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CHAPTER 1 

1.1 INTRODUCTION 

The increasing reliance on Advanced Traveler Information Systems (ATIS) has 

heightened the need to estimate and predict travel times accurately and reliably (Ruimen 

2003).  Accurate and reliable travel times are necessary for a variety of real-time and off-

line transportation applications.  Real-time applications include route guidance, which 

allows road-users to make more informed route decisions (pre-trip and en-route), and that 

can potentially yield more stable and less congested traffic conditions.  The off-line 

applications include system performance monitoring.   

In 2006, 202 million licensed drivers traveled 262 billion miles in the United 

States alone (US Bureau of Transportation Statistics 2007; Federal Highway 

Administration 2007).  This was an increase of six percent drivers and 22 percent vehicle 

miles traveled from year 2000 (190 million licensed drivers and 203 billion vehicle miles 

traveled).  These increases in driver population and demand have not been matched by 

equivalent increase in the supply component.  The end result was increasing congestion 

over time and space (Schrank and Lomax 2008).  This can result in substantial cost, 

which has been estimated at $78.2 billion (in 2005 dollar value) per year, on the US 

economy.  This cost was due in part to 4.2 billion vehicle-hours of delay, resulting in 2.9 

billion gallons of wasted fuel.   

Several congestion management strategies target the demand and supply 

components of the transportation system.  The supply side alternatives include increasing 
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the capacity by building more roads and building public transit.  In many urban areas 

these are becoming infeasible due to increasing environmental awareness and concerns, 

the high costs of construction and difficulty in acquiring right-of-way.  On the demand 

side, alternatives include car-pooling, the use of high occupancy vehicle facilities, 

roadway pricing and the use of ATIS.   

ATIS provide motorists with accurate and timely traffic information via media 

such as variable message signs, internet and radio.  A vital component within ATIS is 

pre-trip travel time information.  This predicted mean travel time information is obtained 

using numerous models that have been developed through extensive research in this area.  

However, a majority of these prediction models provide point estimates and do not give 

insight into the uncertainty margin around the estimates (Mazloumi et.al 2010; De Jong et 

al. 2007).  The contribution of this research lies in developing and applying a 

methodology that will provide an accurate prediction of the mean travel time as well as a 

measure of the reliability, or confidence, in the predicted estimate.  More importantly, it 

will provide a generic non-parametric approach to estimate uncertainties that is not a 

function of the travel time estimation or prediction model.   

1.2 BACKGROUND 

1.2.1 Travel Time Prediction 

Advanced Traveler Information Systems offer an opportunity for understanding 

traffic and transit conditions, presenting multi-modal options to travelers, and improving 

the performance of the existing transportation infrastructure (Abdel et al. 1997).  In other 
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words, ATIS aims to provide the public, businesses and commercial carriers with the 

right travel information (such as delays, next bus, and alternate routes) at the right time 

and right place; hence, improving the quality and convenience of their trips.  A core 

component within ATIS is travel time information because it is easily understood and 

perceived by travelers.  However, for ATIS to be successful, the suggested travel 

information should be based not only on historical and real-time travel times, but also on 

anticipatory travel time information.  That is, travel times for ―unknown‖ future traffic 

conditions.  Two approaches of getting the expected travel times include: (i) indirect 

travel time prediction and (ii) direct travel time prediction (Van Lint 2004).   

Indirect travel time prediction involves predicting traffic quantities (speeds, flows, 

and densities) from their measured values and then using standard formulations to 

estimate the future travel times.  Hence, travel time estimation techniques can be used as 

components in travel time prediction models.  With direct travel time prediction, future 

travel times are obtained without the intermediate step of predicting other traffic 

quantities.  This means that future travel times are obtained using measured traffic 

quantities (speeds, flows, densities or travel times).  A variety of models (direct and 

indirect) that predict the mean travel time are available in the literature.  The next 

sections provide brief descriptions of the modeling approaches common to travel time 

prediction modeling.  These modeling approaches include: time series analysis, neural 

network analysis and Kalman filtering.   
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1.2.1.1 Time Series Analysis 

In time series modeling a sequence of observations xt are measured at successive 

time intervals t and plotted (Brockwell and Davies 2002).  For the case of this dissertation 

these xt values will be mean travel times that could either be measured or estimated.  The 

time points at which the observations are made are discrete in most cases.  A hypothetical 

probability model is then fitted to the measured data such that it represents the generating 

mechanism of the time series.  Subsequently, the fitted model makes it possible to predict 

future observations.  Time series models can have many forms and represent different 

stochastic processes (Box et al. 1994).  Three broad classes include the autoregressive 

(AR) models, the moving average (MA) models and a combination of AR and MA 

known as the autoregressive integrated (ARIMA) models.   

In time series analysis the assumption is that historic patterns will remain the 

same in the future. As such, the accuracy of these models is a function of the similarity 

between the real-time and historic patterns.  Variations in historical data or changes in the 

relationship between historical data and real time data could cause significant inaccuracy 

in the prediction results.  Travel time prediction using time series analysis has been 

reviewed in previous literature (Oda 1990; Andersen et al. 1994; Al-Deek et al. 1998; 

Yang 2005).   

1.2.1.2 Neural Network Analysis 

Neural networks are data models that are able to capture and represent complex 

input/output relationships (NeuroSolutions 2008).  In its most general form, a neural 

network (NN) model aims at mimicking the human brain in performing a particular task 
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or function of interest.  NNs thus resemble the brain in two particular respects: (i) they 

acquire knowledge through training, and (ii) weights are used to store the acquired 

knowledge (Haykin 1999).   

A NN model is comprised of several building blocks called neurons.  Each neuron 

has inputs P1 (such as measured speeds or volumes) that are multiplied with weights wij 

and then summed, as shown in Figure 1-1.  An activation function f(a) is then applied to 

the summed and weighted input to produce an output Y1.  Given that the output Y1 is not 

the same as the desired output D1 an apparent error will be present.  This error is fed 

back to the model and the weights are readjusted.  This process is called training and is 

repeated until the model performance is acceptable.  Once the model has been trained, the 

model parameters, or weights, are set and the model can be used for the prediction task.   

 

 

 

 

 

 

 

FIGURE 1-1: Neural network computation scheme 
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While NN models can represent both linear and non-linear relationships, their 

advantage lies in the ability to learn these relationships directly from the data being 

modeled.  NN models have been developed for use in the area of transportation since the 

early 1990‘s.  These models have been used to predict travel time (Park et al. 1998; Park 

and Rilett 1998; Rilett and Park 2001; Van Lint et al. 2002; Kisgyorgy and Rilett 2002; 

Huisken and Berkum 2003) and also traffic conditions (Taylor and Meldrum 1995; Dia 

2001; Innamaa 2001) on motorways.   

1.2.1.3 Kalman Filtering 

Kalman filtering (Kalman 1960) combines available measured data, regardless of 

their accuracy (such as speeds, flows or densities) with prior knowledge about the system 

and measuring devices, to estimate a desired variable of interest (such as travel time) in 

such a manner that the error is minimized.  The two main features of the Kalman 

formulation and solution to the problem are (i) vector modeling of the random processes 

under consideration, and (ii) recursive processing of the noisy measurement (input) data.  

The model is essentially a set of recursive mathematical equations (or sub models) that 

when used together will model and accurately estimate the movement of a dynamic 

system.   

The process model provides an a priori estimate of the state of the process, 

whereas the measurement model takes actual measurements of the state of the process.  

The information contained in the actual measurements is then incorporated into the priori 

estimate to update it, resulting in the a posteriori estimate.  The a posteriori estimate is 

then used to make a new a priori estimate of the state of the process at t t , where t  



7 

 

is the time interval between two adjacent time steps.  A Kalman filter model can be 

summed as an optimal recursive computation of the least squares algorithm.   

This modeling approach has been used in the prediction of traffic volumes 

(Okutani and Stephanedes 1984), real-time demand diversion (Stephanedes and Kwon 

1993) and the estimation of trip-distribution and traffic density (Okutani and Stephanedes 

1987).  More recently, the Kalman filter has been used to develop travel time prediction 

models (Chen and Chien 2002; Chien and Kuchipudi 2003; Chien et al. 2003; Lianyu et 

al. 2005).   

1.2.2 Assessment of Model Uncertainty 

Generally when calculating an estimate θ̂ of a statistic such as the mean of a given 

sample data, an initial model based on a fixed set of variables and model parameters is 

developed.  Subsequently, the developed model is used to estimate the statistic of interest.  

In doing this, it is assumed that an exact or ―true value‖ of the population parameterθ

exists.  Model uncertainty is the best measure or quantification of how far the estimated 

statistic might be from its "true value‖ (i.e.,  ˆ ).  The estimated statistic is thus 

reported by specifying a range of values which are likely to enclose the ―true value‖ (i.e., 

best estimate ± uncertainty).   

The uncertainty is often calculated by repeating the estimating process a number 

of times to get a good estimate of the standard deviation, the square root of the variance, 

of the measured values.  However, if the measured values are averaged, then the mean 

measurement value has a much smaller uncertainty; namely, it is equal to the standard 
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error of the mean, which is the standard deviation divided by the square root of the 

number of measurements.  The standard error is a crude but useful measure of statistical 

accuracy and is frequently used to provide a confidence interval for an unknown 

parameterθ  (Efron and Tibshirani 1985).   

A confidence interval is a range of values that is likely to include the ―true value‖ 

of the population parameter.  The width of the confidence interval provides a measure of 

the uncertainty in the population parameter.  A wider interval indicates greater 

uncertainty in the estimated parameter whereas a narrow interval indicates lesser 

uncertainty.  The confidence interval also provides a measure of the reliability of an 

estimate and, depending on the confidence level, indicates how likely the estimated 

parameter will fall within the interval.  For example, at a confidence level of 95%, if the 

experiment was repeated a 100 times and the confidence interval calculated each time, 

then the confidence interval thus calculated would contain the value of the estimated 

parameter 95 out of 100 times.   

1.2.3 Uncertainty Assessment with Bootstrapping 

Bootstrapping is a data-based simulation technique for assigning measures of 

accuracy to statistical estimates (Barker 2005).  It is a computationally intensive, 

nonparametric technique that can produce probability based inferences (standard errors 

and confidence intervals) about a population-related parameter based on a sample 

estimate (Mooney and Duval 1993).  Bootstrapping is useful in examining the 

performance of statistical methods by applying them repeatedly to bootstrap pseudo data, 

known as ''resamples'' (Mammen and Nandi 2008).  The inspection of the outcomes for 
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the different bootstrap samples allows the statistician to get a reliable measure on the 

performance of the statistical procedure.  The common implementations of the bootstrap 

are ordinary bootstrap and block bootstrap methods.  The appropriate type of bootstrap 

method to be implemented is dependent on the structure of the data (i.e., independent and 

identically distributed data or dependent data).   

1.2.3.1 The Ordinary Bootstrap 

The ordinary bootstrap is the simpler and more general version of bootstrapping that is 

applied to independently and identically-distributed data (i.i.d).  The methodology 

involves starting with an original sample, then creating a new sample (bootstrap sample) 

by sampling with replacement from the original sample.  The process is repeated a 

number of times (generally 1000) to generate a series of bootstrapped samples, and the 

statistic of interest (such as the mean) is computed for each bootstrapped sample.  Figure 

1-2 illustrates this process.  Note that because the resampling is done with replacement, 

bootstrap samples can duplicate observations from the original sample.  The standard 

error (standard deviation of the mean) is then calculated by finding the standard deviation 

of the bootstrapped means.   
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FIGURE 1-2: Illustration of the ordinary bootstrap method
1
 

1.2.3.2 The Block Bootstrap 

The block bootstrap is the most popular method for implementing the bootstrap with 

time-series (dependent) data (Hardle et al. 2003).  The basic concepts of the block 

bootstrap are similar to those of the ordinary bootstrap discussed earlier.  Both procedures 

are based on sampling observations with replacement.  However, in the block bootstrap 

method, the data are divided into contiguous blocks that are randomly sampled in order to 

construct the bootstrap samples.  The blocks can be created using different methods as 

described in previous studies on the subject (Hall 1985; Carlstein 1986; Kunsch 1989) 

and (Politis and Romano 1994).   

                                                 
1
 Image source: Barker 2005 
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This blocking is done to capture the dependent structure; hence, the resulting 

estimates from the block bootstrap tend to be less biased than those from an ordinary 

bootstrap.  Nonetheless, as Lahiri finds, ―a bias correction is needed for the block 

bootstrap to accurately estimate uncertainties and the bias correction is often laborious 

even for estimators as simple as the sample mean‖ (1999).   

1.2.4 Multivariate Data Structure 

In many dynamical systems, multivariate data are readily available for estimating 

model parameters.  These multivariate data exhibit two distinct characteristics: (i) 

nonlinearity: there is no direct or straight line relationship between variables; and (ii) 

nonstationarity: the statistical characteristics (mean and variance) change over time due 

to either internal or external nonlinear dynamics.  For stationary data the probability 

density function remains equal regardless of any shift in time to its time origin (Haag 

2008), but this is not the case for nonstationary data.  An example of nonstationary data 

can be found in environmental systems for spatial-temporal modeling where data might 

be several pollutants species measured over time at many locations or for receptor 

modeling where similar data may be obtained at just one pollution receptor over time.   

The widespread deployment of Intelligent Transportation Systems (ITS) has 

enabled traffic data such as volume, speed and occupancy to be readily available.  These 

data are often used in prediction models to provide estimates of mean travel time to road 

users.  The volume, speed and occupancy data have a nonstationary distribution and 

exhibit a general periodicity.  That is, considering a time series of volume data, Monday‘s 

data are similar to every other Monday, but data from Monday morning and Monday 
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afternoon can be different.  Figure 1-3 illustrates the periodic behavior in link volume 

count data obtained from a detector location on Interstate 10 in San Antonio, Texas.  The 

plot depicts 30 days of peak AM (6:30 – 8:30) volume counts that were aggregated at 5-

minute intervals.  This type of data presents challenges for estimated model uncertainty 

evaluation.   

 

FIGURE 1-3: Periodic behavior of volume data
2
 

1.3 PROBLEM STATEMENT 

1.3.1 Need for Uncertainty Modeling in Travel Time Prediction 

A review of the literature on travel time prediction indicates the availability of 

several models to facilitate the prediction of mean travel times.  The focus of the majority 

of these studies has been on the predictive accuracy of the model, which is the ability to 

provide an accurate point estimate of the mean travel time in comparison to travel times 

encountered in real time.  Thus a point estimate of the prediction is given which does not 

provide any knowledge into the uncertainty margin that exists around the prediction.  

However, studies (Arnott et al. 1991; Khattak et al. 1995; Mahmassani et al. 1999) that 

have investigated the potential benefits of ATIS emphasize among other things, the 

                                                 
2
 Image source: Appiah et al. 2008 
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reliability of traffic information to greatly influence driver responses (Van Berkum and 

Van Mede 1993; Mahmassani et al. 1999).  This may suggest that in order for the 

predicted mean travel time to have a positive impact on congestion and safety (through 

road-users being able to make smarter route decisions), it must be consistent—drivers 

must be able to both trust and rely on the travel time estimate.   

Additionally, given the number of travel time prediction models available, 

engineers are faced with the challenge of selecting and implementing the most effective 

modeling scheme.  As a general guide to selecting one of the numerous models for 

implementation, it would be instructive to have a means of assessing the reliability of 

these models.  One way of doing this, is by being able to accurately quantify the 

uncertainties in the predictions in terms of variances or confidence intervals.   

Uncertainty in the travel time prediction arises from noise inherent to the 

measured data and noise due to model structure (i.e., uncertainty due to the 

approximating function being trained on a selected random sample available from the 

population).  The poor quality of measured data has been studied extensively and can be 

addressed using a number of different methods, for example, a generalized reduced 

gradient approach (Vanajakshi 2000) and multivariate screening methods (Park et al. 

2003).  There, however, is need to quantify the uncertainty due to errors in model 

(mis)specification.  More specifically, there is need to explicitly address the confidence in 

the model parameters.  Eisele (2001) outlined a loess non-parametric statistical procedure 

for estimating link and corridor travel time mean and variance using ITS data.  This 

statistical procedure presents a method of locally-weighted smoothing that allows 

estimation of travel time mean and variance.   
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Van Lint (2003) evaluated two different methods—non-parameterized 

bootstrapping (Heskes 1997) and an approximate Bayesian approach (Papadopoulos et al. 

2001)—for assigning confidence to the travel time prediction parameters obtained from a 

proposed state space neural network (Lint et al. 2002) model.  Both methods exploit the 

bootstrap mechanism (Efron and Tibshirani 1993) and yield plausible results in terms of 

the number of travel times that fall within their respective confidence intervals.  Van 

Hinsbergen (2010) evaluated a Bayesian inference framework for assigning error bars 

(prediction intervals) around output from traffic prediction and estimation models.  A 

limitation of the researches is that it is based on the assumption that the data are 

independently and identically distributed.  This is unlikely to be the case.   

1.3.2 Need for Considering the Structure of Traffic Data in Modeling 

ITS and loop detector data (volume, speeds, densities and occupancy) are readily 

available for use with travel time prediction.  These data have a nonstationary distribution 

and exhibit a general periodicity as shown previously in Figure 1-3.  Additionally, the 

data are weakly dependent; that is, the dependence diminishes as the aggregation interval 

becomes large (i.e., traffic characteristics on Monday at 7:30 AM influence traffic 

characteristics on Monday at 7:35 AM, but do not influence traffic characteristics on the 

next Monday at 7:35 AM).   

This type of data presents a challenge for estimated model uncertainty evaluation.  

Thus, when quantifying the uncertainty in the travel time prediction, there is need to 

consider the nonstationary distribution and dependence structure of the ITS data.   



15 

 

1.4 RESEARCH OBJECTIVES 

The primary goal of this research was to examine the uncertainty arising in travel time 

prediction estimates due to model structure.  Specifically, this research aimed at 

addressing the reliability (confidence) in travel time predictions.  This objective was 

achieved by the following specific aims: 

1. Investigated the characteristics of available ITS point and interval data, such as speed, 

flow and travel time.  Particular focus was on the periodicity and dependence of these 

types of data.   

2. Demonstrated applications of the ordinary and blocked bootstrap methods for 

evaluating uncertainties in travel time prediction models.   

3. Introduced and implemented a recently developed gapped bootstrap method of 

assessing uncertainty due to a model‘s structure being specified on a select sample 

dataset.  This will help in providing an unbiased estimate of model parameters when 

dealing with data that has a nonstationary distribution, is dependent and exhibits a 

characteristic periodic behavior.   

4. Made comparisons of the performances between the proposed uncertainty evaluation 

methods (i.e., ordinary, block and gap bootstrapping).   

1.5 STATEMENT OF WORK 

Task 1: Perform a literature review 

Related research reports, journal articles, and Ph.D. dissertations were thoroughly 

reviewed.  The primary areas of interest included a succinct knowledge of (1) travel time 
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data collection and analysis, (2) existing travel time prediction techniques, and (3) 

existing methods for quantifying uncertainty in model parameters.  The purpose of this 

task was to ensure that no research relevant to this study was overlooked or 

inappropriately duplicated.   

Task 2: Develop study design and data collection 

This task included the selection of the study corridors from which data for the various 

analyses in this dissertation were gathered.  One of the data sources was a proposed 

corridor that is a section of Interstate 35 located within the TransGuide project area in 

San Antonio, Texas.  TransGuide—San Antonio‘s advanced traffic management system 

(ATMS)—is designed to provide information to motorists about traffic conditions such as 

incidents, congestion and construction.  Data for this study corridor is collected using ITS 

equipment, such as inductive loop detectors.  The data was downloaded from the 

TransGuide website archive (www.transguide.dot.state.tx.us).   

The other proposed data source was a simulated section of Interstate 80 located 

between the cities of Lincoln and Omaha, Nebraska.  The simulated study corridor is part 

of a large area micro-simulation project being modeled using VISSIM.  The use of data 

from two study corridors was intended to validate the results from this research.   

Task 3: Investigating characteristics of ITS traffic data 

The ITS data contained discrepancies and missing values, therefore the data were initially 

―cleaned‖ and preprocessed for quality control.  Standard quality control methods were 
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implemented.  As mentioned in the problem statement, research available to date is based 

on the assumption that the traffic data are independently and identically distributed.  

However, this is not likely to be the case.  An additional goal of this task was to identify 

the structure of the data sets in terms of periodic behavior and trends of dependency.   

Task 4: Assessment of uncertainties in the model parameters 

There is limited research (Eisele 2001; Van Lint 2003) available on the provision of 

confidence intervals to the output from travel time prediction models.  Bootstrapping is a 

technique that allows making probability based inferences, or compute standard errors, 

about a population related parameter based on a sample estimate.  A number of bootstrap 

methods are available.   

The ordinary bootstrap is a useful technique when dealing with data that is 

independently and identically distributed.  However, for data that has a dependent 

structure, the block bootstrap technique is adopted.  Still, ―a bias correction is needed to 

accurately estimate uncertainties‖ (Lahiri 1999).  In this task attention was focused on 

implementing a recently proposed gapped bootstrap method (Spiegelman 2008).   

The gapped bootstrap method produces an estimate of standard error that is 

asymptotically unbiased.  In the case when there is a bias, it is known to produce an 

estimate that, on average, is large—a conservative estimate of uncertainty is not a major 

disadvantage.  What makes this method potentially attractive is that, unlike ordinary and 

block bootstraps, the gap bootstrap provides accurate estimates of the standard error for 

parameters when the data are dependent and have a nonstationary distribution.   
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The different bootstrap methods were applied to a neural network model to get a 

measure of uncertainty around the value of the predicted mean travel time.  The 

comparison in performance between the three bootstrap methods was presented as a part 

of this task.   

Task 5: Summary and Conclusions 

A summary of the research findings and relevant conclusions based on these findings 

were provided.  Issues pertaining to any future research in the area were identified.   

1.6 EXPECTED RESEARCH CONTRIBUTIONS 

Provision of time based information is a major component of ATIS.  This time-based 

information allows road-users to make more informed route decisions (pre-trip and en-

route), and that can potentially yield more stable and less congested traffic conditions.  

For traffic managers, this is an important index for monitoring traffic system operation.  

While a significant amount of research has been conducted in this area, there is still 

important work that needs to be done.   

To date there have been numerous travel time estimation and prediction models that have 

been developed.  The bulk of previous work has largely focused on an aggregate 

estimation of the mean travel time.  One key contribution of this research was to identify 

an approach to compute an estimate of standard error for highly nonlinear models.  The 

approach is generic and can be applied to other estimation and prediction models.  In this 

dissertation the approach was illustrated on a travel time prediction model.  It is expected 
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that by quantifying the uncertainty, a more reliable travel time estimate would be 

available for drivers and transit agencies.   

In the past, it has been assumed that traffic data such as travel times, flow or speeds are 

independently and identically distributed.  This is unlikely to be the case which produces 

biased uncertainty estimates.  In this research, explicit consideration of the nonstationary 

distribution and dependence structure of multivariate ITS data sets was made.  Thus, a 

way to identify reliability measures for traffic data which have been shown to exhibit a 

time dependent, periodic and nonstationary structure was presented.  The application of 

the methods to the domain of travel time prediction is new.   

It is expected that as traffic management centers continue to provide road users with 

textual time-based information (via phone, radio and roadside or overhead variable 

message signs) on typical, or even custom, routes, the proposed research could be 

applicable to ITS engineers as a decision making tool.  It could prove useful when 

selecting the most appropriate estimation and forecasting technique for deployment in 

their respective traffic management programs.   

1.7 ORGANIZATION OF THE DISSERTATION 

This dissertation is organized into six chapters.  Chapter One is an introduction to the 

research and discusses the background of the problem, statement of the problem, research 

objectives, research methodology, contributions of the research, and the organization of 

the dissertation.  Chapter Two presents a literature review on methods for collecting 

travel times, methods for estimation of link travel time from loop detectors, prediction of 
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link travel time, and uncertainty modeling with travel time prediction.  Chapter Three 

presents the details of the study corridor and the data collection procedures along with 

standard data reduction techniques adopted in this dissertation.  Chapter Three also 

discusses some exploratory analyses to identify characteristics in the data.  Chapter Four 

describes the travel time estimation and prediction models adopted within this 

dissertation.  Chapter Five details the proposed uncertainty modeling methodology and 

discusses the bootstrapping technique.  Chapter Six provides conclusions and suggestions 

for further research. The references are followed by a glossary of frequently used terms.   
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CHAPTER 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

This chapter provides detail on existing literature pertaining to link travel time mean and 

median estimation.  The chapter begins with a section on travel time collection methods 

focusing particularly on inductive loop detectors (ILD), their operation and installation, 

and the data available from ILDs.  Subsequently, the relevant literature pertaining to link 

travel time estimation using ILD data is presented.  It is followed by a discussion of work 

related to link travel time prediction.  As well a detailed discussion on research involving 

link travel time prediction using neural networks is presented.  The final section of this 

chapter discusses uncertainty modeling and the reported methods for calculating 

uncertainty.  Also included within this final section is a discussion on uncertainty 

modeling related to link travel time prediction.   

2.2 TRAVEL TIME COLLECTION METHODS 

Traditionally, travel time has been measured using the test vehicle or floating car 

technique.  The methodology involves driving an instrumented (with manual or automatic 

measuring devices) vehicle(s) within the traffic stream to specifically collect data.  With 

the advent of Intelligent Transportation Systems, many varying techniques are available 

for travel time measurement.  These ITS techniques can be divided broadly into direct 

and indirect measuring methods as illustrated in Figure 2-1.   
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FIGURE 2-1: Travel time collection methods 

With the direct methods, travel time is collected from the field using methods that 

include test vehicles, automatic license plate recognition, automatic vehicle identification 

and electronic distance measuring devices.  With the indirect measuring methods, the 

travel time is estimated from other measured parameters such as speed, volume and 

occupancy using standard formulations.  Sources for indirect travel time include intrusive 

and non-intrusive detection sensors such as inductance loops, video detection, microwave 

radar, infrared, ultrasonic, passive acoustic array, and magnetic technologies (Turner 

1998).   

In most metropolitan cities within the United States, the freeways have already 

been instrumented with inductive loop detectors.  These detectors are a good source of 
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traffic data from which travel time information can be obtained.  Moreover, loop 

detectors are a continuous and less expensive source of data as compared to methods such 

as test vehicles and automatic vehicle identification.  For this dissertation, the real-time 

raw data used is obtained from ILDs.  Therefore, the next sub-sections present specific 

detail related to the operation, placement and data collected from inductive loop 

detectors.   

2.2.1 Overview of Inductive Loop Detectors 

The National Electrical Manufacturers Association (NEMA) standards provide 

the definition of a vehicle detector as, ―a system for indicating the presence or passage of 

vehicles.‖  The vehicle detector system is the backbone of any traffic management and 

data collection system (NEMA 1983).  Of a variety of vehicle detection systems available 

on the market, the inductive loop detector is the most widely used (Raj and Rathi 1994; 

Klein et al. 2006).  Inductive loop detector technology has been in use for the detection of 

vehicles since the early 1960s (Potter 2009).  Inductive loop detectors consist of one or 

more loops of wire embedded in the pavement and connected to a control box.  When a 

vehicle passes over or rests on the loop, the inductance of the loop is reduced, thus 

indicating the presence of a vehicle.  The data that is typically supplied by inductive loop 

detectors include vehicle passage, presence, count and occupancy.   
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FIGURE 2-2: Inductive loop installation
3
 

2.2.2 Principle and Theory of Operation 

Loop detectors operate on the principle of inductance.  The typical components of 

an inductive loop detector are one or more turns of insulated wire (also known as a loop), 

a lead in cable which runs from a roadside pull box to a controller and an electronics unit 

located in the controller cabinet.  Figure 2-2 depicts the principal components in an 

inductive loop detector and their typical installation.   

The insulated electrical wire, usually several meters to a side with several turns, is 

buried up to 20-inches below the road surface in a 0.15-inch wide shallow cutout.  The 

                                                 
3
 Image source: Klein et al. 2006 
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pull-box is usually located adjacent to the roadway and houses the splices between the 

lead-in cable from the controller and the lead-in wires from the loop.  The lead-in wires 

are shielded and twisted to eliminate disturbances from external electromagnetic fields, 

such as adjacent loops.  Energy in the range of 10 kHz to 200 kHz is supplied to the wire 

loops by the electronics unit.  The inductive-loop system behaves as a tuned electrical 

circuit in which the loop wire and lead-in cable are the inductive elements.   

When a vehicle stops on or passes over the loop, its inductance is decreased as 

shown in Figure 2-3 (a).  The decreased inductance increases the oscillation frequency 

and causes the electronics unit to send a pulse to the controller, indicating the presence or 

passage of a vehicle.  Figure 2-3 (b) depicts a series of low-high pulses indicating that 

three vehicles passed over the loop.  The differences in width, or time, of the low 

frequency seen in Figure 2-3 (b) indicate how long the vehicle was present on the 

detector.  Thus, the vehicle passing during time tn3 was present over the detector much 

longer than the vehicle passing during time tn1.   

The size and the number of turns of a loop or combination of loops, together with 

the length of the lead-in cable, must produce an inductance value that is compatible with 

the tuning range of the electronics unit and with other requirements established by the 

traffic engineer.  The loops are read many times a second though the data are typically 

reported back to the traffic management center at intervals of 20 or 30-seconds.  For 

freeway applications, loops are often placed 0.25 to 0.50-miles apart.  Inductance loop 

detectors on arterial streets are commonly placed at major intersections, where traffic 

conditions vary considerably throughout the traffic signal cycle.   
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(a) 

 

 

(b) 

FIGURE 2-3: Loop detector inductance measurements 

2.2.3 ILD Configurations and Data Collected 

Inductive loop detectors can be configured to work as either a single loop or a 

dual loop.  The single-loop detector, like the name suggests, uses a single loop of wire at 

each location as shown in Figure 2-4.  In the case of the dual-loop detector, two single 
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loops are placed a small distance apart at each detector location as illustrated in Figure 2-

5.  Both detector configurations supply data that includes vehicle passage, presence, 

count (volume) and occupancy.  The essential difference is in the way vehicle speed is 

calculated using each detector configuration.  Single-loops cannot measure speed directly 

and thus a value of speed is estimated based on a function of effective loop length, 

average vehicle length, time over the detector and the number of vehicles counted (May 

2009).  With dual loops the speed can be measured directly.  Equations 2.1 and 2.2 are 

used for calculating the speed using single and dual loops, respectively.   

   
     
       

                                                                                                                                    

where: 

Ln = vehicle length (feet);  

Ld = detection zone length (feet); and  

(tocc)n = individual occupancy time (seconds). 

   
 

                   
                                                                                                          

where:  

A and B= first and second loops in the dual-loop detector respectively; and  

D = distance from upstream edge of detection zone A to downstream edge of detection 

zone B (feet). 
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FIGURE 2-4: Single loop detector in one lane of a roadway 

 

FIGURE 2-5: Dual loop detector in one lane of a roadway 
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2.3 LINK TRAVEL TIME ESTIMATION FROM INDUCTIVE LOOP 

DETECTORS 

As mentioned previously, link travel time data may be gathered directly using methods 

that include the use of instrumented test vehicles, license plate matching, vehicle probes 

(i.e., global positioning systems and automatic vehicle identification) or emerging 

technologies (e.g., cell phones) (Turner et al. 1996, 1998).  However, these methods are 

costly to implement and maintain.  Alternative, less costly methods to estimate or 

calculate travel times from directly measured parameters, such as point speeds obtained 

from single or dual inductive loops (as mentioned earlier), are also available.   

2.3.1 Extrapolation Methods 

The simplest (and most widely accepted by DOTs) methods for estimating travel 

time from inductive loop detector data are the extrapolation methods (Turner et al. 1998).  

Extrapolation methods are based on the assumption that the spot speed can be assumed to 

be constant for the small distance between the measurement points: usually the distance 

between the two detector stations (approximately one-third to one-half mile).  Given that 

the distance between the two detectors is known, the travel time is calculated as the 

distance divided by the spot speed (Dhulipala 2002; Cortes et al. 2002; Van Lint et al. 

2003).  With the aid of Figure 2-6, a brief description of each extrapolation method is 

given in the following sections.   
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FIGURE 2-6: Diagram to illustrate extrapolation methods 

2.3.1.1 Average Speed Method 

In this method, it is assumed that the average speed of vehicles travelling on the link from 

1 to 2 is the average of the spot speeds estimated at detector locations 1 and 2.  Therefore, 

the estimated travel time for link 1-2 would be given as: 

                    
  

         
                                                                                        

where:  

D1 = distance between loop detector locations 1 and 2; and 

υ1 and υ2 = spot speed estimated at detector locations 1 and 2, respectively.   

2.3.1.2 Minimum Speed Method 

In this method, the minimum of the spot speeds estimated at detector locations 1 and 2 is 

taken to be the average speed of the vehicles traveling on the link from 1 to 2.  The travel 

time for link 1-2 is then given as: 
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where:  

D1 = distance between loop detector locations 1 and 2; and 

υmin = minimum of the estimated spot speeds from detector locations 1 and 2. 

2.3.1.3 Midpoint Method 

In the midpoint method each loop detector location is assigned an influence area around it 

based on the location of midpoints between that detector and the next station upstream or 

downstream.  The estimated spot speed from each detector is assumed constant within its 

respective influence area.  Thus the travel time for link 1-2 calculated using the midpoint 

method is given as: 

                    
 

 
 
  
  
 
  
  
                                                                                         

where:  

D1 = distance between loop detector locations 1 and 2; and 

υ1 and υ2 = spot speed estimated at detector locations 1 and 2 respectively. 

Research work by Eisele (2001) compared the travel times calculated using the 

midpoint method to the travel times calculated using the average speed method.  It was 

found that the percentage difference between the two travel time estimation techniques 
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was less than two percent.  The study used data from four weekdays (AM peaks) obtained 

from inductive loop detectors along a section of I-35 in San Antonio, Texas.   

2.3.2 Theoretical Methods 

Also available to estimate travel times directly from flow and occupancy data are 

methods based on traffic flow theory (Nam and Drew 1996, 1998, 1999; Petty et al. 1998; 

Coifman 2002; Oh et al. 2003).  These methods are advantageous in that they are able to 

capture the dynamic characteristics of traffic.  Theoretical models apply the principle of 

the conservation of vehicles and, as such, compare the inflow of a roadway section during 

a previous time interval with its outflow during the current time interval (Bovy and Thijs 

2000).  Most of the models cited provide satisfactory travel time estimates for specific 

conditions.  Some models perform well in normal-flow conditions only (Nam and Drew 

1996; Oh et al. 2003), whereas others are applicable to congested traffic conditions only 

(Nam and Drew 1998, 1999).   

Vanajakshi (2004, 2009) proposed a model for estimating travel time directly 

using speed, flow and occupancy data from ILDs.  The proposed model builds upon the 

work of Nam and Drew (1996, 1998, 1999).  Several modifications are presented that 

take into account the varying traffic flow during the transition period from peak to off-

peak or off-peak to peak conditions.  Thus, a comprehensive model that can estimate 

travel times directly from ILD data is presented.  For this dissertation, the travel times 

will be estimated using the methodology proposed by Vanajakshi.  A detailed discussion 

of the model will be given in Chapter Four.   
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TABLE 4.1 MAPE for Model With Different Numbers of Hidden Neurons 

Prediction 

Horizon 

Number of Hidden Neurons 

1 3 5 7 9 11 13 15 

tt(k+1) 17.3 14.0 13.9 12.8 13.3 13.5 13.0 13.5 

tt(k+2) 18.7 14.5 14.0 13.3 13.4 14.2 13.2 13.6 

tt(k+3) 19.0 14.8 14.5 13.8 13.3 13.7 13.5 14.0 

tt(k+4) 19.4 15.1 14.6 14.0 13.2 13.7 13.7 14.6 

tt(k+5) 20.0 15.7 14.9 14.4 13.7 14.1 14.0 14.8 

tt(k+6) 20.5 15.8 15.1 14.3 13.9 14.6 13.9 14.6 

tt(k+7) 20.7 16.1 15.2 14.7 13.9 14.4 13.9 14.4 

tt(k+8) 20.9 16.4 15.1 14.5 14.0 14.5 14.1 14.4 

tt(k+9) 21.0 16.0 15.1 14.5 13.7 14.2 14.1 14.4 

tt(k+10) 21.2 16.3 15.7 14.8 14.0 14.2 14.2 14.6 

tt(k+11) 21.4 16.2 15.4 14.6 13.9 14.3 13.9 14.3 

tt(k+12) 21.5 16.5 15.5 14.8 14.1 14.5 14.2 14.4 

tt(k+13) 21.8 16.7 15.8 15.2 14.6 15.0 14.7 14.9 

tt(k+14) 21.8 16.7 16.0 15.1 14.3 14.6 14.7 14.9 

tt(k+15) 22.0 16.9 16.5 15.5 14.7 15.0 15.1 15.49 

Overall 

Average 

MAPE 

20.5 15.9 15.1 14.4 13.9 14.3 14.0 14.4 

Note: The best model results are underlined for each prediction horizon 

Figure 4-16 illustrates an apparent improvement in the MAPE as the number of 

neurons was increased from one to seven (for any prediction horizon).  There was an 

improvement of 6.1% in the overall average MAPE (mean of all MAPE values for a 

given number of neurons), as seen in Table 4.1.  Beyond seven neurons in the hidden 

layer, there are no marked improvements in the overall average MAPE as it ―levels off.‖  
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FIGURE 5-4: Illustration of the block bootstrap method 

Implementing the ordinary bootstrapping method results in the data being 

―scrambled‖ in such a way that aspects of any dependence structure in the original dataset 

are lost.  The ordinary bootstrap is therefore not appropriate for dealing with dependent 

data because the resampling does not capture the dependence structure.  Over the years, a 
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number of nonparametric procedures that implement bootstrapping on dependent data 

have been proposed.  These include the block, sieve, local, wild, and Markov bootstrap 

and sub-sampling (Kunsch 1989; Shi 1991; Mammen and Nandi 2004).  At present, ―the 

best known method for implementing bootstrapping with dependent data‖ is the block 

bootstrapping method (Hardle et al. 2003).  This method is illustrated in Figure 5-4.  The 

basic concepts of block bootstrapping are similar to those of ordinary bootstrapping 

discussed in subsection 5.4.1.   

With the block bootstrap, a bootstrap sample is created by dividing the data into 

contiguous blocks that are randomly sampled.  This can be contrasted to sampling 

individual observations in the ordinary bootstrap method.  These blocks are subsequently 

placed end-to-end in the order sampled.  The blocks could be created as non-overlapping 

or overlapping with fixed or varying lengths.  Four of the most common block 

bootstrapping methods are the moving block bootstrap (Kunsch 1989), the non-

overlapping block bootstrap (Carlstein 1986), the circular block bootstrap (Politis and 

Romano 1992) and the stationary block bootstrap (Politis and Romano 1994).  A synopsis 

of these methods, as presented by Lahiri (1999), is given below.   

Given the set of observations                               , let   

        denote the expected block length.  Next, form the time series          where 

       for some integers             , and    .  As well, blocks of length 

k are defined based on the series    ,          by                        ,   

     .  Different versions of the block bootstrapping method are obtained by 
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resampling from suitable collections of all        feasible blocks               

  .   

The moving block bootstrapping method resamples blocks randomly with 

replacement from the sub-collection                         , whereas in the 

non-overlapping block bootstrapping, resampling is conducted from the collection of 

disjoint blocks                      .  The circular block bootstrapping method 

resamples from the collection               .  Thus, in contrast to the non-

overlapping and moving block bootstraps, the circular method uses elements from the 

periodically extended time series          beyond    .  Unlike the prior methods, in 

stationary block bootstrapping a random block length l that is generated from a geometric 

distribution is used.  The bootstrap sample in this resampling scheme is therefore 

stationary.   

By using blocks, some of the dependence structure in the data is maintained and 

the resulting estimates from block bootstrapping tend to be less biased than those from 

ordinary bootstrapping.  However, ―even for estimators as simple as the sample mean, a 

bias correction which is often laborious is still needed for block bootstrapping to yield 

accurate estimates of model uncertainties‖ (Lahiri 1999).   

5.4.3 Gapped Bootstrapping 

Spiegelman and Lahiri proposed a gapped bootstrapping procedure that is 

appropriate for data that can be partitioned into approximately exchangeable subsets 

(personal communication, November 2007).  Whereas the distribution of the entire data is 
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not exchangeable or stationary, it is entirely reasonable that many multivariate subsets 

will be exchangeable.  If the estimation method that is being used is efficient, then 

gapped bootstrapping gives an asymptotically unbiased estimate of standard errors.  

When the exchangeability of partitions is only approximate, then gapped bootstrapping 

produces conservative estimates of standard error that on average are overestimates of the 

true standard error asymptotically (Spiegelman, personal communication, 2007).  The 

gapped bootstrapping methodology as presented by Spiegelman and Lahiri is discussed in 

detail below. 

Let a multivariate time series of observations be denoted by the      matrix X 

(i.e., p observations of q variables).  Let the ith row of the data matrix be denoted by X(i).  

The rows of X are then partitioned into m groups                such that there are k 

= T/m observations in each column of the partition matrices.  It is assumed that the 

random matrices X1, X2, X3,…, Xm have an exchangeable distribution.  That is, for any 

permutations of the integers 1, 2, 3,… m, say, j1, j2, j3,…, jm, the random matrices Xj1, Xj2, 

Xj3,…, Xjm have the same joint distribution as the random matrices X1, X2, X3,…, Xm.  As 

well, it is assumed that for any random matrix Xi the rows are independent random 

vectors.   

Denote    as the estimate of the unknown population parameter   based on the 

entire data and let                  be estimates based on the submatrices X1, X2, X3,…, 

Xm, respectively.  That is,    is the solution to the equation           
 
            

  and     are solutions to the equations         , i = 1, 2, 3,…, m.  Note that because 

the subsample estimators are based on independent random data, ordinary bootstrapping 
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may be used within each partition matrix to obtain an estimator of the standard error, 

         of each    , i = 1, 2, 3,…, m.  The main result of the method is that the usual 

covariance matrix estimator obtained from                  provides a consistent estimate 

of the covariance matrix of    and the rate of convergence is   .  Further, the estimator  

                         

 

   

                                                                                                

is an asymptotically efficient estimator of  .  If the distribution of X1, X2, X3,…, Xm is not 

exchangeable, that is estimates                  are heteroskedastic, then    is not an 

efficient estimator of  .  Further, in the case of heteroskedasticity, the resulting estimate 

of uncertainty will be too large.  For large  , it can be shown that         (C. H. 

Spiegelman, personal communication, November 2007).  Because the two estimators are 

asymptotically equivalent, the variance of    may be approximated with the estimator for 

the variance of    given by: 

                    

 

   

              

   

                                                                   

where: 

          = the ordinary bootstrap estimator for the variance of      

              = the variance estimate of (          given by 
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The gapped bootstrapping method has previously been applied to the evaluation 

of uncertainties in the estimation of origin-destination matrices (Appiah et al. 2008; 

Appiah 2009).  Traffic volume data from ITS sources were used to estimate split 

proportions using bootstrapping.  The research identified that the gapped bootstrap 

uncertainty estimates are, on average, larger than those of the ordinary and block 

bootstrap.   

5.4 IMPLEMENTATION 

Mean travel times were forecast for 15 two-minute time periods (30-minutes ahead) using 

the methodology outlined in section 5.3.  An overall mean travel time (at each two 

minute interval) as well as its corresponding bootstrap estimate of uncertainty (standard 

error) was then computed.  The overall means and standard error values were computed 

for three separate days.   

The ordinary bootstrap estimates were computed using 250 realizations of the 

original travel time data that were randomly sampled.  The block bootstrap estimates 

were calculated by dividing the original data into 25 blocks each consisting 305 rows 

(i.e., travel time values for five days).  Each bootstrap sample was then formed by 

randomly drawing the blocks with replacement and laying them end-to-end.  The overall 

mean and standard error of predicted travel times (block bootstrap estimates) were 

computed as calculated from 250 such samples.   

The gapped bootstrap estimates were obtained by breaking the original data into 

42 subsets of independent data, where the elements of the i
th

 subset are the i
th 

two minute 
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travel times for each of the 125 days in the training dataset.  That is, the 1
st
 subset 

consists of 7:00 AM travel times, the 2
nd

 subset consists of 7:02 AM travel times, the 3
rd

 

subset consists of 7:04 AM travel times and so on.  The predicted overall mean travel 

times for each two minute period were obtained by averaging the two minute predictions 

from the 42 independent subsets.  Component-wise variance estimators of the 42 subsets 

were calculated by performing ordinary bootstrapping within each subset.  These were 

calculated using 250 realizations of each subset by resampling across the rows of the 

subsets.  Assuming a constant covariance among the subsets, the final gapped bootstrap 

uncertainty estimates were computed by combining the component-wise variance 

estimates with the usual covariance matrix estimator obtained from the subsets.   

5.5 RESULTS 

Empirical Data from the San Antonio Test Bed 

The predicted overall mean travel times and their corresponding estimates of 

standard error, computed using the three bootstrapping methods, are presented in Table 

5.1.  It can be observed that the mean travel time values computed using the three 

techniques are identical.  However, the estimated standard errors are clearly different.  A 

general observation indicates that the uncertainty estimates are lower for the ordinary 

bootstrap than those of the block and gapped bootstrap.  As well, the gapped bootstrap 

estimates are the largest.  The gapped bootstrap method seems able to capture the 

dependence structure in the dataset more than the ordinary and block bootstrap methods. 
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TABLE 5.1 Predicted Means and Standard Errors for Empirical Data 

*Bootstrap Method: Ord = Ordinary; Blk = Block and Gap = Gapped  

*Predicted travel times are in seconds  

*Value in parenthesis is the estimated uncertainty (Standard Error) 

 

Prediction Interval in minutes 

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

DAY 1 

Ord 26 

(0.616) 

26 

(0.617) 

26 

(0.618) 

26 

(0.615) 

26 

(0.616) 

26 

(0.616) 

26 

(0.615) 

26 

(0.617) 

26 

(0.617) 

26 

(0.616) 

26 

(0.615) 

26 

(0.616) 

26 

(0.615) 

26 

(0.614) 

26 

(0.617) 

Blk 26 

(0.725) 

26 

(0.754) 

26 

(0.748) 

26 

(0.756) 

26 

(0.727) 

26 

(0.706) 

26 

(0.702) 

26 

(0.701) 

26 

(0.721) 

26 

(0.730) 

26 

(0.714) 

26 

(0.716) 

26 

(0.710) 

26 

(0.728) 

26 

(0.738) 

Gap 28 

(2.120) 

28 

(2.745) 

28 

(1.614) 

27 

(2.425) 

28 

(1.564) 

28 

(1.314) 

28 

(1.548) 

26 

(1.998) 

27 

(1.461) 

27 

(1.540) 

28 

(1.484) 

28 

(1.690) 

27 

(1.353) 

28 

(1.098) 

27 

(1.258) 

DAY 2 

Ord 27 

(0.823) 

27 

(0.824) 

27 

(0.819) 

27 

(0.824) 

27 

(0.824) 

27 

(0.821) 

27 

(0.824) 

27 

(0.823) 

27 

(0.822) 

27 

(0.823) 

27 

(0.822) 

27 

(0.824) 

27 

(0.824) 

27 

(0.825) 

27 

(0.824) 

Blk 27 

(0.850) 

27 

(0.891) 

27 

(0.870) 

27 

(0.879) 

27 

(0.858) 

27 

(0.846) 

27 

(0.843) 

27 

(0.843) 

27 

(0.848) 

27 

(0.846) 

27 

(0.831) 

27 

(0.833) 

27 

(0.834) 

27 

(0.838) 

27 

(0.843) 

Gap 29 

(1.753) 

28 

(1.852) 

28 

(2.304) 

27 

(2.245) 

27 

(1.547) 

28 

(1.882) 

27 

(1.783) 

26 

(1.298) 

27 

(1.161) 

27 

(1.704) 

27 

(1.911) 

27 

(1.427) 

27 

(1.489) 

27 

(1.817) 

27 

(1.491) 

DAY 3 

Ord 25 

(1.586) 

25 

(1.590) 

25 

(1.590) 

25 

(1.587) 

25 

(1.584) 

25 

(1.590) 

25 

(1.585) 

25 

(1.587) 

25 

(1.584) 

25 

(1.586) 

25 

(1.585) 

25 

(1.588) 

25 

(1.587) 

25 

(1.591) 

25 

(1.587) 

Blk 25 

(1.550) 

25 

(1.366) 

25 

(1.335) 

25 

(1.338) 

25 

(1.332) 

25 

(1.310) 

25 

(1.305) 

25 

(1.287) 

25 

(1.310) 

25 

(1.307) 

25 

(1.281) 

25 

(1.275) 

25 

(1.264) 

25 

(1.275) 

25 

(1.255) 

Gap 27 

(3.232) 

26 

(4.723) 

28 

(4.217) 

27 

(2.409) 

27 

(2.726) 

26 

(2.850) 

27 

(2.566) 

27 

(2.829) 

27 

(2.201) 

26 

(2.860) 

27 

(2.720) 

27 

(3.065) 

27 

(3.649) 

27 

(2.812) 

27 

(4.375) 


