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The Physiology of Life History
Trade-Offs in Animals

Anthony J. Zera and Lawrence G. Harshman
School of Biological Sciences, University of Nebraska—Lincoln, Lincoln, Nebraska 68588

Email: azeral @unl.edu & lhalsh@unlserve.unl.edu

Abstract: The functional causes of life history trade-offs have been a topic of interest to
evolutionary biologists for over six decades. Our review of life history trade-offs discuss-
es conceptual issues associated with physiological aspects of trade-offs, and it describes
recent advances on this topic. We focus on studies of four model systems: wing polymor-
phic insects, Drosophila, lizards, and birds. The most significant recent advances have
been: (a) incorporation of genetics in physiological studies of trade-offs, (b) integration of
investigations of nutrient input with nutrient allocation, (c) development of more sophis-
ticated models of resource acquisition and allocation, (d) a shift to more integrated, mul-
tidisciplinary studies of intraspecific trade-offs, and (e) the first detailed investigations of
the endocrine regulation of life history trade-offs.
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INTRODUCTION

Life history traits are often negatively associated with each other (Clutton-Brock
et al. 1982, Reznick 1985, Steams 1989, 1992, Roff 1992, Rose et al. 1996).
Classic examples include decreased early fecundity in lines of Drosophila mela-
nogaster selected for increased longevity, and reduced overwintering survivor-
ship in lactating (reproductive) red deer, Cervus eluphus. These negative associ-
ations, referred to as life history trade-offs, have played a prominent role in theo-
ry and interpretation of life history studies. For example, trade-offs are a key as-
sumption of optimality models of life history evolution, and they provide an ex-
planation for the widespread occurrence of variable life history traits in natural
populations (Reznick 1985, Roff 1992, Steams 1992).

The physiological causes of life history trade-offs have been a central top-
ic in life history studies for more than six decades (Fisher 1930, Tinkle & Had-
ley 1975, Townsend & Calow 1981, Dunham et al. 1989, Adolph & Porter 1993,
Steams 1992, Roff 1992, Zera et al. 1998). The ultimate goal of physiological
studies has been to illuminate the mechanisms of life history evolution by identi-
fying functional interactions among the various components of life history traits.
In many cases, life history trade-offs have been thought to result from competi-
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tion among different organismal functions for limited internal resources. Hence,
traditional physiological studies of life history trade-offs have focused almost ex-
clusively on the differential allocation of limiting internal nutrients to reproduc-
tion, maintenance metabolism, growth, and storage within single species or vari-
ation in these processes among populations or species (Calow 1979, Townsend
& Calow 1981, Congdon ef al. 1982).

During the past decade, significant advances have been made in understand-
ing the physiological mechanisms that underlie life history trade-offs. For exam-
ple, while retaining focus on individual species or variation between populations
or species (Bernardo 1994, Niewiarowski 2001), studies of trade-off physiolo-
gy have recently expanded to include comparisons between phenotypes or gen-
otypes within populations (Rose et al. 1996, Zera & Huang 1999, Salmon ef al.
2001, Zera & Cisper 2001). This expansion has provided the first data on genetic
variation and covariation for physiological traits and their relationship to trade-
offs at the demographic level. In addition, trade-off studies have recently expand-
ed to include non-energetic aspects of resource allocation, such as the hormonal
control of antagonistic traits that comprise trade-offs (Ketterson & Nolan 1992,
1999, Sinervo & Basolo 1996, Sinervo 1999, Zera & Cisper 2001).

The past decade also has seen the development of more complex models of
trade-offs (Houle 1991, de Jong 1993, Reznick ef al. 2000). These models under-
score the importance of functional studies as opposed to the sole use of pheno-
typic or genetic correlation to identify the existence of trade-offs, and the neces-
sity of taking into account nutrient input in studies of nutrient allocation. Finally,
more sophisticated genetic, environmental, endocrine, and molecular approaches
have been used to investigate classic trade-offs such as the cost of reproduction
(Ketterson & Nolan 1992, 1999, Sinervo & Basolo 1996, Zera et al. 1998, Siner-
vo 1999, Salmon et al. 2001, Stearns & Kaiser 1993).

Physiological aspects of life history trade-offs have been reviewed pre-
viously (e.g., Townsend & Calow 1981, Bell & Koufopanou 1986, Sibley &
Calow 1986, Ricklefs 1991, Sibley & Antonovics 1992).However, many of the
recent developments in trade-off physiology described above have never been
reviewed or have been reviewed in a limited manner. The literature on func-
tional aspects of life history trade-offs is considerable, and no single review
can adequately cover all aspects of this topic in all major groups of organisms.
In this review, we focus on three topics that have been especially prominent in
recent physiological studies of intraspecific trade-offs: (a) the influence of nu-
trient acquisition on the trade-off of internal resources, (b) hormonal control of
trade-offs, and (c) genetic and experimental analyses of trade-offs. We also fo-
cus on four model systems that have been especially prominent in physiolog-
ical studies of life history trade-offs: wing-polymorphic crickets, Drosophila
melanogaster, lizards, and birds. These models were chosen because they il-
lustrate a diversity of approaches that have been used to investigate a range of
central issues in trade-off physiology in taxonomically diverse organisms stud-
ied in the laboratory or in the field.
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CONCEPTUAL BACKGROUND

Definitions and Basic Principles

Definitions of key trade-off terms such as costs, constraints, and trade-off of-
ten vary among studies, which could lead to confusion (Antonovics & van Tien-
deren 1991). For example, in some cases trade-off is defined as the result of
physiological or fitness costs (Leroi et al. 1994b, see below), while in other cas-
es the term cost is used to define a trade-off (Reznick 1985, 1992). The classic
example of the latter usage is the cost of reproduction, which is the term used to
define the trade-off between current and expected future reproduction (Reznick
1985, 1992). The term cost of reproduction requires special attention because
it has been used in many different ways. For example, this term can refer to ei-
ther a price (e.g., amount of calories required to produce an egg) or penalty of re-
production, that is measured in physiological (i.e., calories), demographic (survi-
vorship), or fitness units. Moreover, the cost of reproduction can refer to a direct
penalty of current reproduction or to a penalty exacted in the future.

If internal resources are limited and are insufficient to pay all construction and
maintenance costs for two life history traits that share a common resource pool,
then a trade-off results: an increment of resources allocated to one trait necessi-
tates a decrement of resources to another trait (the traditional “Y” model of re-
source allocation; van Noordwijk & de Jong 1986) (Figure 1). In the absence of
variation in resource input, two traits linked in a functional trade-off are negative-
ly correlated (more complex situations involving more than two traits and varia-
tion in resource input are described below). For example, if internal reserves al-
located to current reproduction limit resources available for future reproduction, a
trade-off between current and future reproduction exists for physiological reasons
(Calow 1979, Bell & Koufopanou 1986). Trade-offs can occur between physio-
logical traits expressed during the same or different times in the life cycle (Chip-
pindale et al. 1996, Zera et al. 1998, Stevens et al. 1999), and they can result from
variation in genetic factors (e.g., pleiotropy), environmental factors, or combina-
tions of these two types of factors that give rise to negative interactions between
traits. If the trade-off results from a negative genetic correlation, then short-term
evolutionary change in one phenotype constrains (i.e., limits) evolutionary change
in the other phenotype. Ecological factors, such as predation (Reznick ef al. 1990),
or behavioral factors, such as time-based conflicts between activities (Marler &
Moore 1988, Marler et al. 1995) can be a primary cause of life history trade-offs.
Thus, assessing the importance of variation in internal physiological factors on a
life history trade-off is most appropriately done by taking into account the relative
importance of variation in external ecological or behavioral factors.

Appropriate Use of the Term “Trade-Off”

Implicit in the term trade-off, used in a physiological context, is the notion
that a negative functional interaction is the cause of the negative association be-
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Figure 1 Diagrammatic representation of trade-offs. Each “Y allocation tree” illustrates
the amount of resource input (acquisition; number at the base) and the pattern of resource
allocation (numbers at the tips of the branches) for a particular phenotype or genotype. R
denotes allocation to reproduction, while S denotes allocation to soma. In trees A—E, max-
imal allocation to (maximal physiological cost of) R or S is 15 resource units. Trees 4 and
B illustrate a standard trade-off (differential allocation of a limiting internal resource).
Relative to trees 4 and B, tree C illustrates the obviating effect of increased resource in-
put on a trade-off (resource input matches physiological costs of both traits), while trees D
and E illustrate the exacerbating effect of decreased nutrient input on a trade-off. Trees 4
and B, relative to D and E, illustrate plasticity of a resource-based trade-off. Trees F and
G illustrate the influence of relative variation in resource input (length of the bar at the
base of the tree) versus variation in resource allocation (length of bar at the branch of the
tree) on the sign of the correlation between two traits involved in a trade-off. Tree H il-
lustrates a more complex allocation tree with multiple dichotomous branches. See text for
additional explanation and references. Trees F and G were redrawn from van Noordwijk
& de Jong (1986), while tree H was redrawn from de Jong (1993).

tween two traits under consideration. However, the term trade-off has often been
applied to trait associations for which only minimal or no information is avail-
able as to whether the traits interact functionally (e.g., see Mole & Zera 1993).
Traits might be negatively associated for a variety of reasons other than function-
al interaction, such as genetic linkage (Mole & Zera 1993, Zera et al. 1998, Zera
& Cisper 2001). In our view, the term trade-off, used in physiological studies of
life history variation, should represent a hypothesis concerning the cause of a
negative trait association, just as the term adaptation is a hypothesis concerning
the role of natural selection in shaping the form or function of a trait. It is inap-
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propriate to apply the term evolutionary adaptation to a trait for which there is no
strong evidence that its form or function was shaped by natural selection (Laud-
er 1996). In the future, we anticipate that the term trade-off will be restricted to
cases where data indicate a negative functional interaction between traits. When
little or no functional information is available, the terms negative association,
or potential trade-off, are preferable to trade-off. Research on trade-offs should
be increasingly directed toward understanding the underlying mechanism of the
negative association between traits.

TRADE-OFF ARCHITECTURE AND EFFECT OF NUTRIENT
ACQUISITION

Y Model and Variable Nutrient Input

During the past decade, the properties of trade-offs have been studied using
quantitative-genetic and optimization models. Most of these models are more
complex versions of the standard “Y”” model of allocation discussed previously.
An important result of these studies is that, for a variety of reasons, a positive cor-
relation can exist between traits that are linked in a functional trade-off. For ex-
ample, once more than two traits are involved in a trade-off (see Figure 1H), pos-
itive correlations can occur between subsets of those traits (Charlesworth 1990,
Houle 1991, Roff 1992). Furthermore, if variability in nutrient input among in-
dividuals, due to either genetic variation in loci that control nutrient acquisition
or to environmental variation in available resources, is greater than variability in
nutrient allocation, positive correlations between traits that comprise a functional
trade-off can occur (Figure 1F-G; van Noordwijk & de Jong 1986, de Laguerie et
al. 1991, Houle 1991, de Jong & van Noordwijk 1992, de Jong 1993). De Lague-
rie et al. (1991) and de Jong (1993) developed allocation tree models of trade-
offs, involving successive dichotomous branches (trade offs) in a tree with nutri-
ent input as the trunk (See Figure 1H). Both the position of a branch point on an
allocation tree and the extent of resource transformations strongly affect whether
positive or negative correlations exist between traits that trade off.

Theoretical studies of trade-offs clearly show that the sign of a correla-
tion between two traits cannot be used as an unambiguous indicator of wheth-
er those traits interact functionally in a negative manner (i.e., whether they trade-
off). This important result underscores that functional trade-offs can be validat-
ed only by direct physiological studies rather than by purely phenotypic or ge-
netic approaches. Theoretical studies also illustrate the importance of control-
ling or quantifying nutrient input in functional studies of nutrient-based internal
trade-offs (Figure 1). Quantifying nutrient input has long been regarded as an es-
sential aspect of energy budget studies (Congdon ef al. 1982, Nagy 1983, With-
ers 1992), but has been neglected in many recent energetics studies of trade-offs.
This omission is a likely cause of unexpected results obtained in some trade-off
studies, such as the failure to observe increased metabolic costs when reproduc-
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tion is increased (Rose & Bradley 1998; see also Zera et al. 1998, Reznick et
al. 2000). Trade-off models discussed above also provide an explanation for the
common observation that traits that are expected to trade-off, and hence exhibit
negative correlations, are often positively correlated (Mole & Zera 1993, Reznick
et al. 2000). Although these trade-off models are more complex versions of the
original “Y” model of allocation (van Noordwijk & de Jong 1986), they are still
rudimentary descriptors of the physiology of internal resource allocation.

Trade-Off Plasticity and Priority Rules

Trade-offs are influenced not only by variation among individuals in nutrient
input, but also by the absolute amount of nutrient input. Reduced nutrient avail-
ability can substantially magnify, while increased nutrient availability can dimin-
ish or obviate an apparent trade-off (Figure 1) (Kaitala 1987, Chippindale et al.
1993, Simmons & Bradley 1997, Nijhout & Emlen 1998, Zera et al. 1998, Zera
& Brink 2000; see clutch size studies in “Birds” section). These plastic respons-
es of a trade-off are determined by priority rules, which govern relative alloca-
tion to organismal processes as a function of nutrient input. Recent experiments
have only begun to identify the broad outlines of these rules at the whole-organ-
ism level. For example, in laboratory and field experiments on bivalves, cladoc-
erans, insects, and mammals, allocation to maintenance or storage was found to
take precedence over allocation to reproduction under nutrient-poor or stressful
conditions (Rogowitz 1996, Perrin ef al. 1990, Boggs & Ross 1993, Jokela &
Mutikainen 1995, Zera et al. 1998). Priority rules are shaped by ecological fac-
tors. A more thorough understanding of the evolution of priority rules requires a
deeper synthesis among physiological studies of allocation, ecological studies of
nutrient acquisition (e.g., foraging), and life history studies in the field (Boggs
1992, 1997).

Timing of Nutrient Input and Trade-Off Dynamics

Another important aspect of nutrient acquisition on a trade-off is the relative
timing of these two processes. The most extensively studied aspect of this topic
concerns capital versus income breeding. In income breeding, resources used for
reproduction are acquired during the reproductive period, while in capital breeding,
resources are derived from stores acquired during an earlier period (Drent & Daan
1980, Jonsson 1997, Bonnet ef al. 1998). The relative advantage of capitol versus
income breeding, and the relative demographic and energetic costs and benefits
of energy storage are a matter of debate (e.g., Jonsson 1997, Bonnet ef al. 1998).
Capital breeding can give rise to trade-offs between different stages of the life cy-
cle, nearly all physiological aspects of which are not well understood. Recent ex-
periments have documented the use of nutrients in reproduction that were acquired
during earlier stages; in some cases, unexpectedly long time lags (e.g., >12 months
in lizards) between resource acquisition and expenditure on reproduction were not-
ed (e.g., Reznick & Yang 1993, Boggs 1997, Doughty & Shine 1998).
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Especially noteworthy are the feeding and radiotracer studies by Boggs and
colleagues (Boggs 1997). These studies investigated the relative use of larval and
adult-acquired nutrients in reproduction in butterflies as a function of life his-
tory and foraging. The relationship between the timing of nutrient acquisition
and use of energy stores for reproduction also has important implications for the
identification of the ecological causes of trade-offs. For example, a long time lag
between resource input and use for reproduction will tend to obscure the influ-
ence of specific aspects of resource availability in the field on reproductive out-
put (Doughty & Shine 1997, 1998).

Trade-offs are not static; they can change during development and can evolve
(Leroi et al. 1994b). Many life history models have explored dynamical aspects
of resource allocation (Perrin & Sibly 1993, Noonburg et al. 1998, Heino & Kai-
tala 1999). For example, such models predict that the ratio (P/m), where P = pro-
ductivity (growth and reproduction), and where m = mortality becomes more
sensitive to mortality as a function of age. Assuming a trade-off between mortali-
ty and productivity, organisms should initially invest in productivity, then later in
survival. This might explain why growth rate decreases with age (Perrin & Sibly
1993). One problem with these and a broad class of related models is that their
empirical validity is not well established owing to the paucity of direct mecha-
nistic information on putative resource allocation trade-offs.

MEASURING PHYSIOLOGICAL TRADE-OFFS

Three main empirical approaches have been used to investigate life history
trade-offs and their physiological causes: (¢) measurement of phenotypic cor-
relations on unmanipulated individuals, (b) genetic analyses, and (c) experi-
mental manipulation of phenotypes. The relative merits of these approaches
have been extensively debated (e.g., Reznick 1985, 1992, Bell & Koufopanou
1986, Partridge & Sibly 1991, Partridge 1992, Sinervo & Basolo 1996, Rose &
Bradley 1998, Harshman & Schmid 1998, Zera et al. 1998). Phenotypic cor-
relations measured on unmanipulated individuals in the field or lab are impor-
tant in that they can suggest physiological causes of trade-offs. However, there
is broad agreement that phenotypic correlations, by themselves, can provide
only limited information on the physiological mechanisms that underlie trade-
offs. The main problem is that uncontrolled variables can reduce the magni-
tude of a trade-off or can lead to spurious correlations. For example, as men-
tioned above, variable nutrient intake can cause two traits involved in a trade-
off to be positively correlated (van Noordwijk & de Jong 1986, de Jong 1993),
a problem that is expected to be particularly acute in field studies (Haukioja &
Hakala 1986, Tuomi et al. 1983). Simple changes in experimental design can
sometimes obviate the masking effect of uncontrolled variables on trade-offs.
For example, a negative correlation between somatic lipid reserves and repro-
ductive effort in a lizard species was identified by quantifying lipid levels be-
fore and after reproduction in the same individuals using a non-invasive meth-
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od (Doughty & Shine 1997). Individual variation in lipid levels had previously
obscured this negative association.

One school of thought is that genetically based covariation should be a focus
of attention in trade-off studies because only genetically based traits can evolve
(Reznick 1985, Bell & Koufopanou 1986, Partridge & Sibly 1991, Rose et al.
1996). Physiological-genetic studies of life history trade-offs represent one of the
most important advances in functional studies of trade-offs during the past de-
cade. Nevertheless, genetic approaches also have important drawbacks (Bell &
Koufopanou 1986, Partridge & Sibly 1991). Most notably, in the process of mea-
suring the genetic basis of a trade-off (e.g., via artificial selection), the trade-off
itself and its relationship to its physiological causes can be altered (Moller ef al.
1989, Partridge & Sibly 1991, Rose & Bradley 1998). Furthermore, genetic stud-
ies are limited by standing genetic variation and only indicate how traits may
evolve in the short-term; they can only be performed on a subset of organisms,
and require much more time and resources than do phenotypic studies (Partridge
& Sibly 1991).

The most controversial empirical approach in life history studies is environ-
mental manipulation (sometimes called phenotypic manipulation) (Reznick 1985,
1992, Partridge & Sibly 1991, Sinervo & Basolo 1996, Chippindale ef al. 1997).
This approach essentially involves altering an environmental variable (e.g., nu-
trient level) to generate a phenotypic trade-off whose properties can then be stud-
ied. The main advantages of this approach are that a great range of character val-
ues can be produced, and trade-offs between genetically invariant traits can be
investigated. The most serious disadvantage is the typical lack of specificity of
the manipulation. Traits can be modified independently of the mechanisms that
link them in a trade-off, thus giving rise to altered trade-off functions (Moller e?
al. 1989, Partridge & Sibly 1991, Sinervo & Basolo 1996). Some of the prob-
lems with environmental manipulation can be circumvented by using more tar-
geted surgical or endocrine manipulations (i.e., physiological manipulations or
phenotypic engineering) (Sinervo & McEdward 1988, Marler & Moore 1988,
1991, Ketterson & Nolan 1992, 1999, Landwer 1994, Sinervo & Basolo 1996,
Zera et al. 1998, Zera & Cisper 2001). These manipulations represent a power-
ful approach to the study of functional aspects of life history trade-offs. They not
only shed light on the specific physiological mechanisms that underlie trade-offs,
but they can also be used to produce phenotypes to test various trade-off hypoth-
eses (phenotypic engineering) (Ketterson & Nolan 1992, 1999, Zera et al. 1998,
Sinervo 1999).

Like other approaches, physiological manipulation has its limitations. For
example, surgical removal of an organ does not necessarily abolish the energet-
ic cost of producing or maintaining the function performed by that organ. Re-
moval of ovaries does not abolish physiological costs of reproduction since yolk
proteins are still synthesized in other organs, sometimes in enormous quantities
(Chinzei & Wyatt 1985). Applied hormones can have pharmacological effects or
can alter trade-offs in unsuspected ways by inducing the production of unknown
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regulators (Zera et al. 1998). Thus, in the absence of direct measures of endo-
crine traits (e.g., in vivo hormone titers), only limited conclusions can be drawn
from hormone manipulation experiments concerning specific endocrine mecha-
nisms that underlie trade-offs (e.g., Zera et al. 1998, Zera & Cisper 2001). A de-
veloping consensus is that each empirical approach has its strengths and weak-
nesses, and that the use of multiple complementary approaches is essential for
a thorough investigation of the physiological causes of life history trade-offs
(Moller et al. 1989, Partridge & Sibly 1991, Sinervo & Basolo 1996, Rose &
Bradley 1998; Zera et al. 1998; Zera and Cisper 2001).

MODEL SYSTEMS
Wing-Polymorphic Crickets

For over four decades, wing polymorphism has been viewed as a classic ex-
ample of a life history trade-off that results from the differential allocation of in-
ternal reserves to ovarian growth versus somatic growth, maintenance, or stor-
age (i.e., growth and maintenance of fight muscles, accumulation of flight fuels,
Johnson 1969, Bell & Koufopanou 1986, Zera & Denno 1997). During the past
decade, detailed energetic, endocrine, and genetic studies in wing polymorphic
crickets have provided strong support for this notion (Mole & Zera 1993, Tanaka
1993, Zera et al. 1994, 1997, 1998, Zera & Denno 1997, Roff et al. 1997, Zera &
Brink 2000, Zera & Cisper 2001). Wing polymorphism is now one of the life his-
tory trade-off models most thoroughly studied from a physiological perspective.

Wing polymorphic species consist of a flight-capable morph that has large
functional flight muscles and large quantities of lipid flight-fuel, and of flightless
morphs that have small, nonfunctional flight muscles and much reduced lipid
stores. Early fecundity is negatively associated with flight capability (Roff 1986,
Zera & Demo 1997, Zera et al. 1998). Differences between morphs in these dis-
persal and reproductive traits are often large, making wing polymorphism an ex-
ceptional experimental model for investigating trade-off physiology. For exam-
ple, at the end of the first week of adulthood, flight muscles are typically reduced
by 40%, ovaries are enlarged by 200%—-400%, and whole-body triglyceride re-
serves are reduced by 30% in flightless versus flight-capable morphs of Gryllus
(crickets) (Mole & Zera 1993, Zera et al. 1994, 1998, Zera & Larsen 2001).

Feeding studies of Gryllus species have provided some of the best document-
ed examples of the relative importance of nutrient acquisition versus nutrient al-
location in a life history trade-off. Naturally occurring or hormonally engineered
flightless morphs of two Gryllus species consumed and assimilated the same
amount of nutrients as the flight-capable morph (Mole & Zera 1993, Zera et al.
1998). Thus, the increased ovarian growth of the flightless morph in these spe-
cies must have resulted, at least in part, from the greater allocation of absorbed
nutrients, rather than from increased food consumption or assimilation by the
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flightless morph. In a third species, G. firmus, increased ovarian growth in the
flightless morph was due to both increased nutrient allocation and greater food
intake (Zera et al. 1998, Zera & Brink 2000, A. J. Zera & T. Rooneem, unpub-
lished data).

Only by quantifying nutrient consumption and assimilation by the morphs could
increased allocation of nutrients (internal trade-off) as opposed to increased acqui-
sition of nutrients (no internal trade-off) have been identified as a potential cause
of the difference in ovarian growth between morphs (Mole & Zera 1993, Zera &
Denno 1997, Zera et al. 1998). The study of G. firmus is the only case in which ge-
netically based differences in total nutrient consumption, assimilation, and alloca-
tion have been documented between phenotypes that differ in life histories (Zera
& Brink 2000, Zera & Rooneem, unpublished data). One limitation of these inves-
tigations in Gryllus is that indices of nutrient allocation and acquisition were mea-
sured in units of mass rather than in units of energy (Zera et al. 1998, Zera & Brink
2000). However, more recent studies indicate that morphs differ to similar degree in
these indices measured in units of energy (A. J. Zera & T. Rooneem, unpublished
data). Although nutrient input is an integral component of energy budgets (Congdon
et al. 1982, Withers 1992), many recent energetic studies of intraspecific life history
trade-offs have not measured nutrient consumption or assimilation.

Some of the most detailed information on specific physiological causes of
life history trade-offs has come from studies of Gryl/lus. Biosynthesis of triglyc-
eride flight fuel may be an especially important physiological cost of flight ca-
pability that results in reduced ovarian growth (Zera & Larsen 2001). As men-
tioned above, whole-body triglyceride content was 30%-40% higher in flight-ca-
pable versus flightless morphs of two Gryllus species on a variety of diets (Zera
& Denno 1997, Zera et al. 1994, 1998, Zera & Brink 2000, Zera & Larsen 2001).
In G. firmus, a genetically based elevation in triglyceride stores in the flight-ca-
pable morph (a) was produced during a period of reduced ovarian growth in the
flight-capable morph, (b) did not result from increased lipid intake from the diet,
and (c) paralleled increased activities of enzymes of lipid biosynthesis and rate
of lipid biosynthesis in the flight-capable morph (Zera & Brink 2000, Zera &
Larsen 2001, Zhao & Zera 2001). The extent to which the negative association
between lipid biosynthesis and ovarian growth results from an energetic trade-off
(differential allocation of limited internal reserves to these two organismal traits)
is unknown. Other possibilities include a regulatory trade-off in which antagonis-
tic aspects of the control of lipid versus protein biosynthesis preclude the accu-
mulation of elevated amounts of both of these compounds (Zhao & Zera 2001).
Finally, the trade-off between lipid accumulation and ovarian growth could result
from limited space within the abdomen.

Increased maintenance of flight muscles, but not flight muscle growth, has also
been implicated as a potentially important energetic cost of flight capability. The
large flight muscles of the flight-capable morph exhibited a 300%-350% great-
er respiration rate in vitro compared with the reduced flight muscles of the flight-
less morphs, and may contribute to the higher whole-body respiration rate of the
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flight-capable morph (Zera et al. 1997, 1998, Zera & Brink 2000). By contrast, on
high nutrient diets, flight muscle growth, as indicated by increased mass or rate
of muscle protein biosynthesis, is restricted to the first 2 to 3 days of adulthood in
Gryllus species, before significant ovarian growth commences (Gomi ef al. 1995,
Zeraet al. 1998, A. J. Zera & T. Rooneem, unpublished data). Thus, flight muscle
growth does not appear to directly trade-off with ovarian growth. Finally, some
potentially important contributors to the energetic cost of flight capability, such as
increased activity of the flight-capable morph in the absence of flight, have yet to
be assessed for any case of wing polymorphism (Zera et al. 1998).

Feeding studies in Gryllus also have provided information on the physiolog-
ical mechanisms by which trade-offs may be exacerbated when nutrient input is
decreased (Figure 1). In both G. assimilis and G. firmus, ovarian growth in the
flight-capable versus the flightless morph was reduced to a greater degree on a
low-nutrient diet compared with a high-nutrient diet. Whole-organism respiration
was proportionally higher in the flight-capable morph compared with the flight-
less morph when on a low-nutrient diet compared with a high-nutrient diet (Zera
et al. 1998, Zera & Brink 2000, A. J. Zera & T. Rooneem, unpublished data).
These data suggest that some aspect of maintenance metabolism of the flight-ca-
pable morph, possibly flight-muscle maintenance, consumes a greater proportion
of the reduced energy budget on the low-nutrient diet. This would reduce nutri-
ents available for ovarian growth in the flight-capable versus the flightless morph
to a greater degree on the low-nutrient diet, compared with the high-nutrient diet.
The Colorado potato beetle histolyzes its flight muscles prior to overwintering,
suggesting that maintenance metabolism of flight muscles may be a significant
energy drain under prolonged low-nutrient conditions (El-Ibrashy 1965, Zera &
Denno 1997). Alternatively, other factors such as increased activity of the flight-
capable morph of Gryllus species may account for its increased respiratory me-
tabolism, relative to the flight-capable morph, under low-nutrient conditions.

Because hormones regulate many key components of life histories (e.g., egg
production, growth, metabolism), variation in endocrine regulation has long been
suspected to be a primary physiological cause of life history trade-offs (Stearns
1989, Ketterson & Nolan 1992, 1999). Yet detailed studies of the mechanisms by
which hormones regulate life history trade-offs have only begun during the past
decade. Wing polymorphism in Gryllus is currently the most intensively studied
life history trade-off with respect to endocrine regulation and is one of the only
cases where genetic information is available on this topic (Zera & Tiebel 1989,
Zera & Denno 1997, Roff et al. 1997, Zera & Huang 1999, Zera & Cisper 2001,
Zera & Bottsford 2001). Thus far, hormonal studies have focused almost exclu-
sively on the regulation of growth and degeneration of the key organs involved in
the trade-off between flight capability and fecundity: ovaries and flight muscles.
An elevated hemolymph titer of juvenile hormone (JH), a major gonadotropin in
insects, has long been suspected to cause the elevated ovarian growth during ear-
ly adulthood in the flightless morph of wing polymorphic species (Nijhout 1994,
1999, Zera & Denno 1997). This notion is supported by the strong positive ef-
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fect of a JH mimic on ovarian growth in several Gryllus species (Zera et al. 1998,
Zera & Cisper 2001). Recent direct measures of the in vivo JH titer in G. firmus
indicate that the hormonal regulation of morph-specific ovarian growth is more
complex than previously suspected. The hemolymph JH titer is, in fact, lower in
the flight-capable morph relative to the flightless morph in the morning. However,
the level of this hormone rises dramatically (10- to 100-fold) during the day in the
flight-capable morph, but not in the flightless morph, which leads to a higher JH
titer in the flight-capable versus flightless morphs in the evening (Zera & Cisper
2001). The short-term elevation in the JH titer possibly regulates nocturnal flight
in the long-winged morph of G. firmus. Although JH is likely involved in the in-
creased ovarian growth of the flightless morph, it clearly cannot be the only factor
involved and may not be the primary factor (Zera & Cisper 2001). This level of
complexity in the endocrine regulation of a life history trade-off could only have
been identified by direct measurement of in vivo hormone levels.

Discontinuous variation in the size of flight muscles, the other key organ par-
ticipating in the trade-off between flight capability and ovarian growth, is pro-
duced by two different mechanisms. Differences in muscle growth between
morphs can occur during the juvenile stage. Variation in the titers of JH and 20-
hydroxy ecdysone, which are important developmental as well as reproductive
hormones in insects, may regulate differences in muscle growth. Extensive en-
docrine-genetic studies suggest that the catabolic enzyme, juvenile hormone es-
terase, which is thought to regulate the JH titer in many insects, may modulate
the JH titer in nascent Gryllus morphs, leading to variation in the development
of flight muscles and wings (Zera & Tiebel, 1989, Zera & Denno 1997, Roff et
al. 1997, Zera & Huang 1999, Zera 1999). Studies of Zera & Tiebel (1989) and
Roff et al. (1997) are among the few investigations in which genetic covariance
has been documented between an important component of a life history trait (i.e.,
wing and flight muscle phenotype) and a putative endocrine regulator of that trait.

Discontinuous variation in flight muscle mass in Gryllus and many other insects
also results from histolysis (degeneration) of fully developed muscles during adult-
hood. Flight muscle degeneration occurs coincident with ovarian growth, which
leads to a strong negative correlation between the size of these two organs (Pener
1985, Zera & Denno 1997). Hormonal manipulation in G. firmus and other insects
strongly points to JH as the regulator of this trade-off (Pener 1985, Zera & Denno
1997, Zera & Cisper 2001). However, as mentioned above, an assessment of the ex-
act mechanisms by which JH regulates the trade-off between ovaries and flight mus-
cles is complicated by the large diurnal change in the JH titer in the flight-capable
morph (Zera & Cisper 2001). Endocrine factors other than JH may also be involved
in regulating this trade-off. To summarize, energetic and endocrine aspects of life
history trade-offs have been extensively studied in species of Gryllus. However, the
relative contribution of differential allocation of limited internal reserves, antagonis-
tic aspects of hormonal regulation, or other factors, such as limited space within the
organism, to the negative association between components of flight capability and
ovarian growth is unclear and remains a major challenge to future research.
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Drosophila

The distinguishing feature of studies using Drosophila is the range and pow-
er of genetic approaches that have been used to investigate life history trade-
offs. As one example, artificial or natural selection in the laboratory is especial-
ly useful for studying life history evolution and mechanisms underlying apparent
trade-offs (Rose ef al. 1990, Huey & Kingsolver 1993, Rose et al. 1996, Gibbs
1999, Harshman & Hoffmann 2000a). Selected and control lines are often mark-
edly divergent and can be useful for physiological studies of life history trade-
offs, while indirect responses to selection can identify genetically based trade-
offs (Rose et al. 1990).

A range of life history trade-offs have been implicated using Drosophila se-
lection experiments. For example, selection for a relatively short larval period is
correlated with reduced larval viability, diminished adult size, and reduced fe-
cundity (Nunney 1996, Chippindale ef al. 1997). Relative to selected lines (i.e.,
in control lines), an extended period of larval development was correlated with
an accumulation of lipid and increased dry weight, as well as increased conser-
vation of larval reserves in young adults (Chippindale et al. 1996, 1997).

The trade-off between extended longevity and early age reproduction has been
a focus of numerous physiological-genetic studies. Selection for longevity and late
life reproduction consistently produces lines characterized by longer-lived flies with
decreased early age fecundity (Rose 1984, Luckinbill et al. 1984, Partridge et al.
1999). Sgro & Partridge (1999) sterilized females using irradiation or by crossing
to a dominant sterile mutation, and in both cases they circumvented the age-specif-
ic mortality cost of reproduction. They concluded that aging was a function of the
damaging effects of earlier reproduction. Underlying delayed early reproduction in
one set of selected lines was a decreased rate of early age vitellogenic oocyte matu-
ration (Carlson et al. 1998, Carlson & Harshman 1999). Moreover, there is prelim-
inary evidence for an early age diminution in whole-body ecdysteroid titers in one
set of lines selected for longevity and late life reproduction (Harshman 1999).

Differential respiration does not appear to play a role in the trade-off be-
tween longevity and early age reproduction. Variable results on respiration rates
were obtained using one set of lines selected for longevity (summarized in Rose
& Bradley 1998). When respiration was measured in small chambers, Service
(1987) found relatively higher respiration rates at young ages in the control (un-
selected) lines, but not at later ages. However, Djawdan et al. (1996) found no
difference between selected and control lines when respiration was measured in
cages. When adults from both lines were provided with supplementary yeast, the
control line females exhibited a slightly higher metabolic rate than selected line
females (Simmons & Bradley 1997). Djawdan ef al. (1997) found no difference
in respiration rate when the mass of selected and control flies was adjusted by re-
moving the weight of water, lipid, and carbohydrate.

The accumulation of energy storage compounds in flies selected for greater
longevity suggests that there could be an energetic basis underlying the trade-off
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between fecundity and longevity (Service 1987, Djawdan et al. 1996). Djawdan
et al. (1996) and Simmons & Bradley (1997) have determined that the selected
(long-lived) females store more energy in the body and that the control line fe-
males, which are more fecund early in life, allocate much more energy to repro-
duction. However, energy might not be limiting in the laboratory environment
because flies may consume as much food as needed for a given level of repro-
duction (Rose & Bradley 1998).

Stress resistance has been documented as a correlated response to selection
for extended longevity and late-life reproduction. One set of lines selected for ex-
tended longevity exhibited desiccation resistance and increased glycogen content,
as well as starvation resistance and increased lipid content (Rose 1984, Service et
al. 1985). Another set of lines selected for extended longevity did not have sub-
stantially increased starvation resistance or desiccation resistance but was clearly
resistant to oxidative stress (Luckinbill et al. 1984, Force et al. 1995). Increased
oxidative stress resistance might be a consistent response to selection for extend-
ed longevity (Harshman & Haberer 2000). An association between longevity and
starvation resistance is supported by extensively replicated selection experiments,
on each of the traits (Service et al. 1985, Rose et al. 1992). Moreover, selection for
reduced longevity was correlated with decreased lipid levels (Zwann et al. 1995).
However, selection for extended longevity did not result in significant increased
starvation resistance in two selection experiments (Zwann et al. 1995, Force et al.
1995). Selection on the basis of differential adult mortality did not affect starva-
tion resistance as an indirect response to selection, but the response to selection
did indicate trade-offs between early fecundity, late fecundity, and starvation re-
sistance that were mediated by lipid allocation (Gasser et al. 2000). Selection for
female starvation resistance was conducted using a wild-type stock maintained in
the laboratory for approximately 35 generations prior to selection and using rela-
tively large numbers of replicate-selected and control lines (Harshman & Schmid
1998). Selection for female starvation resistance resulted in multiple stress resis-
tance as an indirect response to selection, but increased longevity was not a corre-
lated response (Harshman & Schmid 1998, Harshman ez al. 1999).

Relevant selection experiments identify a prospective trade-off between fe-
cundity and adult stress resistance. Selection for increased desiccation resis-
tance using D. melanogaster resulted in reduced early age fecundity in one study
(Hoffmann & Parsons 1989), but not in another study (Chippindale et al. 1993).
Selection for cold resistance in D. melanogaster and D. simulans was correlated
with decreased early age fecundity (Watson & Hoffmann 1996). Selection for fe-
male starvation resistance resulted in reduced early age fecundity (Wayne et al.
2001). Lines selected for extended longevity and reverse selection also provide
evidence for a negative genetic relationship between fecundity and starvation re-
sistance (Service et al. 1985, Service et al. 1988, Leroi ef al. 1994a), although
this relationship changed in the course of a long-term selection experiment (Le-
roi et al. 1994b). A negative relationship between fecundity and ethanol or des-
iccation resistance was not observed in the reverse selection experiment (Service
et al. 1988). Sib analysis revealed a negative genetic correlation between fecun-
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dity and starvation resistance (Service & Rose 1985). Phenotypic manipulation
experiments also provide evidence for a trade-off between fecundity and stress
resistance (Chippindale ef al. 1993, Salmon et al. 2001, Wang et al. 2001). Per-
haps stress susceptibility associated with reproduction contributes to decreased
survival as a cost of reproduction.

There are problems associated with selection in the laboratory (Rose et al.
1990, Harshman & Hoffmann 2000a). Supernumerous correlations among select-
ed traits could be the consequence of strong unrelenting directional selection in the
laboratory (Harshman & Hoffmann 2000a). Other artifacts may arise from con-
straints on normal behavioral options in culture containers (Huey et al. 1991) and
from copious food availability in the laboratory (Harshman & Hoffmann 2000a).
Moreover, there is substantial variation in the quality of different selection ex-
periments, and there are problems associated with experiments conducted on fly
stocks recently derived from the field (Service & Rose 1985, Harshman & Hoft-
mann 2000a,b, Matos et al. 2000). For a variety of reasons, the indirect respons-
es observed in similar selection experiments are often heterogeneous (Tower 1996,
Harshman & Hoffmann 2000a). Consistent indirect responses (robust responses)
are most informative with respect to implicating mechanisms underlying life histo-
ry trade-offs (Harshman & Hoffmann 2000a, Harshman & Haberer 2000).

Another genetic approach has been to use lines of D. melanogaster that have
been made homozygous for chromosomes isolated from natural populations for
life history and physiological measurements (Clark 1989). In this study, there was
a positive correlation between viability and fecundity, as well as associations be-
tween these traits and metabolic enzyme activities. A caveat is that inbreeding (in-
breeding depression) can generate positive correlations among traits because of the
pleiotropic effects of recessive deleterious alleles. As another genetic approach,
P element mutagenesis has been used to induce mutational variation in longevi-
ty, age-specific reproduction, and metabolic enzyme activities (Clark & Guadalupe
1995, Clark et al. 1995). Finally, mutation analysis of life history characters is po-
tentially informative for the study of the physiology of trade-offs (Lin et al. 1998).

Transgenic Drosophila can play an important role in investigating the physi-
ology of life history trade-offs (Tatar 2000). For example, extra copies of a heat
shock protein (Hsp70) gene in transgenic D. melanogaster confer heat stress re-
sistance and reduced age specific mortality, but also result in decreased larval
growth and survival (Tatar et al. 1997, Krebs & Feder 1997, Feder & Hoffman
1999). Steams & Kaiser (1993) increased the expression of elongation factor EF-
1 alpha by introducing an extra copy of the gene. The effects on a trade-off be-
tween reproduction and longevity were marginal and varied depending upon the
experimental design. However, when enhanced EF-1 alpha expression increased
lifespan, it also decreased fecundity.

Lizards

Studies of lizards have been at the forefront of research on life history phys-
iology for over two decades (e.g., Tinkle & Hadley 1975, Congdon et al. 1982,
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Schwarzkopf 1994, Marler & Moore 1991, Sinervo 1999). Many lizard species
are amenable to experimental manipulation and field studies, thus allowing inte-
grated physiological and ecological investigations of trade-offs (Marler & Moore
1991, Marler et al. 1995, Sinervo 1999). Lizards also grow significantly after
sexual maturity and thus are a useful vertebrate model to study trade-offs be-
tween adult growth and reproduction. Many lizard species also store fat reserves
for long periods of time and thus are useful for investigating trade-offs between
reproduction and storage. Lizards were the focus of pioneering studies in which
detailed energy budgets were constructed in interspecific investigations of life
history evolution (reviewed in Congdon ef al. 1982). More recently, studies on
lizards were among the first to investigate, and currently provide some of the
most important information on endocrine aspects of trade-offs (Marler & Moore
1988, Marler et al. 1995, Sinervo 1999, Sinervo et al. 2000).

The negative correlation between egg number and egg size is a classic life his-
tory trade-off (Stearns 1992, Roff 1992, Schwarzkopf et al. 1999) that has been
documented in a variety of lizard species (Sinervo 1990, Schwarzkopf 1994,
Doughty & Shine 1997). However, correlations were derived mainly from uncon-
trolled and unmanipulated field studies and thus provide little information on un-
derlying physiological mechanisms. In a breakthrough series of studies, Sinervo
and colleagues (reviewed in Sinervo 1999) used experimental manipulations to
study the proximate mechanisms controlling the trade-off between egg size and
egg number in the side-blotched lizard, Uta stansburiana. Application of the go-
nadotrophin, FSH (follicle-stimulating hormone), increased egg number but de-
creased egg size, whereas ablation of a proportion of the egg follicles resulted in
a smaller number of larger eggs. Experimental results were interpreted in terms of
competition by the developing eggs for limited yolk or space in the maternal ab-
domen. These studies were among the first to experimentally investigate the en-
docrine causes of a classic life history trade-off and to suggest that variation in
the titer of, or tissue response to, FSH in field populations may be a physiological
cause of the trade-off between egg size and egg number. However, these hormone
manipulation experiments need to be interpreted with caution since FSH titers or
receptors have yet to be directly measured in individuals of this species.

Phenotypic manipulation allowed Sinervo and colleagues to investigate sever-
al aspects of the evolution of the trade-off between egg size and egg number (re-
viewed in Sinervo 1994, 1999). Lizards of different size produced by endocrine or
surgical manipulation were returned to field sites, and their survivorship to adult
maturity was monitored. Results showed that the trade-off between egg size and
egg number was influenced by natural selection. A morphological constraint on
egg size in Uta was also identified. Unusually large eggs became lodged in the
oviduct or burst upon oviposition in the laboratory (Sinervo & Licht 1991).

Behaviors that enhance current reproduction but that decrease future reproduc-
tion are important components of the cost of reproduction. Marler and colleagues
(Marler & Moore 1988, 1991, Marler ef al. 1995) investigated the endocrine reg-
ulation of this type of behavior-based trade-off in the field using the lizard Scelo-
porus jarrovi. In this species, testosterone is elevated during the nonbreeding sea-
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son and functions to elicit behaviors involved in territorial defense (Moore 1986).
A comprehensive set of field experiments involving measurement of energy con-
sumption using doubly labeled water, supplemental feeding, and measurement of
time-energy budgets showed that lizards with experimentally elevated testoster-
one (but within physiological levels) had increased activity and reduced survivor-
ship. This increased activity resulted from an increased number of territorial dis-
plays and movements, with consequent decreased time spent feeding (Marler et
al. 1995). Increased testosterone level was also associated with a higher parasite
load (C.A. Marler, personal communication). These and other studies (e.g., Siner-
vo et al. 2000, Veiga et al. 1998) are important because they identify potential di-
rect negative effects of the hormonal regulation of reproduction and behavior.

Lizard studies were at the forefront of interspecific investigations of life histo-
ry energetics during the 1970s and early 1980s (reviewed in Congdon ef al. 1982).
More recent studies have focused on the effect of variation in the thermal envi-
ronment on seasonal or interpopulational variation in life histories (Dunham et al.
1989, Adoph & Porter 1993, Niewiarowski 2001). However, there have been sur-
prisingly few detailed studies of the energetic correlates of life history variation
within populations of lizards. A few studies have focused on variation in energy
reserves, growth, and metabolism within populations, especially in the context of
the cost of reproduction. For example, metabolic rates measured in the field were
higher in reproductive versus nonreproductive females of several species (Nagy
1983, Anderson & Karasov 1988). A number of correlational and experimental
studies indicate that a common effect of current reproduction may be the reduc-
tion of internal reserves, which impacts future reproduction either by reducing
survivorship or by reducing nutrients required for future reproduction (Landwer
1994, Schwarzkopf 1994, Doughty & Shine 1997, 1998, Wilson & Booth 1998).
The trade-off between reproductive effort and energy storage in many purely cor-
relational studies may have been underestimated or missed entirely because of the
masking effect of variation in storage reserves (Doughty & Shine 1997).

The physiological cost of current reproduction on future reproduction could
be mitigated if nutrient reserves are replenished before or during future repro-
duction. However, field studies indicate that up to 90% of the energy used for
egg production comes from fat stores rather than recently consumed food (Kara-
sov & Anderson 1998). Doughty & Shine (1998) also showed that variation in
nutrient input affected variation in lipid stores and reproductive output during the
next year. Thus, long time lags can occur between variation in nutrient acquisi-
tion and variation in reproduction, further complicating physiological studies of
trade-offs in the field.

On average, about 30% of growth in lizards occurs after sexual maturi-
ty, and fecundity in lizards is correlated with body size (Schwarzkopf 1994).
Hence, current reproduction can reduce future reproduction by diverting nu-
trients away from current growth. Such a trade-off between current reproduc-
tion and growth is suggested by increased growth during years in which repro-
duction does not occur in some lizard species (Schwarzkopf 1993). Landwer
(1994) found that Urosaurus ornatus, in which egg production was experimen-
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tally reduced, showed greater growth in the field compared with unmanipulat-
ed controls.

Ecological factors such as age-dependent survivorship can have a strong in-
fluence on physiological aspects of trade-offs, such as the prioritization of nu-
trient allocation. For example, short-lived mainland anoles allocated a greater
amount of supplemental food to current reproduction, compared with long-lived
island anoles which converted supplemental food mainly into fat reserves (Guy-
er 1988, Schwarzkopf 1994). Tail breakage is an important adaptation for escape
from predation in lizards (Dial & Fitzpatrick 1981, Wilson & Booth 1998). Al-
location of energy to tail regeneration versus current reproduction in lizards de-
pends upon whether the species is short- or long-lived (Dial & Fitzpatrick 1981,
Wilson & Booth 1998). The relative importance of ecological factors such as pre-
dation, and physiological factors such as allocation, in the evolution of life his-
tory traits such as age-specific fecundity is the subject of debate in lizard studies.
Results of various mathematical models have led workers to support either phys-
iological or ecological factors as being of primary importance (Shine & Schwar-
zkopf 1992, Niewiarowski & Dunham 1994, Shine et al. 1996).

Finally, studies of skinks indicate how lineage-specific attributes can magni-
fy an apparent life history trade-off. In lizards, tail loss allows escape from pred-
ators but reduces future reproduction because the tail is an important lipid stor-
age organ. Certain lineages of skinks lack abdominal fat bodies and store nearly
100% of body lipid reserves in the tail. The impact of tail loss is especially pro-
nounced in skinks that lack abdominal fat bodies, reducing clutch sizes 50% to
100% (Wilson & Booth 1998).

Birds

Three ornithologists were the intellectual predecessors of modern life history
thinking: Lack, Skutch, and Moreau (Ricklefs 2000a). Lack’s insight (Lack 1947,
1954), that clutch size evolves to maximize individual reproductive success, be-
came a cornerstone of life history theory and motivated physiological studies on
life histories. Continuing to the present, extensive knowledge about bird demog-
raphy and intensive field studies provide an important context for physiological
studies of life history trade-offs. However, it has been argued that our knowledge
of avian life histories is still rudimentary, and thus basic studies of biochemistry
and physiology of life history traits and the controlling endocrine mechanisms
are badly needed (Ricklefs 2000b). Because of space constraints, this section fo-
cuses on two topics: energetics, especially in relation to the cost of reproduction,
and immunocompetence, a topic of relatively intense recent study on birds.

Birds have the highest core body temperature of any endotherm (Nagy 1987)
and flying birds have size constraints that presumably limit the amount of ener-
gy storage (Calder 1984). Thus, it would appear that energetics must play an im-
portant role in shaping bird life histories (Walsberg 1983, Paladino 1989, McNab
1997). Birds expend relatively high levels of energy during reproduction and
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thermoregulation (Weiner 1992). Energy constraints, which can arise from the
competing costs of reproduction, thermoregulation, growth, energy assimila-
tion, and energy assimilation capacity (Karasov 1986, Weiner 1992, Konarzews-
ki 1995, Jackson & Diamond 1996), could be integral to life history evolution.
As an alternative, the cost of foraging and the energetic demands of other exter-
nal activities could be limiting, and various aspects of physiology might simply
adjust to meet energetic requirements at any particular point in the life history
(Ricklefs 1991, 1996). From another perspective, predation appears to be a ma-
jor factor in shaping bird life histories (Conway & Martin 2000, Ghalambor &
Martin 2000). In general, it is not clear to what degree life histories are defined
by endogenous trade-offs and physiological constraints.

Either from observational data or by experimental clutch manipulation, there
is evidence for a cost of reproduction in birds (Linden & Moller 1989, Dijkstra et
al. 1990, Styrsky et al. 1999). This cost can be manifest in terms of parental sur-
vival, future reproduction and/or offspring condition-fitness. The cost of repro-
duction is often observed as an effect on offspring (Linden & Moller 1989). Egg
mass representing the energetic investment of reproduction has an effect on ini-
tial offspring growth and development of passerines, but the effect of egg mass
often does not extend to older offspring (Styrsky et al. 2000). Other factors that
are positively correlated with egg mass could have an extended effect on off-
spring (Styrsky et al. 2000). In lesser black-backed gulls (Larus fisscus), the or-
der of egg laying was correlated with abundance of antioxidants (carotenoid and
vitamin E), arachidonic acid, and cholesterol ester fractions in the eggs (Royle et
al. 1999). Fat storage could partially underlie the trade-off between reproduction
and parental survival, especially in passerines where energy storage reserves tend
to be quite limited. Increased fat storage could support reproduction, but there
can be a survival cost (Lima 1986, Witter & Cuthill 1993). Specifically, stored
fat might incur acquisition and maintenance costs (Houston et al. 1997) as well
as flight energetics or agility costs (Rogers & Smith 1993, Gosler et al. 1995).

Overall, metabolism and energy budgets have been the focus of physiologi-
cal work on the cost of reproduction. Historically, evidence accumulated for an
energetic cost of bird reproduction (King 1973, Ricklefs 1974, Drent & Daan
1980). For many species, the preponderance of this cost is due to parental care
rather than egg production (Trillmich 1986, Ward 1996). The ecology of some
birds can make this cost acute. For example, the low foraging efficiency of two
diving petrels (Pelecanoides urinatrix and P. georgicus) and an auklet (4eth-
ia pusilla) results in relatively high daily energy expenditure during the breed-
ing season (Roby & Ricklefs 1986). Parental weight loss is common at the time
of brood provisioning, and this loss can reflect energy demands on the parents
(Martin 1987). When clutch sizes were experimentally increased during incuba-
tion, there was an increase in parental energy expenditure in eight of nine stud-
ies, but diminished adult body condition was observed in only two of five studies
(Thompson et al. 1998). In the glaucous-winged gull (Larus glaucescens), exper-
imental brood enlargement resulted in increased parental reproductive effort, in-
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creased loss of weight during the breeding season, and reduced winter survival
(Reid 1987). Is the cost of reproduction mediated by energetics? In general, it is
conceptually and empirically difficult to demonstrate that an energy budget defi-
cit is directly responsible for the costs of reproduction.

A decline in immunocompetence and potential damage from microbes and
parasites could be a physiological cost of reproduction. In general, there is con-
siderable current interest in avian immune function in relation to physiological
trade-offs and life histories (Sheldon & Verhulst 1996, Horak ef al. 1999, Ow-
ens & Wilson 1999). In the collared flycatcher (Ficedula albicollins) and oth-
er bird species, there tends to be a negative relationship between brood size and
immune system indicators (Gustafsson et al. 1994). The allocation of endoge-
nous energy might play an important role in a trade-off between reproduction
and immune system function (Apanius 1998). However, immunocompetence can
be measured in numerous ways, and it is important to be aware of the assump-
tions, limitations, and consequences of various methods (Norris & Evans 2000).
Moreover, studies relating immunocompetence to fitness and disease resistance
or resource limitation in the field are rare (Owens & Wilson 1999, Norris & Ev-
ans 2000). One prospect for the future is to directly manipulate immunocompe-
tence (Sheldon & Verhulst 1996) in relation to the cost of reproduction or other
life history trade-offs.

Is immune function costly? When a passerine (Parus cueruleus) was subject-
ed to cold stress, the increase in daily energy expenditure was associated with de-
creased antibody responses (Svensson et al. 1998). The energetic cost of the an-
tibody response was estimated to be 8% to 13% of the basal metabolic rate. Al-
though there is direct and indirect support for the hypothesis of a costly immune re-
sponse (Sheldon & Verhulst 1996), a number of studies have failed to find a signif-
icant relationship between energetics and the immune response (Owens & Wilson
1999). Moreover, it has been argued that the energetic cost of immune system func-
tion might be relatively low (Hillgarth & Wingfield 1997, Owens & Wilson 1999).

The relative cost of life history traits is relevant to a prospective trade-off
with the immune system. Hoglund & Sheldon (1998) argue that allocation to sex-
ual display, which is apparently costly, should be considered in the same man-
ner as allocation to a classic life history trait. A relatively high level of cost for
sexual ornamentation could trade-off with immune function (Sheldon & Verhulst
1996, Norris & Evans 2000). Hamilton & Zuk (1982) formulated the idea that
the intensity of secondary sexual ornamentation would signal resistance to par-
asites. There is evidence for positive correlations between sexual ornamentation
and resistance to parasites and pathogens (reviewed in Moller 1990, Hamilton &
Poulin 1997, Lindstrom & Lundstrom 2000). However, there also is countervail-
ing evidence for a negative relationship, perhaps a trade-off, between sexual or-
namentation and infection (Moller 1997, Norris ef al. 1994, Richner et al. 1995,
Dale 1996, Sheldon & Verhulst 1996). Hormones could play a role in such a
trade-off by intensifying sexual display with a concomitant decrease in immune
function (Folstad & Karter 1992). Zuk et al. (1995) have shown that testosterone
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level is negatively associated with leukocyte counts in the red jungle fowl (Gal-
lus gallus), but no such relationship was detected in the barn swallow (Hirundo
rustica) by Saino et al. (1995). However, Saino ef al. (1995) found reduced anti-
body production when testosterone was administered to the barn swallows in the
field. No suppression of the avian immune system was observed in a laboratory
study of the effects of testosterone on red-winged blackbirds (4gelaius phoeni-
ceus) (Hasselquist et al. 1999), nor was there a correlation between elevated tes-
tosterone titers and parasite abundance in the same species (Weatherhead et al.
1993). Similarly, Ros et al. (1997) did not find a negative correlation between
testosterone titer and antibody production in black-headed gulls (Larus ridibun-
dus). In a study on the house sparrow (Passer domesticus), testosterone admin-
istration appeared to decrease antibody production (Evans et al. 2000). In this
study, the suppressive effect of decreased corticosterone was taken into account,
and consequently the net effect of testosterone was to stimulate antibody produc-
tion hypothetically by “dominance influencing access to resources” (Evans et al.
2000). Testosterone administration to captive and field dark-eyed juncos (Jun-
co hyemalis) resulted in decreased antibody production and increased corticos-
terone abundance (Castro et al. 2001). Testosterone could affect immune func-
tion indirectly via corticosteroids (Evans et al. 2000, Castro et al. 2001). Corti-
costeroids have been associated with increased parasite loads (Hillgarth & Wing-
field 1997). Gonadal hormones, including testosterone and metabolites, can play
a role in controlling adult plumage (Hillgarth & Wingfield 1997). The compo-
nents of an endocrine mediated trade-off between the immune system and sexual
ornamentation have been documented in some studies, and differential resource
allocation could play a role in this prospective trade-off.

Avian endocrinology studies have identified mechanisms whereby life his-
tory traits are linked. Bird corticosteroids can increase gluconeogenesis and sur-
vival under stress conditions, but suppress reproduction and the immune system
(Wingfield 1988, Wingfield et al. 1998). Testosterone administered to dark-eyed
junco (Junco hyemalis) males resulted in physiological changes including accel-
erated loss of mass, reduced subcutaneous fat, and a delay in the molt (Ketterson
et al. 1991, Nolan ef al. 1992). Studies on the dark-eyed junco and a diversity of
other bird species indicate that testosterone can stimulate mating effort, suppress
parental effort, and could be associated with a diminished life span (Ketterson &
Nolan 1999). As mentioned previously in this review, hormones often regulate
multiple antagonistic processes, and thus are notable candidate mediators of life
history trade-offs (Ketterson & Nolan 1992, 1999, Finch & Rose 1995).

SUMMARY AND FUTURE DIRECTIONS

The past decade has seen significant advances in physiological studies of life his-
tory trade-offs. With respect to the topic of energetics, the most important ad-
vances have been (a) the first genetic analyses of energetic components of trade-
offs, (b) the integration of investigations of nutrient input and allocation, (c) de-
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velopment of more sophisticated models of resource acquisition and allocation,
and (d) more detailed investigations of specific physiological costs associated
with life history traits. Advances have largely come about owing to a shift to
more focused, comprehensive, and integrated studies.

Although hormones have long been suspected to be key regulators of life
history trade-offs (Steams 1989, Ketterson & Nolan 1992, 1999), only during
the past decade have the first detailed endocrine studies of trade-offs been un-
dertaken. These investigations also constitute one of the most significant re-
cent advances in functional studies of life history trade-offs. Thus far endo-
crine investigations have involved manipulation or quantification of the titers
of hormones or the activities of enzymes that regulate hormones, that poten-
tially control life history trade-offs. This approach will almost certainly be-
come more common in the future. Endocrine studies will also likely expand
to other important topics, such as investigations of the endocrine regulation of
trade-offs at the level of hormone receptors, and ultimately the hormonal con-
trol of gene expression.

A central unresolved issue in trade-off physiology is the relative importance
of energetic, regulatory, and other (e.g., space) constraints as causes of life histo-
ry trade-offs. Although energetics has been the primary focus of functional stud-
ies of trade-offs, in no case is it certain that the differential allocation of limiting
internal resources is the primary cause of a life history trade-off. There is an in-
creasing appreciation that the physiological mechanisms that underlie life history
trade-offs are complex and that their elucidation will require a much deeper un-
derstanding of basic energetic, regulatory, and structural aspects of organismal
function and how these aspects interact.

Molecular genetic and genomic studies of organismal trade-offs, typically in
model species, have just begun. It is now possible to study gene regulation in
terms of transcription factors and regulatory DNA elements to some degree in
any organism. Genomic and cDNA library sequences, microarrays, general trans-
formation procedures, and bioinformatics are “democratizing the genome.” Thus,
extension of molecular genetic studies beyond a few model species to many spe-
cies with life histories of interest will likely constitute an important future devel-
opment relevant to functional studies of trade-offs.

A potentially important avenue of research includes traits and processes that
have not traditionally been investigated in a life history context. For example,
oxidative damage may be one of the universal challenges of life on earth and ox-
idative stress resistance may trade-off with life history characters (Salmon et al.
2001). The cost of acclimation (Hoffmann 1995, Huey & Berrigan 1996) and de-
velopment (Ricklefs 1979, Lindstrom 1999) are additional examples of topics
that could be important in life history studies, but which have received scant at-
tention.

This is an exciting time in evolutionary biology, in which the confluence of
methodological and conceptual advances in molecular genetics, development,
and physiology will result in an increasingly mechanistic understanding of evo-
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lution in model systems and in the diversity of living organisms. In particular,
delineation of mechanisms underlying life history trade-offs will allow us to un-
derstand how organisms do and can evolve.
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