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Abstract

In this paper, the effect of alloy composition on the microstructural development of devitrified Nd–Fe–B-based alloys

is investigated. While crystallization of simple ternary Nd2Fe14B resulted in a highly variable microstructure and

relatively poor demagnetization behavior, alloying additions, notably Ti and C, were found to significantly refine and

homogenize the crystallized microstructure. High spatial resolution energy dispersive X-ray spectroscopy revealed that

partitioning to the grain boundaries led to the grain refinement by slowing interface kinetics. The more homogeneous

grain structure resulted in improved demagnetization behavior, but segregating elements isolated grains and limited

intergranular exchange coupling. r 2002 Published by Elsevier Science B.V.

PACS: 75.50.Ww; 75.20.En; 75.30.Et
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1. Introduction

In nanoscale bulk magnetic materials, intergra-
nular exchange interactions can significantly affect
the overall properties of the material. The dom-
inance of intergranular exchange interactions leads
to ‘‘exchange-spring’’ behavior and enhanced
remanence and energy product as compared to
non-interacting materials [1]. The requisites for

effective intergranular exchange interactions in-
clude a nanoscale grain size (o100 nm) and grain
boundaries free of second phases or impurity
atoms that can lead to magnetic isolation of
individual grains. Mechanical milling/alloying,
rapid solidification, and devitrification of metallic
glasses have all effectively generated appropriately
fine nanostructures, resulting in exchange spring
behavior. Further grain refinement and the pro-
duction of more uniform nanostructures have been
accomplished by the addition of alloying elements.
For the Nd–Fe–B system, Nb, Ga and La are a
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few examples of alloying additions that have
effectively refined the grain size [2–7]. Addition-
ally, combined metal carbide additions, notably
TiC, were found to significantly refine the grain
structure in as-solidified Nd–Fe–B [8], Sm–Fe [9],
and Pr–Co [10] alloys. A significant increase in
glass forming ability was also observed in both
Nd–Fe–B [11] and Sm–Fe [12] alloys with the
addition of TiC. The degree of refinement was
found to depend on the specific metallic addition
in melt spun Sm–Fe alloys with metal carbide
additions, suggesting that metal carbide additions
inhibit grain growth [13]. Measurement of solid-
liquid interface velocities in Nd–Fe–B indicated
that the metal carbide slows the growth rate of
crystallites in Nd–Fe–B [14], presumably due to
segregation of the metal and/or carbide to the
interface.

Segregation of alloying elements would have
profound affects on the magnetic properties.
Grain boundary segregation of Cr in, for example,
CoCrPt magnetic recording media limits intergra-
nular exchange interactions, magnetically isolating
individual grains [15,16]. While this advanta-
geously maintains sufficient coercivity in magnetic
media, inhibiting intergranular exchange interac-
tions negates the advantage of exchange spring
permanent magnets, namely a higher remanence.
In this paper, we examine the impact of alloying
elements in the microstructural evolution and
intergranular exchange behavior in Nd–Fe–B
permanent magnets.

2. Experimental procedures

Three alloy compositions were investigated. The
first, a ternary Nd–Fe–B alloy, had a nominal
composition, in weight percent (wt%), of 72.3 Fe,
26.7 Nd and 1 B, which corresponds to the 2:14:1
stoichiometry. The second composition added
2.5wt% Ti and 0.6wt% C to the stoichiometric
composition (this corresponds to a 1:1 atomic
ratio of Ti to C). The final alloy was a nine
component alloy with a composition (in wt%) of
60.2 Fe, 6.9 Co, 14.8 Nd, 9.9 Pr, 3.0 Dy, 1.2 B, 2.4
Ti, 0.8 Zr and 0.8 C. This composition is slightly
transition metal-poor (Fe and Co) relative to the

2:14:1 stoichiometry. The alloys were pre-alloyed
by arc-melting high purity elemental constituents
under a high purity Ar atmosphere. Arc melted
buttons were subsequently melt spun at 30m/s in
1 atm ultra-high purity Ar. The as-solidified
samples were examined by X-ray diffraction in a
Philips X’Pert MPD utilizing Cu Ka radiation. A
Perkin-Elmer System 7 differential thermal analy-
zer was utilized to characterize the thermal
behavior. The heating rate was 101C/min. Crystal-
lization was achieved by heat-treating the alloys
51C above their respective onset temperatures
determined by DTA for appropriate lengths of
time. Complete crystallization was determined by
DTA; when no exothermic peak was observed, the
sample was deemed crystallized. The detection
limit for any amorphous fraction was estimated to
be on the order of 1% or 2%. The heat treatments
were accomplished by wrapping the samples in Ta
foil then sealing the wrapped samples in quartz
ampoules under UHP Ar. The ampoules were then
inserted into a pre-heated horizontal tube furnace.
Samples were quenched in water at the conclusion
of the heat treatment. X-ray diffraction was
utilized to determine phase evolution upon crystal-
lization.

Transmission electron microscopy specimens
were prepared by ion milling individual ribbon
pieces mounted on Cu ovals. Typical milling times
were 7–8 h at 4.5 kV on a liquid nitrogen-cooled
stage. General microstructures were evaluated
using a JEOL 2000FXII operating at 200 kV.
The chemical profiles were obtained utilizing a
Philips CM200 FEG STEM operating at 200 kV.
The nominal probe size in STEM mode was 1.5 nm
with a beam current of 1.2 nA. Data were taken at
a step size of 2 nm.

Magnetic measurements were taken on samples
initially magnetized in a 35 kOe pulsed field. Recoil
measurements were performed using the DC
demagnetization technique [17] with incremental
fields of 400Oe up to 20 kOe in a Lakeshore
vibrating sample magnetometer. For the magnetic
measurements, 15–20 ribbon pieces were mounted
on the sample rod with adhesive tape so that the
magnetic field was applied along the long axis of
the ribbon. With this configuration, demagnetiza-
tion factors were assumed to be negligible.
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3. Results and discussion

The as-solidified samples were nominally amor-
phous, as determined by X-ray diffraction,
although the simple ternary alloy displayed some
crystallinity. The heat of formation of the ternary
alloy, however, was approximately 95% of the
heats of formation of the other two alloys,
suggesting that the crystalline fraction was on the
order of 5% for the ternary alloy. The addition of
Ti and C has been shown to improve the glass
formability and stability, and that is what was
observed here as well. The crystallization onset
temperature was significantly higher for the TiC-
bearing samples (6211C and 6251C) as compared
to the ternary alloy (5601C). Only a single crystal-
lization event was observed in all cases. The
kinetics, however, were significantly different, as
t100 (the time to 100% crystallinity) was 16, 26 and
6min for the ternary, quinternary and nine
component alloys, respectively. X-ray diffraction
of the crystallized samples revealed only the
presence of the tetragonal Nd2Fe14B-type com-
pound (Fig. 1).

The microstructures that resulted from the
specific crystallization processes are shown in
Fig. 2, and the average grain sizes are shown in
Table 1. The ternary alloy showed a larger average
grain size, and a greater variability in grain size, as

compared to the other two alloys. Several ex-
tremely large grains are evident in Fig. 2(a). The
quinternary and nine-component alloys displayed
a refined grain size, and a relatively small size
distribution. Clearly, the addition of the alloying
elements resulted in a more refined and uniform
microstructure.

The role of the alloying additions in refining the
crystallized microstructure was investigated by
EDS line profiles across the grain boundaries.
The ternary alloy displayed uniform Nd and Fe
concentrations across the grain boundaries
(Fig. 3). However, alloying additions profoundly
influence the grain boundary chemistry. Alloying
additions to form the quinternary and nine-
component alloys resulted in elemental partition-
ing at the grain boundaries. Especially noteworthy
is the segregation of Ti and C to the grain
boundaries (Fig. 4). Slight enrichment in the rare
earth element was also observed at the grain
boundary at approximately 20 nm (note that
possibly another grain boundary was crossed at
approximately 30 nm, as indicated by a slight
enrichment of rare earth) (Fig. 5). The concentra-
tion profile of Fe had significant variations,
making its behavior difficult to ascertain. How-
ever, some depletion might be interpreted from
Fig. 5, especially since the depletion appears to
mirror changes in the rare earth. Also in the nine-
component alloy, the grain boundary showed a
slight depletion in Co (Fig. 4).

A material’s microstructure largely influences
the magnetic properties, especially with respect to
the reversal process. The microstructural effects on
the demagnetization behavior are evident in these
alloys, as shown by the demagnetization curves of
Fig. 6. The more uniform microstructures of the
quinternary and nine-component alloys resulted in
more square demagnetization behavior, and sub-
sequently a smaller distribution of switching fields
(Fig. 7). Additionally, the abnormally large grains
in the ternary alloy (Fig. 2(a)) are above the single
domain limit and thus are likely multidomain,
which eases the demagnetization process in this
alloy and leads to its poor demagnetization
behavior shown in Fig. 6. The full loop for this
alloy consisted of wasp-waist behavior. The
presence of large, multidomain grains also leads
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Fig. 1. X-ray diffraction patterns of crystallized (a) Nd–Fe–B,

(b) Nd–Fe–B–Ti–C, and (c) Nd–Pr–Dy–Fe–Co–B–Ti–Zr–C

alloys.
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to the low-field peak in the irreversible suscept-
ibility of the ternary alloy evident in Fig. 7, while
the higher field peak is due to reversal of single-
domain grains. The single-peak behavior for the
quinternary and nine-component alloys reflects the
more homogeneous microstructures in these al-
loys. The higher coercivity and lower remanence

Fig. 2. TEM bright field micrographs of crystallized (a) Nd–Fe–B, (b) Nd–Fe–B–Ti–C, and (c) Nd–Pr–Dy–Fe–Co–B–Ti–Zr–C alloys.

Table 1

Average grain sizes for the samples studied, as determined by

transmission electron microscopy

Sample Grain size (nm)

Nd–Fe–B 77730

Nd–Fe–B–Ti–C 45712

Nd–Pr–Dy–Fe–Co–B–Ti–Zr–C 60713
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of the nine-component alloy is largely due to Dy
[18].

Intergranular exchange coupling can also ex-
plain the reduced coercivity of the ternary alloy
when compared to the alloyed samples. Lower
coercivity is generally associated with intergranu-

lar exchange coupling, as reversal in one grain can
lead to reversal in adjoining grains. DC demagne-
tization measurements effectively reveal intergra-
nular exchange by monitoring domain wall
processes during reversal [17]. Domain wall
processes are possible in nanoscale grain structures
due to the development of interaction domains in
which several grains, through intergranular ex-
change interactions, establish a common ‘‘aver-
age’’ magnetization direction. Domain walls in
turn sweep through these interaction domains so
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that domain wall processes contribute to the
magnetic reversal.

The magnetic reversal dynamics can be eluci-
dated from Mrev vs. Mirr curves [19]. Non-linear
behavior has been interpreted as the presence of
domain wall processes, while linear behavior
indicates reversal by rotation [19]. The non-
linearity develops as domain walls are impeded
by crystal defects or grain boundaries that can act
as pinning sites. Fig. 8 shows the Mrev vs. Mirr

curves for the three alloys at a reverse field of
6000Oe. The ternary alloy displays significant
non-linearity, indicating that domain wall pro-
cesses are active in the reversal process. In this case

the observed non-linearity is due to the develop-
ment of interaction domains, with the crystal-
lographic misorientation between grains acting as
pinning sites. While this ternary material contains
some fraction of grains with sizes above the single
domain limit, the absence of crystal defects within
grains would result in free movement of domain
walls. Hence, the non-linearity for the ternary
alloy in Fig. 8 is not due to the domain wall
motion in a few large grains, but rather from grain
boundary pinning of interaction domain walls.
The ternary alloy shows a much higher range in
Mrev over the extent of Mirr; indicating much more
intergranular interaction, or ‘‘springiness’’. The
curves for the quinternary and nine-component
alloys display very little curvature and range in
Mrev (Fig. 8). This indicates very weak intergra-
nular exchange and mostly single-domain beha-
vior. The isolated grains result from the chemical
partitioning (Fig. 4), as impurity atoms at the
interface impede the intergranular exchange. The
isolated grains thus lead to the higher coercivity
observed in the alloyed samples. Additionally, a
variation in stoichiometry of the 2:14:1 phase near
the grain boundary may alter the intrinsic aniso-
tropy constant (K1). This region of reduced
(enhanced) anisotropy may pin (repel) domain
walls, which can enhance coercivity and may in
part explain the slight curvature (indicating
domain wall processes) in the alloyed samples.
Further work to clarify this latter point is
necessary.

4. Conclusions

The glass-forming ability was improved for Nd–
Fe–B alloys by the addition of alloying elements.
In addition, the alloying additions were found to
significantly improve the microstructural develop-
ment during devitrification, with finer and more
uniform grains the result. The grain refinement
was the result of segregation during crystallization,
notably of Ti and C, providing a grain boundary
drag effect on the growing crystal interface. The
more uniform microstructures resulted in a more
square demagnetization behavior and a smaller
distribution of switching fields for the modified
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alloys. However, the segregation in the modified
alloys partly isolated the grains, inhibiting inter-
granular exchange coupling. Thus, alloying ele-
ments can effectively induce more uniform and
refined nanostructures critical to exchange-spring
permanent magnets, but can in turn inhibit
intergranular exchange interactions, thereby ne-
gating the effects of a finer grain structure.
Optimal heat treatments may reduce the segrega-
tion or cause precipitation of, for example, TiC,
resulting in ‘‘cleaner’’ grain boundaries and
enhanced intergranular exchange interactions.
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