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A new treatment of quasistatic �reversible� multiscale processes in heterogeneous materials at
nonzero temperature is presented. The system is coarse grained by means of a finite-element mesh.
The coarse-grained free-energy functional �of the positions of the nodes of the mesh� appropriate to
the thermodynamic-state variables controlled in the relevant process is minimized. Tests of the new
procedure on a Lennard-Jonesium crystal yield thermomechanical properties in good agreement
with the “exact” atomistic results. © 2005 American Institute of Physics. �DOI: 10.1063/1.2064607�

I. INTRODUCTION

Such processes as the propagation of defects in crystal-
line materials and thin-film lubrication are intrinsically mul-
tiscale in that they entail the coupling of highly heteroge-
neous microscopic regions of the system with homogeneous
macroscopic regions. Although the course of evolution of the
heterogeneous regions is governed mainly by irregular large-
amplitude �diffusive� atomic movements, the response of ho-
mogeneous regions, where atoms merely oscillate with small
amplitude about their relatively fixed equilibrium positions,
cannot be neglected. For realistic systems it is practically
impossible to track all atoms by solving the equations of
motion. To manage the computational burden and yet
achieve a reliable “global” description, one must judiciously
merge the atomistic description required for the heteroge-
neous regions with a coarse-grained description that is ad-
equate for the homogeneous regions. Several computational
schemes based on this notion have been proposed since the
early 1990s.1–3 These have been reviewed exhaustively over
the last several years.4–7

We confine our attention to quasistatic �reversible� pro-
cesses. A prominent quasistatic multiscale approach is the
quasicontinuum �QC� method,2,4–7 which blankets the crystal
lattice with a finite-element coarse-graining mesh, thereby
eliminating the myriad original atoms in favor of many fewer
nodes of the mesh, which act as quasiparticles whose inter-
action is mediated by the underlying atoms constrained to
move in lockstep with the nodes. The coarse-grained poten-
tial energy Uc is approximated as a sum of contributions
from the elements. In the vast homogeneous regions far from
defects elements are large compared with the range rc of
interaction between atoms. Such a large element is termed
“local” because its contribution to Uc depends on the con-

figuration of only its own nodes. As a defect is approached,
the elements must gradually become smaller in order to de-
scribe the increasing heterogeneity. When the dimension of
an element approaches rc, it becomes “nonlocal” in that its
contribution to Uc depends not just on the configuration of
its own nodes but also on the configurations of the nodes
of neighboring elements within a distance rc. The optimum
�static� configuration of all nodes at zero temperature
�T=0 K� is found by minimizing Uc �as a functional of the
nodal configuration� under given boundary conditions. By
incrementally varying the boundary conditions so as to
mimic a prescribed application of stresses or strains, one can
trace the quasistatic evolution of the �metastable� defects.

The restriction on the QC method to T=0 K becomes
crucial when the thermal energy of an atom �kBT, where kB is
Boltzmann’s constant� becomes comparable with its binding
energy �. For example, applying the QC technique to a van
der Waals crystal for which kBT /�=0.3 can lead to an error
greater than 100% in the mean stress �see Table I�. Hence,
the purpose of this paper is to introduce a new quasistatic
multiscale treatment that avoids the zero-temperature restric-
tion on the original QC technique.2 In essence we replace the
potential-energy functional Uc with a free-energy functional
Fc apropos of the thermodynamic-state variables that are
controlled in the process of interest. We report the results of
preliminary tests of the new technique on an ideal system,
namely, pure face-centered-cubic �fcc� Lennard-Jonesium
�LJ� at fixed density ��� and temperature �T�, whose thermo-
mechanical properties are known or can be readily and accu-
rately computed by independent methods. The relevant free
energy that is minimum under these conditions �fixed � ,T� is
the Helmholtz energy. Thus, the basic idea, which was pre-
viously proposed and applied to a one-dimensional model,8

is to minimize a Helmholtz-energy functional for the coarse-
grained system.a�Electronic mail: xczeng@phase2.unl.edu
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II. BENCHMARK SYSTEM

Figure 1 displays a schematic of the system: a portion of
LJ crystal within an imaginary cube of side length L=nca,
where nc is the number of fcc unit cells along an edge and a
is the cell constant. The total number of atoms in the cube
is N=4nc

3. The density is related to the cell constant by
�=4/a3. To avoid edge effects we impose periodic boundary
conditions on the faces of the cube. The system is coarse
grained by covering it with a finite-element mesh so con-
structed as to fulfill the periodic boundary conditions.

III. FREE-ENERGY FUNCTIONAL METHOD

Assuming that elements are subjected only to homoge-
neous deformations, we can express the coarse-grained
Helmholtz energy approximately as

Fc = �
e=1

Ne

Na
e fe, �1�

where the summation on e runs over all Ne elements, Na
e is

the number of atoms under element e, and fe is the Helm-
holtz energy per atom. To obtain a computationally practical
approximation to fe, we invoke the local harmonic
approximation,9 which yields

fe = ue + 3kBT ln�h�det De�1/6/2�kBT� . �2�

In Eq. �2� ue, the potential energy per atom of the LJ crystal
at T=0 K, is approximated as a sum of interactions

ue =
1

2�
j�i

��rij� =
1

2�
j�i

4����/rij�12 − ��/rij�6� , �3�

where i designates the “representative” atom underlying ele-
ment e �i.e., the atom nearest the centroid of e� and the
summation on j runs over atoms that lie within a “cutoff”
sphere of radius rc centered on i. Likewise, in the second
term on the right side of Eq. �2�, De is the dynamical matrix
associated with the representative atom in the field of its
neighbors fixed at their �T=0 K� equilibrium positions and h
is Planck’s constant.

In case element e is local, the cutoff sphere is contained
within e and the representative atom “sees” neighboring at-
oms underlying only itself. Therefore, ue is equivalent to the
potential energy per atom for the infinite crystal deformed at
T=0 K in the same way �determined by the displacements of
the nodes from their reference configuration� as the portion
of crystal under e. Likewise, De is equivalent to the dynami-
cal matrix associated with an atom in the infinite crystal so
deformed. If e is nonlocal, then the representative atom sees
neighbors not only under itself but also under all elements
intersected by the cutoff sphere. Since the positions of atoms
underlying intersected elements depend on the configurations
of the nodes of all those elements, it is clear that evaluation
of nonlocal contributions to Fc is much more demanding
computationally than that of local contributions.

To determine the minimum configuration �i.e., the con-
figuration corresponding to the global minimum of the func-
tional Fc at the given fixed � and T�, we employ the conju-
gate gradient method.10 The initial configuration of nodes is
randomized by assigning each node a random displacement
that lies within a small cube of edge 0.15� centered on the
reference position of the node. The reference configuration is
that of the perfect crystal at T=0 K. All quantities are given
here and elsewhere in the article in dimensionless units based
on the parameters of the LJ interatomic potential �see Eq.
�3��: distance in units of �, energy in units of �, stress in
units of � /�3, and temperature in units of � /kB. �Note that
for argon we have the following MKS units for distance,
energy, and stress: �=3.405�10−10 m; �=1.654�10−21 J;
� /�3=0.0419 GPa.�

IV. RESULTS AND DISCUSSION

The thermomechanical property that we focus on is the
stress. We consider only thermodynamic states in which the

TABLE I. Mean stress � for selected thermodynamic states �� ,T� of the LJ
crystal. Cube �L=42a� coarse grained in two steps: first partitioned into
rectangular prisms by passing sets of planes normal to the x, y, and z axes
�i.e., planes x=12a, x=18a, x=21a, x=24a, x=30a, and so on for y and z
axes�; six tetrahedra inscribed in each prism. “Exact” stress determined by
Monte Carlo method.

� T �exact � % error

1.19 0.00 −9.17 −9.17 0.00
0.05 −9.67 −9.68 0.09
0.10 −10.17 −10.19 0.22
0.20 −11.15 −11.20 0.51
0.30 −12.12 −12.22 0.87

1.11 0.00 −1.00 −1.00 0.00
0.05 −1.49 −1.50 0.82
0.10 −1.95 −1.99 2.13
0.20 −2.85 −2.98 4.54
0.30 −3.75 −3.97 5.82

FIG. 1. Schematic of cubic crystal depicting particular coarse-graining
mesh. Mesh over whole cube constructed by reflecting mesh in one octant
successively through the planes x=L /2, y=L /2, and z=L /2. Mesh within
octant generated by software HYPERMESH from triangular mesh specified on
faces of octant.
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fcc structure is preserved and compute the global mean stress
�i.e., 1 /3 of the trace of the stress tensor�, which is related to
the Helmholtz energy by

� = �3L2�−1��Fc/�L�N,T. �4�

Combining Eqs. �1�–�4�, we obtain

� = L−3�
e=1

Ne

Ve�e, �5�

where the elemental stress is defined by

�e = Na
e�6Ve�−1��

j�i

rij�d��rij�/drij�

+ kBT�
l

rl · �rl
�ln�det De��� . �6�

In Eq. �6� Ve is the volume of e and the summations on j and
l are restricted to atoms within the cutoff sphere. All quanti-
ties in Eq. �6� are evaluated at the minimum nodal configu-
ration.

To give the new multiscale treatment a severe test, we
coarse grain a large crystal �L=630a, N=1 000 188 000�
with a nonuniform mesh �see Fig. 1�, as if there were a
highly heterogeneous core. The dimensions of elements vary
from 2a at the center of the cube to about 100a at the faces.
At the given density of 1.19, a�1.5. Therefore, since rc

=2.5, elements in the core are nonlocal. Figure 2 displays a
plot of �e in elements bordering the midplane �z=L /2�. Ex-
cept in elements at the core, �e is constant over the entire
midplane and agrees with the “exact” mean stress ��exact, see
Table I�. This result is in harmony with one’s expectation that
the stress should be uniform throughout the crystal in a state
of thermodynamic equilibrium.

The discrepancies in �e at the core are traceable to so-
called “ghost forces” on the nodes.4,5,11 These spurious
forces, which lead to false minima in Fc, are due to asym-
metric contributions in regions where elements are nonlocal
�e.g., at the core of the cube, in the present instance�. Pre-
scriptions to eliminate ghost forces have been suggested.4,5,11

However, since all these require handling nonlocal elements
explicitly, they are very intensive computationally, as men-
tioned above. Here we attempt to circumvent the problem of
ghost forces by a less computationally expensive alternative:
we simply treat the nonlocal elements as if they were local.
The result is shown in Fig. 3, where we compare this “all-
local” �i.e., all elements are regarded as being local, irrespec-
tive of their true status� approximation with the usual proce-
dure which takes account of nonlocality �see Fig. 2�. Note
that the plots cover only the core region where there are
discrepancies. The �e based on the all-local approximation
�filled circles� is constant across the midplane �indeed,
everywhere� and agrees with the global stress � as it should.

That such an apparently crude approximation works so
well is perhaps surprising. To indicate its limitations we con-
sider a cubic LJ crystal subjected to a sharp, nonuniform
static deformation characterized by the displacement field

u�x,y,z� = 0.1� exp	− ��x − L/2�2 + �y − L/2�2

+ �z − L/2�2�1/2/3
ez = uzez, �7�

where ez is the unit vector. In this case we construct a uni-
form coarse-graining mesh by subdividing the whole 12a
�12a�12a cube into 83 smaller 1.5a�1.5a�1.5a cubes
and inscribing six tetrahedra in each. The dimension of ele-
ments is of the order 2.25, which is less than rc, so all ele-
ments are actually nonlocal. In Fig. 4 we plot the displace-
ments uz of atoms that lie on a “reference” line parallel with
the x axis before the deformation is applied. Also shown are
plots of the mean stress at these atoms and in the elements
through which the reference line passes. As Fig. 4 indicates,
the all-local �e is in good agreement with the exact atomic
stress, except in the core region �5.5a�x�6.5a�. On aver-
age it does as well as its non-local counterpart. We conclude
that treating all elements as local is a reliable approximation,
if the deformation gradient is not too large.

To get some information on the range of applicability
of the free-energy-functional method, we computed � for a
selection of thermodynamic states. The results are given
in Table I. Also included is the stress obtained by standard

FIG. 2. Coarse-grained mean stress ��e� in elements bordering the midplane
z=L /2 vs distance along the x axis. L=630a, N=1 000 188 000, Ne=4264,
Nn �number of nodes�=1035, �=1.19, and T=0.3. Cube coarse grained as
depicted in Fig. 1. Data plotted at positions �x ,y� of centroids of triangular
faces of elements lying in midplane �see Fig. 3� and centroids projected onto
the x axis.

FIG. 3. Perspective plots of coarse-grained mean stress ��e� in elements
bordering the midplane z=L /2. �e based on “all-local” approximation in
filled circles; �e that accounts for nonlocality of elements in open circles.
The plane of triangular mesh lies at the mean value �−12.22�.
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Metropolis Monte Carlo simulation,12 which treats all atoms
explicitly. For purposes of comparison, we take the atomistic
values to be exact. Two major trends are noted in Table I.
First, at fixed � the accuracy of the method decreases with
increasing T. This is due to the harmonic approximation’s
becoming less reliable as the “real” underlying atoms make
thermal excursions into anharmonic regions. Second, at fixed
T the error in the stress increases with decreasing �. At the
lower density the effective potential energy binding an atom
to its �equilibrium� site is “softer” and more anharmonic than
at the higher density. We conclude that the new quasistatic
multiscale technique is valid over a considerable range of
thermodynamic states where the local harmonic approxima-
tion is expected to hold.

Finally, we remark that the ultimate goal of this research
is to develop a hybrid atomistic and coarse-grained modeling
technique for computing the thermomechanical response of

systems that consist of both highly heterogeneous micro-
scopic regions and relatively homogeneous macroscopic re-
gions. Such an approach requires a good coupling of atom-
istic simulations �for the heterogeneous microscopic regions�
with the coarse graining �for the homogeneous macroscopic
regions�. The progress made in the current work is an impor-
tant step in this direction. Work to incorporate the two types
of simulations into a unified multiscale modeling is under
way.
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lines; �e that accounts for nonlocality of elements in dashed lines; “exact”
�atomic� stress at intersected atoms in circles.
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