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Before the age of calculators, studying functions such as sinx , cosx , ex , and ln x  

was quite time consuming.  The graphs of these functions are important when studying their 

characteristics.  James Gregory, a Scottish mathematician in the 17th century, made an 

important discovery about these functions.  Using calculus, he wrote a series of terms to 

approximate very closely the graph of the curve.  His main focus was with the function ln x ; 

he was able to calculate any positive value of x using a polynomial series.   Brook Taylor, an 

English mathematician, generalized the Maclaurin series, devised by Colin Maclaurin.  

However, Gregory had actually known about them long before Taylor came into the picture.   

Taylor invented the method for expanding functions in terms of polynomials about an 

arbitrary point known as Taylor Series, which he published in 1715.  Computing values of 

polynomials is much easier and less time consuming than evaluating a function like sinx .  In 

this paper, I will look at the background needed before one can truly understand polynomials, 

the definition of Taylor polynomials, and how to use Taylor polynomials to approximate the 

functions I mentioned above. 

Polynomials 
 

To work with Taylor polynomials, one needs to be able to work comfortably with 

polynomial functions and their properties.  In class, we have discussed linear functions like 

f (x) = 2x −1 and quadratic functions like g(x) = x 2 − 3x + 5.  Linear and quadratic functions 

belong to a family of functions known as polynomial functions. 

A polynomial is an expression that can be written in the form 

P(x) = an x n + an−1x
n−1 + an−2x n−2 + ...+ a2x 2 + a1x + a0 

where n is a nonnegative integer.  The expressions an x n, an−1x
n−1, an−2x n−2, …, a2x 2, a1x , 

and a0 are called terms of the polynomial, and the numbers an , an−1, an−2, …,a2, a1, and a0 
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are called the coefficients of the polynomial.  Although the terms of a polynomial can be 

written in any order, we usually write them in descending powers of x.  The term containing 

the highest power of x is called the leading term.  The coefficient of the leading term is called 

the leading coefficient, and the power of x contained in the leading term is called the degree 

of the polynomial.  The polynomial 0 has no degree.  Polynomials of the first few degrees 

have special names, as indicated in the chart below. 

Degree Name Example 
0 constant 5 
1 linear 3x + 2 
2 quadratic x 2 − 4 
3 cubic x 3 + 2x +1 
4 quartic −3x 4 + x  
5 quintic x 5 + πx 4 − 3.1x 3 +11 

 

 

To identify a particular term of a polynomial, we use the name associated with the power 

of x contained in the term.   For example, the polynomial x 2 − 4 has a quadratic term of x 2, 

no linear term and a constant term of −4.  Note that the leading coefficient of x 2 − 4 is 
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understood to be 1. Every polynomial defines a function, often called P.  Any value of x for 

which P(x) = 0 is a root of the equation and a zero of the function.  

Linear Approximations 
 
 In the class, Concepts of Calculus for Middle Level Teachers, we looked at how to 

approximate a function using a degree 1 polynomial, namely the tangent line approximation.  If any 

function with a derivative at a point x = a is looked at on a small enough interval close to a, the 

function’s graph will resemble a line.  We can then use the tangent line to estimate values fairly 

close to a.  In class, we used the point-slope form of a line to get the tangent line equation.  This 

equation is y − y1 = m(x − x1), where m is the slope of the tangent line and (x1,y1) is a point on the 

line where the line is tangent to the function.  We want to focus on the specific point wherex = a.  

This means that our point of tangency is (a, f (a)) .  In calculus, another name for the slope of the 

tangent line at a point is the derivative at that point.  This means that m = f '(a).  If we substitute all 

these values in to our point slope form of our tangent line, we get: 

   y − f (a) = f '(a)(x − a)  or P1(x) = (a) + f '(a)(x − a)  

The tangent line is the best linear approximation to the function near x = a.  The tangent line and the 

curve share the same slope at x = a, in other words, they have the same first derivative.  This 

approximation is called a Taylor polynomial of degree 1, noted P1(x) .  The diagram below shows 

that it is a good approximation to the function, but only near the point a. 
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 Let’s look at a function such as f (x) = ex  near 0.  To use the Taylor polynomial of degree 1, 

we need to know the value of the function and the derivative of the function at 0.  The value of the 

function at 0 is f (0) = e0 =1.  The derivative is f '(x) = ex , so the derivative at 0 is, f '(0) = e0 =1.  

We can now plug these values into the formula to get a Taylor polynomial of degree 1 at the point 0.  

Since the formula when a = 0 isP1(x) = f (0) + f '(0)x , after substituting, we get: P1(x) =1+1x .  The 

graph below shows the original function and its linear approximation. 

 

 Once again, the tangent line, or Taylor polynomial of degree 1, is a decent approximation 

close to 0.  Once you get too far from 0 though, the error gets worse.  Since we used the first 

derivative to obtain a linear approximation, can we use the second derivative to obtain a better 

approximation to the original function? 

Quadratic Approximations 
 
 If we want a more accurate approximation to the function, we can use a quadratic function, 

which not only has the same slope, but also bends in the same way as the original curve.  In other 

words, can we find a function that not only has the same first derivative, but also the same second 

derivative as the function at and near the value x=a?   The quadratic approximation of the function 

near a will have the form: 
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  P2(x) = f (a) + f '(a)(x − a) + f ' '(a)
2

(x − a)2    (Appendix A) 

 
For example, take cosx  as our function and let a = 0.  So, we will be using a Taylor polynomial of 

degree 2 to approximate cosx  near 0.  To do this, we need to know the value of the function, first 

derivative and second derivative at 0.  The value of the function at 0 is 1.  The first derivative of 

cosx  is −sinx .  So the value of the first derivative at 0 is 0.  The second derivative of the function 

cosx  is −cosx .  So the value of the second derivative at 0 is -1.  This gives us the quadratic formula 

to approximate cosx  to be P2(x) =1+ 0(x − 0)+ 1
2 (x − 0)2 =1− 1

2 x2.  As the picture indicates, the 

quadratic approximation is much more accurate that the linear approximation near 0. 

 

Is this is always the case? Does the Taylor polynomial of degree 2 give a good 

approximation of the function near a?  Let’s go back to our example where f (x) = ex .  We 

already know our Taylor polynomial of degree 1 is f (x) =1+1x  near the point 0, so if we 

add on the quadratic term, we need to know the function’s second derivative.  The second 

derivative of f (x) = ex  is f ' '(x) = ex , and f ' '(0)= e0 =1.  So the Taylor polynomial of 

degree 2 near 0 is P2(x) =1+1x + 1
2 x 2.  The graph below, along with the original function 
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and the first two Taylor polynomials shows that the quadratic approximation is better for 

points farther from a than the linear approximation. 

 

Definition of Taylor Polynomials 

We approximate a function f (x)  near the point x = a by polynomials.  To get more 

accuracy, we take higher-degree polynomials.  The approximation is usually good near the 

point x = a, but often not so good farther from that point.  Using Taylor Polynomials, a 

function can be approximated as closely as desired by polynomial provided the function 

possesses a sufficient number of derivatives at the point in question.  Starting with a generic 

polynomial and deriving the formula until all coefficients are established will find the 

formula. (Appendix A) 

The definition of Taylor polynomials states: Let the function f  and its first n 

derivatives exist on the closed intervalx0,x1[ ].  Then, for a ∈ x0,x1( ) and x ∈ x0,x1( ) the 

nth-degree Taylor Polynomial f at a is the nth-degree polynomial P(x) , given by 

Pn (x) = f (a) + f '(a)(x − a) + f ' '(a)

2!
(x − a)2 + f ' ' '(a)

3!
(x − a)3 + f 4(a)

4!
(x − a)4 + ...+ f n (a)

n!
(x − a)n

 

or Pn (x) = f i(a)

i!
(x − a)i

i= 0

n

∑  
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Maclaurin Polynomials 
  
 Often, it is useful to focus on the Taylor polynomials that approximate a function near 0.  

This is known as a Maclaurin polynomial.  The Maclaurin polynomials are named after the Scottish 

mathematician, Collin Maclaurin.  To get the formula for a Maclaurin polynomial, all one needs to 

do is substitute a = 0 into the above Taylor polynomial equation. 

Pn (x) = f (0)+ f '(0)x + f ' '(0)

2!
x 2 + f ' ' '(0)

3!
x 3 + f 4(0)

4!
x 4 + ...+ f n (0)

n!
x n  

For the rest of the paper, I would like to focus on the Maclaurin Polynomials, or Taylor polynomials 

about 0.  To be specific, let’s focus on just one function and see the results of taking higher order 

Taylor polynomials to approximate the function f (x) = ex  about 0. 

        f (2) = e2 = 7.389 
Degree 1: (linear) P1(x) =1+ x      P1(2) =1+ 2 = 3 
Degree 2: (Quadratic) P2(x) =1+ x + 1

2 x 2    P2(2) =1+ 2+ 1
2 22 = 5 

Degree 3: (Cubic) P3(x) =1+ x + 1
2 x 2 + 1

6 x 3   P3(2) =1+ 2+ 1
2 22 + 1

6 23 = 6 1
3  

Degree 4: (Quartic) P4(x) =1+ x + 1
2 x2 + 1

6 x3 + 1
24 x4   P4(2) =1+ 2+ 1

2 22 + 1
6 23 + 1

24 24 = 7 

Degree 5: (Quintic) P5(x) =1+ x + 1
2 x2 + 1

6 x3 + 1
24 x4 + 1

120 x5        

P5(2) =1+ 2+ 1
2 22 + 1

6 23 + 1
24 24 + 1

12025 = 7.26 
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Error Analysis 

It is important to discuss the error involved when using a Taylor polynomial.  The 

polynomial is just a good approximation for the function near a, but how accurate is it?  If we 

define the error to be Em (x) , then we could write that f (x) = Pn (x) + Em (x), this means that 

Em (x) = f (x) − Pn (x) .  Beyond this point, the error function gets quite complicated.  The 

formula for the error is: 

 Em (x) = f (x) − Pn (x) = 1
(n +1)!

(x − a)n +1 f n +1(cx ) = 1
n!

(x − t)n f (n +1)(t)dt
a

x

∫  

The point cx is restricted to the interval bounded by x and a, and otherwise cx is unknown.  It 

is important that the function can be derived n + 1 times.  When discussing Taylor 

polynomials, it is important to understand that there will always be a small error.  The error 

gets larger as the value gets farther from a.  By taking higher order polynomials, our 

approximation gets closer to the actual function on the interval.    

 
Taylor Series 
 
 A Taylor series is an infinite series created just like the Taylor Polynomials.  The 

series has infinitely many terms rather than stopping at the nth term like the polynomials.  By 

definition, the Taylor polynomial is just a truncated series.  When the series approaches 

infinity, it is no longer considered an approximation, but instead equal to the actual function 

if lim
n →∞

Em (x) = 0.  The series is written: 

P(x) = f (a) + f '(a)(x − a) + f ' '(a)

2!
(x − a)2 + f ' ' '(a)

3!
(x − a)3 + ...+ f n (a)

n!
(x − a)n + ... 

 or 

P(x) = f i(a)

i!
(x − a)i

i= 0

∞

∑  
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For the Taylor series to exist at a point x, the error, Em (x) , must approach zero as the number 

of terms approaches infinity.  So, when discussing Taylor series, it is important to establish 

that the error term approaches zero as m approaches infinity.  In other words, it becomes 

negligible for large m.    

 The Taylor Series for sinx , cosx , and ex : 

  sinx = x − x 3

3!
+ x 5

5!
− x 7

7!
+ x 9

9!
− ... 

  cosx =1− x 2

2!
+ x 4

4!
− x 6

6!
+ x 8

8!
− ... 

  ex =1+ x + x 2

2!
+ x 3

3!
+ x 4

4!
+ ... 

 Without the use of technology, finding sin(2) can be quite difficult and time 

consuming. However, having the knowledge of Taylor polynomials and Taylor series is like 

having a new technology, one that can be used without electricity or batteries.  With a 

knowledge polynomial functions and some basic calculus, one can approximate functions 

very accurately.  What was once nearly impossible is made easy by Taylor polynomials.
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Derivation of the Formula for Taylor Polynomials 
 
Let’s derive this formula to understand where it comes from.  I will begin with a generic formula 
of an nth-degree polynomial. 
f (x) = a0 + a1(x − a) + a2(x − a)2 + a3(x − a)3 + ...+ an (x − a)n  

 
Find the value of the function at the point a: 

f (a) = a0 + a1(a − a) + a2(a − a)2 + a3(a − a)3 + ...+ an (a − a)n  
 
Since we know that 0)( =− aa , this leads us to: 

f (a) = a0 + a1(0)+ a2(0)2 + a3(0)3 + ...+ an (0)n  
 
This tells me that 0)( aaf = .  I can substitute this value into my equation, giving me: 

f (x) = f (a) + a1(x − a) + a2(x − a)2 + a3(x − a)3 + ...+ an (x − a)n  
 
Now, take the derivative of the function: 

f '(x) = 0+ a1 + 2a2(x − a)1 + 3a3(x − a)2 + ...+ nan (x − a)n−1 
 
Find the value of the derivative at point a. 

f '(a) = 0+ a1 + 2a2(a − a)1 + 3a3(a − a)2 + ...+ nan (a − a)n−1 
 
Once again, 0)( =− aa so,  

f '(x) = 0+ a1 + 2a2(0)1 + 3a3(0)2 + ...+ nan (0)n−1  
 
This tells me that 1)(' axf = .  I can substitute this value into my equation, giving me: 

f (x) = f (a) + f '(a)(x − a) + a2(x − a)2 + a3(x − a)3 + ...+ an (x − a)n  
 
This gives the linear approximation:   P1(x) = f (a) + f '(a)(x − a)  
 
Now, take the second derivative of the function: 

f ' '(x) = 0+ 2a2 + 3⋅ 2a3(x − a)1 + ...+ n ⋅ (n −1)an (x − a)n−2 
 
Find the value of the second derivative at the point a. 

f ' '(a) = 0+ 2a2 + 3⋅ 2a3(a − a)1 + ...+ n ⋅ (n −1)an (a − a)n−2 
 
Once again, 0)( =− aa , this gives: 

 f ' '(a) = 0+ 2a2 + 3⋅ 2a3(0)1 + ...+ n ⋅ (n −1)an (0)n−2 
 

This tells me that 22)('' aaf = , or 22

)(''
a

af = .  Substitute back into the original function 

to get: 

f (x) = f (a) + f '(a)(x − a) + f ''(a)

2
(x − a)2 + a3(x − a)3 + ...+ an (x − a)n
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This gives the quadratic approximation:  P2(x) = f (a) + f '(a)(x − a) + f ' '(a)

2
(x − a)2 

 
Take the third derivative of the function:
 f ' ' '(x) = 0+ 3⋅ 2a3 + 4 ⋅ 3⋅ 2a4(x − a)1 + ...+ n ⋅ (n −1)⋅ (n − 2)an (x − a)n−3 
  
Find the value of the third derivative at the point a. 
 f ' ' '(a) = 0+ 3⋅ 2a3 + 4 ⋅ 3⋅ 2a4(a − a)1 + ...+ n ⋅ (n −1)⋅ (n − 2)an (a − a)n−3 
 
Once again, 0)( =− aa , this gives: 

f ' ' '(a) = +0+ 3⋅ 2a3 + ...+ n ⋅ (n −1)⋅ (n − 2)an (0)n−3 
 

This tells me that 323)(''' aaf ⋅= , or 323

)('''
a

af =
⋅

.  Substitute back into the original 

function: 

f (x) = f (a) + f '(a)(x − a) + f ''(a)

2
(x − a)2 + f ' ''(a)

3⋅ 2
(x − a)3 + ...+ an (x − a)n  

 
This pattern can be followed until the nth derivative to give the final formula: 
 

Pn (x) = f (a) + f '(a)(x − a) + f ' '(a)

2!
(x − a)2 + f ' ' '(a)

3!
(x − a)3 + f 4(a)

4!
(x − a)4 + ...+ f n (a)

n!
(x − a)n  
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