polk Corn, previously soybean 5/2007 

13 Shelby Polk Grasses 5/2007 

14-16 Sand Hills area Valley Grasses  6/2007 

17, 18 Scottsbluff Scottsbluff Potato  8/2007 

19- 21, 28, 
31 

Scottsbluff Scottsbluff Sugarbeet 8/2007 

22, 29 Scottsbluff Scottsbluff Corn (100 year continuous culture) 8/2007 

23, 24 Halsey National forest Thomas Grassland under trees 8/2007 

25-27, 30, 
33, 35, 37 

Scottsbluff Scottsbluff Dry bean 8/2007 

32 Scottsbluff Scottsbluff Conifer trees  8/2007 

34 Scottsbluff  Scottsbluff Grasses near corn field 8/2007 

36 Scottsbluff  Scottsbluff Sunflower  8/2007 

38-40 Mead Saunders Kentucky bluegrass lawn 6/2008 

41 Cherry Cherry Corn field w/ nematode, previously 
in grasses 

6/2008 

42 Box Butte Box Butte Grasses 6/2008 
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43 Box Butte Box Butte Wheat w/ bacterial spot 6/2008 

44 Cherry Cherry Sand hills grasses near corn field 6/2008 

45 Cherry Cherry Corn 6/2008 

46 Box Butte Box Butte Grasses 6/2008 

47,48 Ashfall State Park Antelope Grasses 6/2008 

49 Beatrice Gage Grasses near wheat field 10/2008 

50 Fairbury Jefferson Soybean; previously in corn  10/2008 

51 Hebron Thayer Soybean (outside of grassland) 10/2008 

52 Red Cloud Webster Fallow; previously wheat 10/2008 

53 Naponee Franklin Grasses 10/2008 

54 Alma Harlan Sorghum  10/2008 

55 Alma Harlan Grasses near sorghum field 10/2008 

56 McCook Red 
Willow 

Sorghum 10/2008 

57 McCook Red 
Willow 

Grasses near sorghum field 10/2008 

58 Nelson Nuckolls Grasses 10/2008 
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 Table 4. Bioassay tests and expected results 

Tests Lysobacter  Non-Lysobacter 

Growth @ 28°C and 37°C 28°C (No or min. growth 
@37°C) 

37°C (No or min. growth 
@28°C) 

KOH test (3% KOH 
solution) 

+ (Gram -) - (Gram -) 

Oxidase activity test + - 

Flagella motility test - + 

Gliding motility + - 
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Table 5. Result for detecting C3R5 from soil using Yeast and Chitin Broth. 

 Yeast Broth (g/L) Chitin Broth (g/L) 

     Concentration 
 

 
Population in soil 

0 0.1 0.25 0.5 1.0 0 0.1 0.25 0.5 1.0 

CFU/g 

  
Days 

 
Strain 

0  3  6 0  3  6 0  3  6 0  3  6 0  3  6 0  3  6 0  3  6 0  3  6 0  3  6 0  3  6 

0 C3R5 -  -  - -  -  - -  -  - -  -  - -  -  - -  -  - -  -  - -  -  - -  -  - -  -  - 
1 C3R5 -  -  - -  -  - -  -  - -  -  - -  -  - -  -  - -  -  - -  -  - -  -  - -  -  - 
10 C3R5 -  -  - -  -  - -  -  - -  -  - -  -  - -  -  - -  -  - -  -  - -  -  - -  -  - 
100 C3R5 -  -  - -  -  - -  -  + -  +  + -  +  + -  -  - -  -  - -  -  - -  +  + -  +  + 
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Table 6. Effectiveness of PCR and enrichment culturing methods in detecting Lysobacter 

spp. in 58 soil samples. 

 

Category 

Number of samples after 

1 round (% of total) 

Total number of 

samples after 2 rounds 

(% of total) 

1. Positive by PCR/ negative by culturing 14  (24) 35  (60) 
2. Positive by culturing/ negative by PCR   0   (0)   1   (2) 
3. Positive by PCR and culturing   5   (9)   5   (9) 
4. Negative by PCR and culturing  39  (67) 12  (21) 
   

Total positive by PCR (=sum of 
categories 1 and 3) 

19  (33) 40  (69) 

Total positive by culturing (=sum of 
categories 2 and 3) 

   5  (9)   6  (10) 
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Table 7. Occurrence of Lysobacter spp. based on plant cover. 

Plant cover Postive/negative for 
Lysobacter 

Number of samples Sample location 
number (identified 
in Table 3) 

Grasses Positive 24 1, 2, 3, 4, 6, 9, 14-
16, 23, 24, 38*, 39, 
40*, 42, 44, 46-49, 
53*, 55, 57, 58 

Grasses Negative 7 5, 7, 8, 10, 11, 13, 
34 

    
Cereals (corn, 
sorghum, wheat) 

Positive 5 22, 29, 41, 45, 56* 

Cereals (corn, 
sorghum, wheat) 

Negative 4 12, 43, 52, 54  

Other (common 
bean, conifer, potato 
soybean, sugarbeet, 
sunflower) 

Positive 12 18, 21, 25, 26, 27*, 
30, 31, 32, 33, 35, 
37, 50 

Other (common 
bean, conifer, potato 
soybean, sugarbeet, 
sunflower) 

Negative 6 17, 19, 20, 28, 36, 
51# 

    Total non-grasses Positive 17  
    Total non-grasses Negative 10  
*, # indicate positive detection of Lysobacter spp. by PCR and enrichment culture and by 
enrichment culturing only. All other Lysobacter-positive were positive by way of PCR 
only.  
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Figure 1. Six potential Lysobacter conserved sequences in L. enzymogenes N4-7 16S 

rDNA map (L1: green, 855-877; L2: light blue, shared partially with L4, 237-262; L3: 

red, 148-176; L4: dark blue, shared partially with L2, 254-277; L5: purple, 735-759; L6: 

orange, 673-690), and 1525R universal bacterial primer (in yellow and red). 

  



30 
 

 

 Figure 2. Six potential Lysobacter conserved sequences in bacterial hypervariable 

regions map within the 16S rRNA gene (Neefs et al. 1990).
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Figure 3. Electrophesis gel with products from amplification by L4 and 1525R universal 

primer of 16S rDNA from Lysobacter enzymogenes strain C3, N4-7, OH11, and 495, 

Lysobacter antibioticus (LA), Stenotrophomonas maltophilia strain 34S1(SM) and 

Escherichia coli (EC). 
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Figure 4. Amplification by L4 and 1525R from 16S rDNA of Lysobacter enzymogenes 

strain C3 and N4-7 495, Xanthomonas campestris pv. campestris strain A249, 

Stenotrophomonas maltophilia strain 13270 and 19867, Enterobacter cloacae strain E1 

and Bacillus pumilus strain INR7. 
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Figure 5. Alignment in L4 sequence area between Lysobacter strains (L.e 495: L. 

enzymogenes 495; LeC3: L. enzymogenes C3; L.e.OH11: L. enzymogenes OH11; 

L.antibiot: L. antibioticus; L.gummosus: L. gummosus; L.koreensi: L. koreensis; 

L.brunesce: L. brunescens; L.c.ko07: L. concretionis Ko07; L.daejeone: L. daejeonensis) 

and closely related species Stenotrophomonas maltophilia (S.maltoph). Red indicates 

mostly conserved nucleotide, and blue shows variable nucleotide.  
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Figure 6. L4 with 1525R used to amplify DNA extracted from six field soil samples (S1-

S6) with C3 as control. 
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Figure 7. PCR Detection of different concentration of C3R5 in sterile soil by using L4 
and 1525R.  
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Figure 8. Soil sampling locations; number of soil samples with Lysobacter detected by 
PCR (red), and enrichment culture (blue) and total number of samples collected (black). 
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Figure 9. Phylogenetic analysis (model: HKY85) of 15 strains of Lysobacter species 

isolated from Nebraska soils (Lysobacter isolate 1-15, with source sample number 27, 38, 

40, 51, 53, 56) and nine reported strains from seven species (values in red indicate branch 

support values). 
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Chapter 5 Discussion 

Since the original description of Lysobacter by Christiansen and Cook (1978), 

there have been are no reported population studies that focused on the genus 

Lysobacter or any species within this genus. The occurrence of Lysobacter spp. 

was revealed in some studies on soil bacterial community structure or diversity 

studies (Lee et al. 2006, Schmalenberger and Tebbe 2003, Sigler and Turco 2002, 

Moyer et al. 1995, Ikner et al 2007), but conclusions cannot be drawn from 

diversity studies that did not mention Lysobacter spp. because such studies tend to 

be biased to the most numerous organisms and involve small sample numbers. 

This study is the first to focus on Lysobacter spp. population and geographic 

distribution.   

 

This study is the first to employ a DNA-based detection method developed 

specifically for Lysobacter spp. This DNA based detection method proved to be 

very sensitive in detecting Lysobacter from soil. Similar methods have been used 

in investigating other common bacteria in soil. For example, Scarpellini et al. 

(2004) and Sanguin et al. (2008) designed Pseudomonas specific primers and 

amplified 16S rDNA of extracted DNA from bacterial suspensions or rhizosphere 

soil to assess population structure of Pseudomonas. In another study, populations 

of Bacillus spp. in forest soils were analyzed by amplifying 23S rDNA and 16S 

rDNA from soil samples using Bacilli-specific primer sets (Ji et al 2007). Even 
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though it is proved that PCR detection method is much more sensitive than 

enrichment culturing method, there is one soil sample detected only by 

enrichment culturing method. However, by PCR using L4, the isolate from this 

soil sample can be verified. The failure of PCR to detect Lysobacter in this 

particular soil sample may be caused due to insufficient subsampling. Another 

interesting fact is that enrichment culturing method is more sensitive in detecting 

C3R5 in sterile soil than in raw soil. For culturing method, there was a 3 day 

culturing period, during which different rates of population change in the soil 

could account for the different level of sensitivity. A possible reason is that in raw 

soil, existed microorganisms are still present during this period, so there is more 

severe competition for Lysobacter to survive in it. Higher initial population may 

help Lysobacter’s survival, which also results in detection. 

  

The PCR detection method used in this study has some limitations. First, the 

primer used in DNA based method is genus specific; DNA sequences conserved 

only in L. enzymogenes could not be found. Second, because of the non-uniform 

distribution of bacteria in soil and the small amount of soil that can be extracted 

for DNA, multiple subsamples of a soil sample must be extracted. We have not 

examined the benefits of extracting more than two subsamples from each soil 

sample; it is conceivable that more subsamples would improve detection accuracy 

but would also greatly increase the time and cost per sample. Third, the method 

does not provide a living culture for further study.   
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Because many bacterial genera in soil have similar nutritional and drug-resistance 

characteristics as Lysobacter, it was not possible to create a medium that is highly 

specific for the genus. Therefore, we had to first culture a spectrum of organisms 

from field samples and then identify the cultured organisms through physiological 

and genetic characterization, a strategy commonly used in studying populations 

and diversity of other soilborne bacteria (van Elsas et al. 1998). Our isolation 

method was made more specific for L. enzymogenes through the use of antibiotics. 

This was reflected in the fact that we isolated only one strain of Lysobacter that 

was not L. enzymogenes. The bias of the isolation method for L. enzymogenes 

may be one reason why we were not able to isolate members of the genus from 

most of the soil samples that were Lysobacter positive in the PCR assay. 

Alternatively, the culturing method has much lower sensitivity than the PCR 

method and populations of Lysobacter in the soils may have been too low to be 

isolated. Yet another possible explanation is that the populations were in a viable 

but non-culturable state. This physiological state may occur when bacterial cells 

are subjected to changes in temperature, nutrients, pH, or other conditions 

(Colwell 2000, Oliver 2005). The dissimilarity in our results using the two 

methods are in line with those from microbial diversity studies  (Ikner et al 2007, 

Lee et al. 2006) that indicated the presence of Lysobacter spp. in soils using DNA 

based techniques but were not successful in culturing the organism from the same 

soils.  
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Despite the limitations inherent in each of the two methods used in this study, 

each method is specific to a taxonomic group and, when used together, are 

complementary. By using these two methods and assaying systematically-

collected samples, we can conclude with greater confidence where Lysobacter 

and L. enzymogenes do or do not occur. Although not all areas in Nebraska were 

sampled in this study and sample numbers were low in some locations, we can 

conclude from the detection of Lysobacter in 71% of samples that the genus 

relatively wide-spread throughout the state.  By mapping the geographic 

distribution of Lysobacter within Nebraska we conclude that is not restricted by 

soil type. Plant cover appears to have an influence as Lysobacter was detected at a 

higher frequency in samples from areas with perennial grass cover than non-grass 

areas. It may be due to the continuous presence of live roots in perennial grasses 

providing a stable environment for microorganisms. In contrast, the plant root 

system in agricultural soils is disturbed each year so that the rhizosphere 

environment is dramatically changed frequently, which may be not conducive for 

Lysobacter population growth.  

 

It remains to be determined whether biotic and abiotic factors affect populations 

of Lysobacter in a quantitative manner. Because L. enzymogenes was confirmed 

in so few locations, further work is necessary before conclusions about the species 
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can be drawn, but our preliminary evidence suggests that there are subpopulations 

of the species within the state.  

 

By assessing population structure and distribution of Lysobacter in nature, the 

role of Lysobacter in the microbial community, as well as its interactions with 

other organisms including plants, can be better understood. Ultimately, this may 

lead to strategies to conserve and enhance its populations in the field and thereby 

help improve the utilization of Lysobacter for biocontrol. 



 
 

Chapter 6 Reference 

1. Ahmed, K., Chohnan, S., Ohashi, H., Hirata, T, Masaki, T., Sakiyama, F. 2003. 
Purification, bacteriolytic activity, and specificity of β-lytic protease from 
Lysobacter sp. IB-9374. Journal of Bioscience and Bioengineering 95:27-34. 
 

2. Aslam, Z., Yasir, M., Jeon, C., Chung, Y. 2009. Lysobacter oryzae sp. nov., 
isolated from the rhizosphere of rice (Oryza sativa L.). Journal of Systematic and 
Evolutionary Microbiology 59: 675-680. 

 
3. Bae, H. et al. 2005. Lysobacter concretionis sp. nov., isolated from anaerobic 

granules in an upflow anaerobic sludge blanket reactor. International Journal of 
Systematic and Evolutionary Microbiology 55: 1155–1161. 

 
4. Banyko, J., Vyletelova, M. 2009. Determining the source of Bacillus cereus and 

Bacillus licheniformis isolated from raw milk, pasteurized milk and yoghurt. 
Letters in Applied Microbiology 48: 318–323. 
 
 

5. Begunova, E., Stepnaya, O., Tsfasman, I., Kulaev, I. 2004. The effect of the 
extracellular bacteriolytic enzymes of Lysobacter sp. on gram-negative bacteria. 
Microbiology;73:267–70. 

 
6. Binnerup, S., et al. 1993. Detection of viable, but non-culturable Pseudomonas 

fluorescens DF57 in soil using a microcolony epifluorescence technique. FEMS 
Microbiology Ecology 12 (2): 97-105. 
 

7. Blackmoore, M., Patel, N., Hillman, B., Kobayashi, D. 2009. Involvement of type 
IV secretion in Lysobacter enzymogenes pathogenesis of fungal and algal hosts. 
2009 APS Annual Meeting. 
 

8. Blaschek, W., Kaesbauer, J., Kraus, J., and Franz, G. 1992. Pythium 
aphanidermatum culture cell-wall composition and isolation and structure of 
antitumour storage and solubilised cell-wall 1-3-β-D-glucans. Carbohydrate 
Research 231:293-307. 
 

9. Chen, J., Moore, W., Yuen, G., Kobayashi, D., Caswell-Chen, E. 2006. Influence 
of Lysobacter enzymogenes strain C3 on nematodes. Journal of Nematology 38: 
233-239. 

 
10. Christensen, P. & Cook, F. D. (1978). Lysobacter, a new genus of nonfruiting, 

gliding bacteria with a high base ratio. International Journal of Systematic 
Bacteriology 28: 367–393 
 

11. Christensen, P. 2001. Genus IV Lysobacter Christensen and Cook 1978. In 



 
 

Bergey's Manual of Systematic Bacteriology ed. Brenner, D., Krieg, N., Staley, J. 
pp. 95–101. New York: Springer. 
 

12. Chohnan, S., Nonaka, J., Teramoto, K., Taniguchi, K., Kameda, Y., Tamura, H., 
et al. 2004. A second lysine-specific serine protease from Lysobacter sp. strain 
IB-9374. Journal of Bacteriology 186:5093-100. 
 

13. Cikwell, R. 2000. Viable but nonculturable bacteria: a survival strategy. Journal 
of Infection and Chemotherapy Vol. 6 (2): 121-125. 

 
14. Costa, R., et al. 2006. Diversity and antagonistic potential of Pseudomonas spp. 

associated to the rhizosphere of maize grown in a subtropical organic farm. Soil 
Biology & Biochemistry 38: 2434–2447. 
 

15. Colwell, R. 2000. Viable but nonculturable bacteria: a survival strategy. Journal 
of Infection and Chemotherapy 6: 121-125. 

 
16. Dereeper, A., et al. 2008. Phylogeny.fr: robust phylogenetic analysis for the non-

specialist. Nucleic Acids Research 36 (Web Server Issue): W465-9. Epub 2008 
Apr 19.  
 

17. Ensign, J., Wolfe, R. 1965. Lysis of bacterial cell walls by anenzyme isolated 
from a Myxobacter. Journal of Bacteriology 90: 395-402. 
 

18. Ensign, J., Wolfe, R. 1966. Characterization of a small proteolytic enzyme which 
lyses bacterial cell walls. Journal of Bacteriology 91: 524-34. 
 

19. Folman, L., Postma, J., van Veen, J. 2003. Characterisation of Lysobacter 
enzymogenes (Christensen and Cook 1978) strain 3.1T8, a powerful antagonist of 
fungal diseases of cucumber. Microbiological Research 158: 107-115. 
 

20. Folman, L., De Klein, M., Postma, J.,Van Veen, J. 2004. Production of antifungal 
compounds by Lysobacter enzymogenes isolate 3.1T8 under different conditions 
in relation to its efficacy as a biocontrol agent of Pythium aphanidermatum in 
cucumber. Biological Control 31: 145–154. 
 

21. Giesler, L., and Yuen, G. 1998. Evaluation of Stenotrophomonas maltophilia 
strain C3 for biocontrol of brown patch disease. Crop Protection 17:509-513. 

 
22. Hayward, A., Fegan, N., Fegan, M., Stirling, G. 2009. Stenotrophomonas and 

Lysobacter: ubiquitous plant-associated gamma-proteobacteria of developing 
significance in applied microbiology. Journal of Applied Microbiology, Online 
Published: 13 Jul 2009. 

 
23. Ikner, L., et al. 2007. Culturable Microbial Diversity and the Impact of Tourism 

in Kartchner Caverns, Arizona. Microbial Ecology 53: 30–42. 



 
 

 
24. Ji, S., et al. 2007. Metagenomic analysis of BTEX-contaminated forest soil 

microcosm. Journal of Microbiology and Biotechnology. Vol. 17 (4): 668-672. 
 

25. Jiang, Y., Hu, B., Liu, F. 2005. Selection and Identification of Antagonistic 
Bacteria against Soil borne Plant Pathogens. Chinese Journal of Biological 
Control 21 (4): 260-264. 
 

26. Jung, H., Ten, L., Im, W., Yoo, S., Lee, S. 2008. Lysobacter ginsengisoli sp. nov., 
a novel species isolated from soil in Pocheon Provincve, South Korea. Journal of 
Microbiology and Biotechnology 18 (9): 1496-1499. 

 
27. Khan, I., and Yadav, J. 2004. Real-time PCR assays for genus-specific detection 

and quantification of culturable and non-culturable mycobacteria and 
pseudomonads in metalworking fluids. Molecular and Cellular Probes 18: 67–73. 
 

28. Kato, A., Nakaya, S., Ohashi, Y., Hirata, H. 1997. WAP-8294A2, a novel anti-
MRSA antibiotic produced by Lysobacter sp. Journal of the American Chemical 
Society 119: 6680-6681. 
 

29. Kato, A., Nakaya, S., Kokubo, N., Aiba, Y. 1998. A New Anti-MRSA Antibiotic 
Complex, WAP-8294A. The Journal of Antibiotics 51(10): 929-935. 
 

30. Katznelson, H., Gillespie, D., Cook, F. 1964. Studies on the relationships between 
nematodes and other soil microorganisms. Canadian Journal of Microbiology 10: 
699-704. 
 

31. Kilic-Ekici, O. and Yuen, G. 2003. Induced resistance as a mechanism of 
biological control by Lysobacter enzymogenes strain C3.Phytopathology 93: 
1103-10. 
 

32. Kilic-Ekici, O., and Yuen, G. 2004. Comparison of strains of Lysobacter 
enzymogenes and PGPR for induction of resistance against Bipolaris sorokiniana 
in tall fescue. Biological Control 30: 446-455.  
 

33. Kim, J., and Crowley, D. 2007. Microbial Diversity in Natural Asphalts of the 
Rancho La Brea Tar Pits. Applied and Environmental Microbiology July: 4579–
4591. 

 
34. Kobayashi, D., and El-Barrad, N. 1996. Selection of bacterial antagonists using 

enrichment cultures for the control of summer patch disease in Kentucky 
bluegrass. Current Microbiology 32, 106–110. 
 

35. Kobayashi, D., et al. 2005. A clp gene homologue belonging to the Crp gene 
family globally regulates lytic enzyme production, antimicrobial activity, and 
biological control activity expressed by Lysobacter enzymogenes strain C3. 



 
 

Applied and Environmental Microbiology 71: 261–269. 
 

36. Lee, J, et al. 2006. Lysobacter koreensis sp. nov., isolated from a ginseng field. 
International Journal of Systematic and Evolutionary Microbiology 56: 231–235. 

 
37. Lee, M., et al. 2006. Dominance of Lysobacter sp. in the rhizosphere of two 

coastal sand dune plant species, Calystegia soldanella and Elymus mollis. Antonie 
van Leeuwenhoek 90:19-27. 
 

38. Li, S., Du, L., Yuen, G., and Harris, S. 2006. Distinct ceramide synthases regulate 
polarized growth in the filamentous fungus Aspergillus nidulans. Molecular 
Biology of the Cell 17: 1218–1227. 
 

39. Moyer, C., et al. 1995. Phylogenetic Diversity of the Bacterial Community from a 
Microbial Mat at an Active, Hydrothermal Vent System, Loihi Seamount, Hawaii. 
Applied and Environmental Microbiology Apr.: 1555–1562. 
 

40. Nakayama, T., Homma, Y., Hashidoko, Y., Mizutani, J., Tahara, S. 1999. 
Possible role of xanthobaccins produced by Stenotrophomonas sp. strain SB-K88 
in suppression of sugar beet damping-off disease. Applied Environmental 
Microbiology 65: 4334-4339. 
 

41. Neefs, J., Van De Peer, Y., Hendriks, L. and De Wachter, R. (1990) Compilation 
of small ribosomal subunit RNA sequences.  Nucleic Acids Resarch, 18: 2237-
2317. 

 
42. Oliver, J. 2005. The viable but nonculturable state in bacteria. The Journal of 

Microbiology vol. 43, special issue: 93-100. 
 

43. Palumbo J., et al. 2005. Mutagenesis of b-1,3-glucanase genes in Lysobacter 
enzymogenes strain C3 results in reduced biological control activity towards 
Bipolaris leaf spot of tall fescue and Pythium damping off of sugarbeet. 
Phytopathology 95:701-707. 
 

44. Palumbo, J., Sullivan, R., Kobayashi, D. 2003. Molecular characterization and 
expression in Escherichia coli of three b-1,3-glucanase genes from Lysobacter 
enzymogenes strain N4-7. Journal of Bacteriology 185: 4362-70. 
 

45. Park, J., Kim, R., Aslam, Z., Jeon, C., Chung, Y. 2008. Lysobacter capsici sp. 
nov., with antimicrobial activity, isolated from the rhizosphere of pepper, and 
emended description of the genus Lysobacter. International Journal of Systematic 
and Evolutionary Microbiology 58, 387-392. 
 

46. Patel, N., Blackmoore, M., Hillman, B., Kobayashi, D. 2009. Evidence for the 
role of Type VI secretion during Lysobacter enzymogenes pathogenesis of fungal 
hosts. 2009 APS Annual Meeting. 



 
 

 
47. Pellett, S. Bigley, D., Grimesi, D. 1983. Distribution of Pseudomonas aeruginosa 

in a Riverine. Applied and Environment Microbiology Vol 50 No 1: 328-332. 
 

48. Peterson, E., Gillespie, D., Cook, F. 1966. A wide spectrum antibiotic produced 
by a species of Sorangium. Canadian Journal of Microbiology 12: 221-30. 

 
49. Picard, C., Bosco, M. 2008. Genotypic and phenotypic diversity in populations of 

plant-probiotic Pseudomonas spp. colonizing roots. Naturwissenschaften 95:1–16. 
 

50. Postma, J., Stevens, L., Wiegers, G., Davelaar, E., Nijhuis, E. 2009. Biological 
control of Pythium aphanidermatum in cucumber with a combined application of 
Lysobacter enzymogenes strain 3.1T8 and chitosan. Biological Control 48 (3): 
301-309. 
 

51. Reedy, R., kobayashi, D. 2003. Induction of the type III secretory pathway in the 
biocontrol bacterium Lysobacter enzymogenes strain C3 in the presence of fungal 
cell wall constituents. 2003 APS Annual Meeting. 
 

52. Romanenko, L., et al. 2008. Lysobacter spongiicola sp. nov., isolated from a 
deep-sea sponge. International Journal of Systematic and Evolutionary 
Microbiology 58, 370-374. 

 
53. Sanguin, H., et al. 2008. Development of a 16S rRNA microarray approach for 

the monitoring of rhizosphere Pseudomonas populations associated with the 
decline of take-all disease of wheat. Soil Biology & Biochemistry 40: 1028–1039. 

 
54. Scarpellini, M., Franzetti, L., and Galli, A. 2004. Development of PCR assay to 

identify Pseudomonas fluorescens and its biotype. FEMS Microbiology Letters 
236: 257–260. 

 
55. Schaad, N., Jones, J., and Chun, W. (2001). Laboratory guide for identification of 

plant pathogenic bacteria. Third Edition. 
 

56. Schmalenberger, A. and Tebbe, C. 2003. Bacterial diversity in maize rhizospheres: 
conclusions on the use of genetic profiles based on PCR-amplified partial small 
subunit rRNA genes in ecological studies. Molecular Ecology 12: 251-262. 

 
57. Sessitsch, A., Kan, F., and Pfeifer, U. 2003. Diversity and community structure of 

culturable Bacillus spp. populations in the rhizospheres of transgenic potatoes 
expressing the lytic peptide cecropin B. Applied Soil Ecology 22: 149–158. 

 
58. Sigler, W., and Turco, R. 2002. The impact of chlorothalonil application on soil 

bacterial and fungal populations as assessed by denaturing gradient gel 
electrophoresis. Applied Soil Ecology 21: 107–118. 

 



 
 

59. Sullivan, R., et al. 2003. Taxonomic positioning of two biological control agents 
for plant diseases as Lysobacter enzymogenes based on phylogenetic analysis of 
16S rDNA, fatty acid composition and phenotypic characteristics. Journal of 
Applied Microbiology 94:1079-1086. 

 
60. Tarnawski, S. et al. 2003. Examination of Gould’s modified S1 (mS1) selective 

medium and Angle’s non-selective medium for collecting diversity of 
Pseudomonas spp. in soil and root environments. FEMS Microbiology Ecology 
45, 97–104. 

 
61. Tarnawski, S. et al. 2006.Phenotypic structure of Pseudomonas populations is 

altered under elevated pCO2 in the rhizosphere of perennial grasses. Soil Biology 
& Biochemistry 38: 1193–1201. 
 

62. Ten, L., Jung, H., Im, W., Yoo, S., Lee, S. 2008. Lysobacter daecheongensis sp. 
nov., isolated from sediment of stream near the Daechung dam in South Korea. 
Journal of Microbiology 46: 519–524.  

 
63. Tran, H., Kruijt, M., Raaijmakers, J. 2008. Diversity and activity of biosurfactant-

producing Pseudomonas in the rhizosphere of black pepper in Vietnam. Journal of 
Applied Microbiology 104: 839–851. 

 
64. van Elsas, J., Duarte, G., Rosado A., Smalla K. 1998. Microbiological and 

molecular methods for monitoring microbial inoculants and their effects in the 
environment. J Microbiol Methods 32:133–154. 

 
65. Wakisaka, Y., Koizumi, K. 1982. An Enrichment Isolation Procedure for Minor 

Bacillus Populations. Journal of Antibiotics (Tokyo) Vol. 35 (4): 450-457. 
 

66. Weon, H., et al. 2006. Two novel species, Lysobacter daejeonensis sp. nov. and 
Lysobacter yangpyeongensis sp. nov., isolated from Korean greenhouse soils. 
International Journal of Systematic and Evolutionary Microbiology 56:947-51. 

 
67. Weon, H., et al. 2007. Lysobacter niabensis sp nov and Lysobacter niastensis sp 

nov., isolated from greenhouse soils in Korea. International Journal of Systematic 
and Evolutionary Microbiology Vol. 57 (Part 3): 548-551. 

 
68. Yadav, J., Selvaraju, S. and Khan, I. 2006. Enhanced recovery and real-time PCR-

based quantification of mycobacteria from metalworking fluids. Journal of ASTM 
International 3: 1–18. 

 
69. Yassin, A., et al. 2007. Lysobacter defluvii sp. nov., isolated from municipal solid 

waste. International Journal of Systematic and Evolutionary Microbiology 
57:1131-1136. 
 

70. Yu, F., Zaleta-Rivera, K., Zhu, X., Huffman, J., Millet, J., Harris, S., et al. 2007. 



 
 

Structure and biosynthesis of HSAF, a broad spectrum antimycotic with a novel 
mode of action. Antimicrobial Agents and Chemotherapy 51: 64-72. 
 

71. Yuen, G., et al. 2001. Bean rust biological control using bacterial agents. Crop 
Protection 20: 395–402. 
 

72. Yuen, G., Li, S., Harris, S., Yu, F., Du, L. 2005. An antibiotic produced by the 
biocontrol agent Lysobacter enzymogenes C3 inhibits fungal growth by blocking 
ceramide synthesis. Phytopathology 95: S116. 
 

73. Yuen, G., et al. 2003. Biocontrol of fusarium head blight in wheat by Lysobacter 
enzymogenes C3. Phytopathology 93: S93. 
 

74. Zhang, Z., and Yuen, G. 1999. Biological control of Bipolaris sorokiniana on tall 
fescue by Stenotrophomonas maltophilia C3. Phytopathology 89: 817–822. 
 

75. Zhang, Z., and Yuen, G. 2000. The role of chitinase production by 
Stenotrophomonas maltophilia strain C3 in biological control of Bipolaris 
sorokiniana. Phytopathology 90: 384-389. 

 


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	8-1-2010

	Detection Methods for the Genus Lysobacter and the Species Lysobacter enzymogenes
	Hu Yin


