University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Edward Schmidt Publications

Research Papers in Physics and Astronomy

May 1996

FAR-ULTRAVIOLET STELLAR PHOTOMETRY: FIELDS CENTERED ON $\boldsymbol{\rho}$ OPHIUCHI AND THE GALACTIC CENTER

Edward G. Schmidt University of Nebraska-Lincoln, eschmidt1@unl.edu

George R. Carruthers E. O. Hulburt Center for Space Research, Naval Research Laboratory, Washington, DC

Follow this and additional works at: https://digitalcommons.unl.edu/physicsschmidt

Part of the Physics Commons

Schmidt, Edward G. and Carruthers, George R., "FAR-ULTRAVIOLET STELLAR PHOTOMETRY: FIELDS CENTERED ON ρ OPHIUCHI AND THE GALACTIC CENTER" (1996). *Edward Schmidt Publications*. 15. https://digitalcommons.unl.edu/physicsschmidt/15

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Edward Schmidt Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

FAR-ULTRAVIOLET STELLAR PHOTOMETRY: FIELDS CENTERED ON ρ OPHIUCHI AND THE GALACTIC CENTER

EDWARD G. SCHMIDT

Department of Physics and Astronomy, The University of Nebraska, Lincoln, NE 68588-0111; eschmidt@unlinfo.unl.edu

AND

GEORGE R. CARRUTHERS E. O. Hulburt Center for Space Research, Code 7609, Naval Research Laboratory, Washington, DC 20375-5320 Received 1995 October 4; accepted 1995 November 3

ABSTRACT

Far-ultraviolet photometry is presented for 121 objects in a 20° diameter field centered on ρ Oph and for 649 objects in a field covering the Galactic center. Broadband magnitudes with effective wavelengths of 1375 Å and 1781 Å are given. The Galactic center field overlaps two fields which were discussed in an earlier paper. Eightyeight percent of the ultraviolet objects in the ρ Oph field were identified with visible stars using the SIMBAD database, while only 9% of the objects are blends of early-type stars too close together to separate with our resolution. The photometric calibration was studied in detail, and corrections for nonlinearity were derived for the fields analyzed earlier as well as those discussed here. For stars in common between the Galactic center field and the previous fields, a comparison of the magnitudes yielded estimates of the internal errors of the magnitudes of $\sigma_{1375} = 0.13$ mag and $\sigma_{1781} = 0.21$ mag. A collated list of stars in the fields covering the Galactic center and incorporating the revised calibration is presented and compared with the S201 data of the same region. The properties of the sample of ultraviolet objects in the ρ Oph field are briefly commented upon.

Subject headings: Galaxy: center — ISM: individual (ρ Ophiuchi) — stars: fundamental parameters — surveys — ultraviolet: stars

1. INTRODUCTION

In previous papers (Schmidt & Carruthers 1993a [hereafter Paper I], b [hereafter Paper II], 1995 [hereafter Paper III]), we presented far-ultraviolet stellar photometry for four celestial fields. In this paper we present broadband magnitudes for two more fields. The far-ultraviolet magnitudes have effective wavelengths of 1375 Å and 1781 Å, as was the case for the photometry of Paper III.

One field covers the region of the Galactic center and bridges the area between the fields discussed in Paper III. The other includes upper Scorpius and part of Ophiuchus with its center near ρ Oph. Gordon et al. (1994) studied the properties of the reflection nebula in this region using some of the same images as analyzed here.

The Galactic center field was selected for several reasons. Because it overlaps two previously studied fields, comparisons of the magnitudes for stars in common allow an objective estimate of the internal accuracy. In addition, the three fields provide coverage of a continuous strip of sky slightly over 40° in length along the Galactic plane and 13° in width at its narrowest point. Since this region exhibits a large range of extinction (see Paper III), it will be very useful for studies of the variation of the interstellar extinction law with location.

The ρ Oph field was selected for study because of the dust clouds in that region. In addition, photometry for the stars will be a useful supplement to the study by Gordon et al. (1994) of the upper Scorpius reflection nebula.

2. THE OBSERVATIONS

As was the case for the images discussed in Paper III, the data used here were obtained with two NRL Far-Ultraviolet Cameras (FUV Cam) flown aboard Space Shuttle mission STS-39 in 1991 April and May. These cameras had broadband spectral sensitivity with effective wavelengths of 1375 Å (camera 1) and 1781 Å (camera 2). Both have fields nearly 20° in diameter. Further details regarding the instrumentation can be found in Paper III and references given there. The details of the mission and the instrumentation can also be found on the World Wide Web at http://bradbury.nrl.navy.mil/ bdchome.html.

The attributes of the images are listed in Table 1. The first three columns list the identification of the fields and the UT date and time of the middle of the exposure sequences. The celestial coordinates of the field centers are given in columns (4) and (5). Column (7) lists the exposure times for the frames used in this investigation. Finally, the last two columns give information on the calibration and are discussed below. Figure 1 (Plates 2–5) presents prints of both fields taken with each of the cameras.

The methods used in the extraction of the data were nearly identical with those used previously. The reader should consult Papers I–III for the details. The few departures from the earlier data treatment are described after the next paragraph.

In Tables 2 and 3 we list the ultraviolet objects found in the two fields. The first column is a running number for reference

TABLE 1
LOC OF OBSERVATIONS

			LOG OF OBS	ERVATIONS				
Field (1)	Date (2)	Time (3)	$(4)^{\alpha_{1950}}$	δ_{1950} (5)	Camera (6)	Exposure (7)	n (8)	σ (9)
Galactic center	1991 May 5	19:15	17 ^h 51 ^m	-29°24′	1	3, 10, 30, 100	7	0.19
a Onh	1991 May 5	2.50	16.23	-22 50	2	3, 10, 30 3, 10, 30	9 22	0.22
<i>p</i> op	.,,,	2.00	10 25	22.50	2	3, 10	24	0.19

purposes, while columns (2) and (3) contain the coordinates of the objects determined from our images. Columns (4) and (5) contain the ultraviolet magnitudes, while column (6) lists optical objects identified with the ultraviolet sources. The remainder of the table gives the magnitudes, colors, and spectral types for the stars identified with the ultraviolet objects. As before, coordinates from the FUV Cam images were used to interrogate the SIMBAD database and thus identify visible stars with the ultraviolet objects and retrieve the photometry and spectral types. When the database contained more than one spectral type for a star, we have adopted that from the Michigan Spectral Survey (Houk 1982; Houk & Smith-Moore 1988). The colors are only given when photoelectric photometry on the UBV system is available.

It can be seen in Table 2 that nearly all the ultraviolet objects, 88%, are identified with visible stars, while only 9% are blends of multiple objects. This high rate of unblended images compared to previous fields is the consequence of this being the least crowded field we have analyzed.

For the Galactic center field, the transformation of the image coordinates (x, y) to celestial coordinates $(\alpha_{1950}, \delta_{1950})$ presented greater difficulties than had been the case for other fields. While a quadratic polynomial in x and y with cross terms up to x^2y and xy^2 was adequate previously, a cubic polynomial with cross terms up to x^2y^2 was needed for the Galactic center frames. We attribute this to variable image distortion in camera 2. As can be seen in Figure 1, the field for that camera is compressed on one side compared with the round field of camera 1. This was due to the magnetic field of the adjacent camera. An additional variable component probably arises from electrostatic charging of the camera due to overexposure. The Galactic center frames followed a day thruster firing which produced gross overexposure of the camera.

When we had images from both camera 1 and camera 2, the coordinates are accurate to about 14^s in right ascension and 0/6 in declination. On the other hand, for stars in the Galactic center field with only camera 2 magnitudes, the errors in the coordinates given in Table 3 can be several times this amount, particularly toward the eastern edge of the field. Because the field is rather crowded, this will render the identifications with visible stars less certain for such objects. Under these circumstances, when there was doubt regarding the inclusion of nearby stars in the ultraviolet object, we tended to err on the side of including them in a blend. This circumstance has also no doubt resulted in a somewhat higher rate of stars with no plausible identification in Table 3 than for the other fields.

As before, *IUE* spectra of stars in our fields were folded into the FUV Cam response functions to provide a photometric calibration. Care was exercised to avoid using stars which were blends in our images. Previously, the *IUE* spectra from the original *IUE* archive were used. These were processed by the IUESIPS software. However, here only spectra from the final archives which have been reprocessed with the NEWSIPS software were included. This should provide a more uniform set of calibrators.

The number of calibrating stars for each field and each camera is listed in column (8) of Table 1. While the Galactic center field had a similar number of calibrators to those studied in Paper III (referred to here as the Scorpius and Sagittarius fields), the ρ Oph field had several times more suitable objects. In Figure 2 we plot the difference between the raw FUV Cam magnitudes (the weighted means of the magnitudes extracted from the various frames by IRAF; see Paper III) and the magnitudes calculated from the *IUE* spectra. It can be seen that the difference depends on the magnitude level. Although the calibrators in the Scorpius, Sagittarius, and Galactic center fields are not sufficient to reveal the presence of this scale error, it is clear that they are consistent with the trend shown by the ρ Oph calibrators. There are, however, zero-point offsets between the various fields.

Nonlinearities have been reported in various electrographic emulsions at densities above about 1.5. In addition, the process of microdensitometry is a possible source of nonlinearity. In view of this, it is clear that the small differences shown in Figure 2 originate in our electrographic data.

In Paper III, our photometry for Scorpius and Sagittarius was compared to photometry from *TD-1*, *OAO*, and the *Astronomical Netherlands Satellite* (*ANS*) but did not clearly reveal the scale errors. An examination of the comparisons (Figs. 3 and 4 of Paper III) shows that the scatter in the plots is sufficient to make this effect unnoticeable; a scale error of the size shown in Figure 2 can clearly be accommodated within the scatter.

Least-squares fits to the data in Figure 2 yield slopes of -0.100 and -0.135 for cameras 1 and 2, respectively (with several deviant points omitted). We will adopt this as the correction for the scale error for all the fields, but we will determine the zero points for each field individually. The solid lines in Figure 2 show the relations for the ρ Oph stars.

The FUV Cam magnitudes for the Galactic center and ρ Oph fields were transformed to the ultraviolet magnitude scale (defined such that $m_{uv} = 10.0$ corresponds to a flux of $F_{\lambda} = 3.6 \times 10^{-13} \,\mathrm{ergs} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1} \,\mathrm{\AA}^{-1}$) using the above slopes and zero points determined from the *IUE* calibration stars. These magnitudes are listed in columns (4)–(5) of Tables 2 and 3. The rms scatter of the individual calibrating stars is given in

								5V							B4V,B5V																						
Spectral Type	41V	AOIII BRV AIV	B9III/IV	B5II	B9V		89V	B9II/III,A0V,B9.5,B9.	BIII	B6/B7Vn	: -	aoVn BoVn	AOV	F3V	BIV,B2/B3V,B2V,B3/	B2Vne	88Vp 20 51/	B3V	B8Vnn	A7p	M0,M0V:	AUV,AU 30V	39111,B91V,A0	B9.5IV	:	A3III		39111/IV	Ap ,	42V	B9.5V	A3IV	B9.5V	38/K0III	B3IV	B9IV	
/ – B)	0.15	0.06	0.16	0.19	0.00		0.17	÷	0.13	0.17	:	0 14		:	:	0.28	0.09	-0.12	0.10	0.13	:	-0.95	07.0-	:	:	· · ·	0.20		÷	0.10	÷	0.09	÷	:	0.03		0.20
1) 1	7.52	6.09 7.54	6.70	7.60	6.63 7.00	60.1	4.00 7.52	6.28	2.88	7.04	 U 2 0 1	751	7.15	7.39	3.76	4.42	7 00	4.80	6.89	4.45	9.85	1.34 9 89	7.99	6.70	÷	6.60	6.09 6.48	8.20	7.59	6.58	7.60	6.02	6.90	9.50	9.40	8.10	0.03
Identification	HD 146214	HD 146254 Bland	HD 146284	HD 146332	HD 146416 HD 14606	UD0001 110000	HD 146706	Blend	HD 147165	HD 147196	TC IV 10 47	HD 147703	HD 147779	HD 147857	Blend	HD 148184	HD 148199 HD 148470 a	HD 148605	HD 148594	HD 148898	Blend	Diend HD 149438	Blend	HD 149914	:	HD 150365	HD 150366 HD 150638	HD 150700	HD 150714	HD 150768	HD 150814	HD 150894	HD 151012	HD 151296	HD 151310	HD 151418	17CICI CIH
m1781	8.16	6.13 7.15	5.94	7.34	5.65 6.47		7.12	6.14	0.78	6.64	8.40 7.06	7 01	6.36	÷	2.33	2.68	6.46 9 70	1.83	5.87	5.28	6.78	1 77 I	7.52	7.30	:	7.54	7.55	7.24	7.08	6.93	6.98	6.56	6.47	:	:	7.24	0.00
n1375 î	:	5.81 6 73	5.97	÷	5.56 6.40	5 - 1 2 - 2 - 2	7.04	6.20	0.28	6.61	:	6 76	6.73	7.24	2.08	2.50	7.62	1.57	5.76	:	÷	-1 01		6.35	5.87	÷	1 59		7.68	÷	7.04	:	6.67	7.73	6.93		0.23
61950 T	-12:42	-14:45 -24:53	-24:10	-29:36	-21:10	-22.20	-23:09	-19:56	-25:30	-23:35	-21:04	-27:02	-31:18	-31:51	-23:20	-18:20	-29:10	-25:00	-27:48	-21:21	-12:32	-28-04	-31:20	-18:10	-25:51	-17:57	-24:22	-29:24	-22:38	-27:21	-22:25	-28:22	-26:33	-25:10	-22:05	-30:11	16:41-
α1950	16:12:56	16:13:01 16:13:23	16:13:25	16:13:41	16:14:00 16:15:12	21.01.01	16:15:27	16:17:17	16:18:14	16:18:19	16.01.16	16:21:26	16:21:50	16:22:30	16:22:35	16:24:05	16:24:17 16-96-93	16:27:11	16:27:12	16:29:14	16:29:49	16-32-39	16:32:47	16:35:48	16:37:48	16:38:29	16:38:38	16:40:41	16:40:42	16:41:16	16:41:20	16:41:54	16:42:45	16:44:19	16:44:30	16:45:11	F1:0F:01
		Γ α		~	- ~	، ۳	- 		~	~	n r	. -		2		-	<u> </u>		m	6	o -		، ۳	4	<u>ہ</u>	1 00	- a		0	_	~				9	<u>-</u>	0
Ž	4	4 4	÷ 4	20	ທີ່ທີ	วัษ	ວ້ນດີ	ŝ	š	່ທີ່	ລັນ		6	ö	ø	ò	ő	6	30	9	r - 1	- 1-	- 1-	~	1	r i	~ F		õ	òci	õ	83	δ.	õõ	œ	00 0	õ
Spectral Type No	B9V 46	B9.5V B11ab/Tb 4	A0V / 40	B8V 50	A2IV/V 51 B1 5Vn 51	BaV	B2.5Vn 54	B5V 50	B2V 56	B6Vp 51		B2/B3V 60	A2Íb/II 6	B2IV-V 6:	A0IV 6	B3V 64	B8Ia/Iah 66	B5V 67	B1V 68	B0.2IV 6	ADV 500	B2.B2V.B1V.B2V	B8V 7	BIV 7	A0		B9V B9V	A5IV 70	A0V 80	B9p 8:	A0V 82	B9IV 83	B2IV B4	B9Vvar,B9V 8	B2V 8	B6IV 8	Ŏ
V - B) Spectral Type No	0.04 B9V 46	0.02 B9.5V 4 -0.01 B1Iab/Tb 4	··· A0V 49	-0.04 B8V 50	A2IV/V 5: -0.11 B1.5Vn	-0.01 B3V	-0.07 B2.5Vn	-0.03 B5V 58	-0.04 B2V 56	-0.03 B6Vp		-0.01 B2/B3V	0.23 A2Íb/II 6	-0.22 B2IV-V 6	0.16 A0IV 6	-0.03 B3V	0.00 B8[a/lah 66	-0.10 B5V 67	-0.19 B1V 68	-0.10 B0.2IV 6		··· B2.B2V.B1V.B2V	-0.08 B8V	-0.04 B1V 7	··· A0	-0.05 B8LV/V 50	0.03 B9V	0.22 A5IV	A0V 8	0.01 B9p	··· A0V 82	0.10 B9IV 83	0.04 B2IV 84	B9Vvar,B9V 8	-0.16 B2V 8	0.04 B6IV	
V $(V - B)$ Spectral Type No	7.63 0.04 B9V 46	6.34 0.02 B9.5V 4 8.90 -0.01 B1Iab/Ib 4	7.30 ··· A0V	8.28 -0.04 B8V 50	6.70 ··· A2IV/V 5. 4.70 -0.11 B1.5Vn	5.03 -0.01 B3V	4.59 -0.07 B2.5Vn 5.	5.40 -0.03 B5V 55	5.42 -0.04 B2V 56	6.10 -0.03 B6Vp		5.94 -0.01 B2/B3V	6.13 0.23 A2Íb/II 6	3.90 -0.22 B2IV-V 6	7.14 0.16 A0IV 6	5.90 -0.03 B3V 6	0.00 0.00 B6/B9111 66 4.88 -0.10 B81a/Iab	5.44 -0.10 B5V 67	2.89 -0.19 B1V 68	2.30 -0.10 B0.2IV 6		1.4P B2.B2V.B1V.B2V 7	5.92 -0.08 B8V	3.96 -0.04 B1V 7	8.40 ··· A0	6.32 -0.05 B8IV/V 7	5.87 0.03 B9V	7.13 0.22 A5IV	6.60 ··· A0V 8	6.65 0.01 B9p	7.00 ··· A0V	6.95 0.10 B9IV 83	4.01 0.04 B2IV	4.93 B9Vvar,B9V 88	4.59 -0.16 B2V 8	6.41 0.04 B6IV 8	
Identification V $(V - B)$ Spectral Type N	HD 139486 7.63 0.04 B9V 46	HD 139518 6.34 0.02 B9.5V 4 HD 140543 8.90 -0.01 B1Iab/Ib 4	HD 141091 7.30 A0V	HD 141180 8.28 -0.04 B8V 50	HD 141164 6.70 ··· A2IV/V 55 HD 141637 4.70 -0.11 B1 5Vn 54	HD 142096 5.03 -0.01 B3V	HD 142114 4.59 -0.07 B2.5Vn 5.	HD 142165 5.40 -0.03 B5V 56	HD 142184 5.42 -0.04 B2V 56	HD 142250 6.10 -0.03 B6Vp		HD 142378 5.94 -0.01 B2/B3V	HD 142703 6.13 0.23 A2Ib/II 6	HD 142669 3.90 -0.22 B2IV-V 6	HD 142805 7.14 0.16 A0IV 6	HD 142883 5.90 -0.03 B3V 64	HD 142004 0.00 0.00 B0/B9111 60 HD 142083 4.88 -0.10 B81a/Iah	HD 142990 5.44 -0.10 B5V 67	HD 143018 2.89 -0.19 B1V 66	HD 143275 2.30 -0.10 B0.2IV 6	HD 143567 7.20 0.07 B9V 7 7 HD 143715 6 90 ADV	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HD 144334 5.92 -0.08 B8V 7	HD 144470 3.96 -0.04 B1V 7	HD 144612 8.40 ··· A0 7	HD 144661 6.32 -0.05 B8IV/V 7	HD 144440 5.87 0.03 B9V	HD 145057 7.13 0.22 A5IV 7	HD 145127 6.60 ··· A0V 8	HD 145102 6.65 0.01 B9p	HD 145188 7.00 ··· A0V 82	HD 145353 6.95 0.10 B9IV 83	HD 145502 4.01 0.04 B2IV	Blend $4.93 \cdots$ B9Vvar, B9V [8]	HD 145482 4.59 -0.16 B2V 8	HD 145792 6.41 0.04 B6IV 801 801 801 801 801 801 801 801 801 801	
m_{1781} Identification V $(V-B)$ Spectral Type N	6.90 HD 139486 7.63 0.04 B9V 46	6.05 HD 139518 6.34 0.02 B9.5V 4 6.79 HD 140543 8.90 -0.01 B11ab/Ib 4	6.86 HD 141091 7.30 ··· A0V	7.20 HD 141180 8.28 -0.04 B8V 50	6.87 HD 141164 6.70 ··· A2IV/V 5. 2.26 HD 141637 4.70 -0.11 B1.5Vn 5.	2.97 HD 142096 5.03 -0.01 B3V	2.09 HD 142114 4.59 -0.07 B2.5Vn	3.82 HD 142165 5.40 -0.03 B5V 51	3.37 HD 142184 5.42 -0.04 B2V 56	4.35 HD 142250 6.10 -0.03 B6Vp 57	6 14 HD 142315 6 86 0 04 BOV	4.11 HD 142378 5.94 -0.01 B2/B3V	7.21 HD 142703 6.13 0.23 A2Ib/II 6	1.12 HD 142669 3.90 -0.22 B2IV-V 6	···· HD 142805 7.14 0.16 A0IV 6	4.19 HD 142883 5.90 -0.03 B3V 6	3.30 HD 142004 0.00 0.00 B6/B9111 63 3.18 HD 142983 4.88 -0.10 B81a/Iab	3.29 HD 142990 5.44 -0.10 B5V	0.39 HD 143018 2.89 -0.19 B1V 66	0.20 HD 143275 2.30 -0.10 B0.2IV 6	H.D. 143567 7.20 0.07 B9V 7 7 7 36 H.D. 143715 6 90 AOV	0.35 Blend 1.4P B2.B2V.B1V.B2V 7	4.04 HD 144334 5.92 -0.08 B8V	1.51 HD 144470 3.96 -0.04 B1V	7.89 HD 144612 8.40 ··· A0	4.03 HU 144001 0.32 -0.05 B8IV/V 7	0.01 IID 144100 0.10 0.01 D9V 1 7 4.71 HD 144844 5.87 0.03 B9V	8.28 HD 145057 7.13 0.22 A5IV 7	6.26 HD 145127 6.60 ··· A0V 8	6.05 HD 145102 6.65 0.01 B9p	6.73 HLD 145188 7.00 ··· A0V 82	6.66 HD 145353 6.95 0.10 B9IV 83	1.73 HD 145502 4.01 0.04 B2IV	4.42 Blend 4.93 B9Vvar,B9V 89	1.72 HD 145482 4.59 -0.16 B2V 8	4.40 HD 145792 6.41 0.04 B6IV	
$m_{1375} m_{1781}$ Identification $V (V-B)$ Spectral Type N	··· 6.90 HD 139486 7.63 0.04 B9V 46	··· 6.05 HD 139518 6.34 0.02 B9.5V 4 4	··· 6.86 HD 141091 7.30 ··· A0V	··· 7.20 HD 141180 8.28 -0.04 B8V	6.87 HD 141164 6.70 A2IV/V 5. 1.63 2.26 HD 141637 4.70 -0.11 B1.5Vn	2.37 2.97 HD 142096 5.03 -0.01 B3V	1.71 2.09 HD 142114 4.59 -0.07 B2.5Vn 5.	3.37 3.82 HD 142165 5.40 -0.03 B5V 56	2.91 3.37 HD 142184 5.42 -0.04 B2V 56	3.98 4.35 HD 142250 6.10 -0.03 B6Vp 57	2.00 ···· III 142301 9.01 -0.00 D011/1V 90 5.64 6.14 HD 149315 6.86 0.04 P0V	3.48 4.11 HD 142378 5.94 -0.01 B2/B3V 6(··· 7.21 HD 142703 6.13 0.23 A2Ib/II 6	0.26 1.12 HD 142669 3.90 -0.22 B2IV-V 6	6.87 ··· HD 142805 7.14 0.16 A0IV 6.	3.58 4.19 HD 142883 5.90 -0.03 B3V 6.	0.10 0.30 HD 142004 0.00 0.00 B0/B9111 60 3.18 HD 142983 4.88 -0.10 B81a/Iab 64	2.86 3.29 HD 142990 5.44 -0.10 B5V 67	-0.77 0.39 HD 143018 2.89 -0.19 B1V 66	-1.01 0.20 HD 143275 2.30 -0.10 B0.2IV	4.88 ··· HJD 143567 7.20 0.07 B9V 7 7 ··· 7.36 HJD 143715 6.90 ··· ADV	-0.66 0.35 Blend 1.4P B2.B2V.B1V.B2V	3.63 4.04 HD 144334 5.92 -0.08 B8V 7	0.82 1.51 HD 144470 3.96 -0.04 B1V 7	7.50 7.89 HD 144612 8.40 \cdots A0 7	4.14 4.03 HU 144061 0.32 -0.05 B8IV/V 7	4.37 4.71 HD 144844 5.87 0.03 B9V	··· 8.28 HD 145057 7.13 0.22 A5IV	6.84 6.26 HD 145127 6.60 ··· A0V	5.80 6.05 HD 145102 6.65 0.01 B9p	6.61 6.73 HD 145188 7.00 ··· A0V 82	6.21 6.66 HD 145353 6.95 0.10 B9IV 83	1.07 1.73 HD 145502 4.01 0.04 B2IV	4.40 4.42 Blend 4.93 B9Vvar,B9V [80	1.23 1.72 HJD 145482 4.59 -0.16 B2V 8	4.20 4.40 HD 145792 6.41 0.04 B6IV 8.38 5.54 HD 145064 6.42 0.03 B0V	
δ_{1950} m1375 m1781 Identification V $(V-B)$ Spectral Type N	-19:42 ··· 6.90 HD 139486 7.63 0.04 B9V 46	-23:06 ··· 6.05 HD 139518 6.34 0.02 B9.5V 4 -21:43 ··· 6.79 HD 140543 8.90 -0.01 B1Iab/Ib	-25:04 ··· 6.86 HD 141091 7.30 ··· A0V	-27:24 7.20 HD 141180 8.28 -0.04 B8V 50	-23:43 ··· 6.87 HD 141164 6.70 ··· A2IV/V 5. -25:35 1.63 2.26 HD 141637 4.70 -0.11 B1.5Vn	-20:02 2.37 2.97 HD 142096 5.03 -0.01 B3V	-25:11 1.71 2.09 HD 142114 4.59 -0.07 B2.5Vn	-24:23 3.37 3.82 HD 142165 5.40 -0.03 B5V 56	-23:50 2.91 3.37 HD 142184 5.42 -0.04 B2V	-27:11 3.98 4.35 HD 142250 6.10 -0.03 B6Vp 57	-20:00 2:00 1.1 142011 0.01 -0.01 -0.00 DOLL/1V 0	-19:14 3.48 4.11 HD 142378 5.94 -0.01 B2/B3V	-14:43 ··· 7.21 HD 142703 6.13 0.23 A2Íb/II 6	-29:03 0.26 1.12 HD 142669 3.90 -0.22 B2IV-V 6	-21:20 6.87 ··· HD 142805 7.14 0.16 A0IV 6.	-20:50 3.58 4.19 HD 142883 5.90 -0.03 B3V	-23.23 3.10 3.00 110 142604 0.00 0.00 0.00 $05/B911$ 61	-24:41 2.86 3.29 HD 142990 5.44 -0.10 B5V 67	-26:00 -0.77 0.39 HD 143018 2.89 -0.19 B1V 66	-22:30 -1.01 0.20 HD 143275 2.30 -0.10 B0.2IV	-21:31 4.88 ··· HU 143367 7.20 0.07 B9V 72 -24:52 ··· 7.36 HD 143715 6.90 ··· ADV	-19.40 - 0.66 0.35 Blend $1.4P$ B2.B2V.B1V.B2V 7	-23:28 3.63 4.04 HD 144334 5.92 -0.08 B8V	-20:31 0.82 1.51 HD 144470 3.96 -0.04 B1V	-30:30 7.50 7.89 HD 144612 8.40 ··· A0	-24:20 4.14 4.03 HU 144061 6.32 -0.05 B8IV/V	-12.44 9.01 HD 144100 9.10 U.U D9V -23.33 4.37 4.71 HD 144844 5.87 0.03 B9V	-13:03 8.28 HD 145057 7.13 0.22 A5IV	-24:27 6.84 6.26 HD 145127 6.60 ··· A0V	-26:47 5.80 6.05 HD 145102 6.65 0.01 B9p	-22:01 6.61 6.73 HJD 145188 7.00 ··· A0V 82	-27:02 6.21 6.66 HD 145353 6.95 0.10 B9IV 83	-19:18 1.07 1.73 HD 145502 4.01 0.04 B2IV 84	-28:18 4.40 4.42 Blend 4.93 B9Vvar,B9V 86	-27:48 1.23 1.72 HD 145482 4.59 -0.16 B2V 8	-24:18 4.20 4.40 HD 145792 6.41 0.04 B6IV 8	
α 1950 δ 1950 m 1375 m 1781 Identification V $(V-B)$ Spectral Type N	15:36:20 -19:42 ··· 6.90 HD 139486 7.63 0.04 B9V 46	15:36:29 -23:06 ··· 6.05 HD 139518 6.34 0.02 B9.5V 4 15:42:04 -21:43 ··· 6.79 HD 140543 8.90 -0.01 B1Iab/Ib	15:44:56 -25:04 6.86 HD 141091 7.30 A0V	15:45:29 -27:24 ··· 7.20 HD 141180 8.28 -0.04 B8V 50	15:45:32 -23:43 ···· 6.87 HD 141164 6.70 ··· A21V/V 5. 15:47:58 -25:35 1.63 2.26 HD 141637 4.70 -0.11 B1.5Vn 5.	15:50:27 -20:02 2.37 2.97 HD 142096 5.03 -0.01 B3V	15:50:34 -25:11 1.71 2.09 HD 142114 4.59 -0.07 B2.5Vn 5.	15:50:54 -24:23 3.37 3.82 HD 142165 5.40 -0.03 B5V 51	15:50:56 -23:50 2.91 3.37 HD 142184 5.42 -0.04 B2V	15:51:26 -27:11 3.98 4.35 HD 142250 6.10 -0.03 B6Vp	15-51-49 - 29:38 5.64 6.14 HD 149315 6.86 0.04 BOV	15:52:08 -19:14 3.48 4.11 HD 142378 5.94 -0.01 B2/B3V	15:53:48 -14:43 ··· 7.21 HD 142703 6.13 0.23 A2Ib/II 6	15:53:51 -29:03 0.26 1.12 HD 142669 3.90 -0.22 B2IV-V 6	15:54:19 -21:20 6.87 ··· HD 142805 7.14 0.16 A0IV 6.	15:54:44 -20:50 3.58 4.19 HD 142883 5.90 -0.03 B3V	10:05:26 -14:10 3.18 HD 142004 0.00 0.10 B8Ia/Jab 6	15:55:33 -24:41 2.86 3.29 HD 142990 5.44 -0.10 B5V 67	15:55:55 -26:00 -0.77 0.39 HD 143018 2.89 -0.19 B1V 64	15:57:25 -22:30 -1.01 0.20 HD 143275 2.30 -0.10 B0.2IV	15:59:46 -21:31 4.88 ··· HJ 143567 7.20 0.07 B9V 7 15:59:46 -24:52 ··· 7.36 HD 143715 6.90 ··· Δην	16:02:42 -19:40 -0.66 0.35 Blend 1.4P B2.B2V.B1V.B2V 7	16:03:06 -23:28 3.63 4.04 HD 144334 5.92 -0.08 B8V 7	16:03:52 -20:31 0.82 1.51 HD 144470 3.96 -0.04 B1V	16:04:39 -30:30 7.50 7.89 HD 144612 8.40 A0	16:04:01 - 24:20 4.14 4.03 HJJ 144601 6.32 -0.05 BSIV/V 7	10:05:42 -23:33 4.37 4.71 HD 144844 5.87 0.03 B9V	16:06:44 -13:03 8.28 HD 145057 7.13 0.22 A5IV	16:07:08 -24:27 6.84 6.26 HD 145127 6.60 A0V	16:07:11 -26:47 5.80 6.05 HD 145102 6.65 0.01 B9p	16:U7:2U -22:UI 6.6I 6.73 HD 145188 7.00 A0V 82	16:08:29 -27:02 6.21 6.66 HD 145353 6.95 0.10 B9IV 83	16:08:39 -19:18 1.07 1.73 HD 145502 4.01 0.04 BZIV 84	16:09:11 -28:18 4.40 4.42 Blend 4.93 B9Vvar,B9V [8: 16:00.15 07.40 100 170 110 110 120 20	16:09:15 -2/:48 1.23 1.72 HD 145482 4.59 -0.16 B2V 8	16:10:45 -24:18 4.20 4.40 HJJ 145792 6.41 0.04 B6IV 8.18 16:11:99 -90:58 5.38 5.54 HJJ 145064 6.42 0.02 B0V	

TABLE 2 Ultraviolet Objects in the ρ Ophiuchi Field

TABLE 2-Continued

		<u> </u>				1/	(IV D)	
No.	α_{1950}	01950	m_{1375}	m_{1781}	Identification	V	(V - B)	Spectral Type
91	16:46:45	-24:34		7.14	HD 151659	7.10		A1m
92	16:47:58	-16:28	5.82	6.20	HD 151884	7.00		B5V
93	16:48:01	-28:54		8.51	HD 151857	9.10		B9IV/V
94	16:48:44	-30:48	6.00		HD 152018	10.00		B9IV/V
95	16:49:12	-25:31	6.92	6.49	HD 152071	6.90		A0V
96	16:50:26	-28:17		8.48	HD 152286	9.67	0.02	B2III
97	16:50:39	-28:50		8.62	HD 152346	8.10		A0V
98	16:50:56	-25:01		7.45	Blend	7.95		Ap,A0III/IV
99	16:51:00	-15:38	6.18					
100	16:51:40	-21:49	5.82	6.19	HD 152516	8.04	0.08	B2III
101	16:52:10	-18:46		7.23	Blend	7.67	•••	B9.5II/I,B9V
102	16:52:34	-21:30	5.50	5.79	HD 152655	6.90		B9III
103	16:52:39	-25:28	6.52	6.34	HD 152657	7.40		B8II
104	16:53:45	-23:06	5.30	4.79	HD 152849	5.58	-0.02	A0V
105	16:53:49	-26:53		8.71	HD 152834	9.20		A0
106	16:54:07	-19:28	4.90	4.92	Blend	6.11		B7/B8III, B7 V
107	16:54:42	-27:33		8.54	HD 152989	7.60		A1III/IV
108	16:55:16	-29:18	5.13	•••	HD 153084	8.49	0.00	B2V
109	16:55:18	-19:09	6.86	7.29	SAO 160194	9.69	0.05	B0
110	16:55:27	-26:20		7.14	HD 153083	9.20		B9IV/V
111	16:56:18	-26:22		7.10	HD 153255	8.30		B9V
112	16:57:41	-20:31	6.94	6.86	HD 153480	8.90		B9III
113	16:58:17	-20:22	6.69	6.48	HD 153609	7.20		B7/B8V
114	16:58:57	-25:06		7.88	HD 153707	8.45		Ap
115	17:00:39	-24:53	• • •	8.09	HD 153977	9.42	0.09	B5II/III
116	17:00:58	-25:38	4.98	4.79	HD 154021	6.70		B9IV/V
117	17:01:18	-21:03	• • •	7.25	HD 154103	8.90		B8II/III
118	17:01:46	-20:24	4.23	4.45	HD 154204	6.30	-0.02	B7IV/V
119	17:02:30	-22:00	5.00	5.25	HD 154293	7.04	0.10	B5III
120	17:03:47	-24:30	6.47	•••	HD 154499	9.10		B5IV/V
121	17:03:55	-23:37	3.92	•••		•••	•••	

^a There are five B stars within a few arcminutes of the ultraviolet object in addition to HD 145502. However, all are of spectral type B8 or B9 (as compared with B2 for HD 145502) and are fainter. Hence, HD 145502 should be the source of most of the ultraviolet flux. ^b The ultraviolet source is the hot, main-sequence companion of Alpha Sco.

FIG. 2.—A comparison of the raw ultraviolet magnitudes from the FUV cameras with magnitudes calculated from *IUE* spectra. The symbols indicate the four fields as follows: *filled squares*, the Galactic center; *filled circles*, the ρ Oph; *open squares*, Scorpius; *open circles*, Saggitarius. The solid lines have slopes of -0.100 and -0.135 and are fitted to the ρ Oph points.

104

 TABLE 3
 ULTRAVIOLET OBJECTS IN THE GALACTIC CENTER FIELD

ral Type		A.				(I,O	: ^			/\	111/1	1/11	>			5 <	^	1	II	AUX VIS		H	^	91V /V B91					111/116	111/1104				
Spect	B2III	A5IV A2V.A9	B8V	B2IV	B9.5IV	B9V	II/II6B	B2/B31 B8/B91	B9.5V	B9III	B9.5IV	B4V	D0/1591	A2/A3I	B8V	B9 50 (20	В9/В9. В9	B3III/I	A3m	B8/B9I	A0V.B8	B9IV	B8/B91	B3III/I	AOTTE	B2IIp	:	B1III	09.5V	AZV R3III P		B0.5Ib	B9.5V	B2IV	B3II
V - B)	0.08	0.18	0.10	-0.22	:	0.08	:	: :	:	0.05	0.28		11.0	· · ·	:	: 0 : 0	0.09	:	0.28		···-	:	0.16	:	: :	0.20	:	0.39	0.03	eu.u		0.13	:	-0.23	0.04
	7.20	7.60 7.43	7.18	3.27	7.90	9.04	8.14	9.30 7.40	7.90	7.63	8.07	9.70	9.01 6 16	6.70	8.50	8.50	7.66	8.80	4.17	7.40	7.61	6.00	8.10	9.00	8.30 7.31	9.00	÷	8.25	7.00	0.39 8 40	CH-0	6.67	8.70	2.70	8.08
Identification	HD 156688	HD 156883 Blend	HD 157016	HD 157056	HD 157040	HD 157189	Blend	SAU 208767 HD 157282	HD 157383	HD 157416	HD 157434	HD 157419	HD 15/4/3	HD 157611	HD 157673	HD 157644	HD 157751 HD 157751	HD 157829	HD 157792	HD 157865	Blend	HD 157955	HD 157988	HD 157940	HD 15/9/2 Blend	HD 158073	÷	HD 158155	HD 158186	Bland		HD 158320	HD 158305	HD 158408	HD 158563
n1781	5.98	8.28 7.60	6.66 10.95	0.62	8.85	8.08	7.53	8.46 6 93	8.11	7.00	8.57	8.83	8.04 7.00	7.69	8.04	7.20	7.15 8.05	7.43	6.56	7.15	0.4z	5.52	8.09	6.04	0.10 7 71	7.02	6.90	7.97	4.55	1.04 7 59	4 7 8 8 7 8	5.01	10.80	0.36	6.68
m1375 1	•	: :	5.96	: :	:	:	÷	: :	:	6.37	÷	÷	 6 18	0 F	÷	:	6.92		:	: 5	10.6	5.82	÷	÷	: :	:	:	:	4.11	:		4.68	:	-0.74	6.28
δ1950	-37:59	-31:32 -26:27	-30:28	-24:57	-38:10	-31:27	-37:04	-37:58 -22:58	-33:12	-29:50	-28:36	-36:43	-32:28	-29:39	-32:51	-37:34	-27:34 -34·04	-30:03	-24:09	-26:18	-23:33	-29:42	-28:19	-38:43	-38:41	-33:34	-38:16	-33:00	-31:30	-38:29	26.02-	-33:40	-38:35	-37:13	-31:56
α1950	17:17:22	17:18:02 17:18:18	17:18:54	17:19:03	17:19:21	17:19:47	17:20:14	17:20:45 17:20:54	17:21:02	17:21:05	17:21:05	17:21:28	17:21:31	17:22:10	17:22:45	17:22:49	17:22:57	17:23:34	17:23:36	17:23:46	17:23:56	17:24:23	17:24:25	17:24:53	17:25:15	17:25:20	17:25:26	17:25:39	17:25:57	00:02:71	17-76-20	17:26:50	17:26:53	17:27:27	17:28:07
No.	46	47 48	49	20	52	53	54	55	57	58	59	60	19 19	20	64	65	66 67	689	69	21	17	73	74	75	22	78	79	80	81	82 82	00	52	86	87	88
Spectral Type	B9.5V	B2V B7III/IV	Am Am	A21V/V B8/B911	B8/B9II/III,B8/B9I	BIV	B8II/III	B31V B0.5V	B9Vn	AIV	B2II	B1II	B2V D1V	B6V	B7V	B2Vnn,B7Vn	B7IV,B8V O8Ve	BOVn	B6V,B2V	760 760	B9.5V	B3V	B8V	B4III	B3III B8IV		B0Iab	B3V	B9V	B9.5V	D2111 D3V B8V D9/D2111	B5Vne.B2V.B.B	Seven B stars	B4/B5V:,B9II:	A2V
V - B) Spectral Type	B9.5V	0.04 B2V ··· B7III/IV	0.29 Am	··· B8/B9II	B8/B9II/III,B8/B9I	··· B1V	··· B8II/III	B3IV 0.09 B0.5V	-0.04 B9Vn	A1V	-0.04 B2II	0.07 B1II	-0.03 B2V	0.06 B6V	0.15 B7V	··· B2Vnn,B7Vn	··· B7IV,B8V -0.01 08Ve	0.13 BOVn	•••• B6V,B2V	V60	0.03 B9.5V	0.06 B3V	B8V	··· B4III	0.13 B3111 0.09 B81V		0.54 B0Iab	0.08 B3V	0.10 B9V	0.02 B9.5V	0.04 DZIII R3V R8V R9 / R3111	B5Vne B2V B B	··· Seven B stars	··· B4/B5V:,B9II:	0.12 A2V
V (V - B) Spectral Type	7.40 ··· B9.5V	8.73 0.04 B2V 9.30 ··· B7III/IV	5.93 0.29 Am	8.60 B8/B9II	8.51 B8/B9II/III,B8/B9I	8.65 ··· B1V	$9.70 \cdots BSII/III$	8.90 B3IV 8.35 0.09 B0.5V	6.14 -0.04 B9Vn	8.20 ··· A1V	7.75 -0.04 B2II	6.01 0.07 BIII	8.20 -0.03 B2V 7.75 0.06 D1V	8.01 0.06 B6V	7.93 0.15 B7V	8.34 $B2Vnn, B7Vn$	8.08 · · · B7IV,B8V 5.53 -0.01 O8Ve	8.19 0.13 B0Vn	7.93 ··· B6V,B2V		9.30 0.00 53V 6.21 -0.03 B9.5V	8.69 0.06 B3V	9.40 ··· B8V	$7.82 \cdots B4III$	9.00 0.13 B3III 8.50 0.00 B8IV	6.50	7.91 0.54 B0Iab	9.21 0.08 B3V	9.25 0.10 B9V	0.81 U.UZ 199.5V 0.44 0.04 10.011	7.65 B3V B8V B9 /B3111	6.12 B5Vne.B2V.B.B	6.81 ··· Seven B stars	7.57 ··· B4/B5V:,B9II:	7.01 0.12 A2V
Identification V $(V - B)$ Spectral Type	HD 154333 7.40 ··· B9.5V	HD 154664 8.73 0.04 B2V HD 154754 9.30 ··· B7111/1V	HD 154783 5.93 0.29 Am	HD 155014 8.60 B8/B9II	Blend 8.51 B8/B9II/III,B8/B9I	HD 155217 8.65 ··· B1V	HD 155311 9.70 B8II/III	HD 155320 8.30 B3IV HD 155320 8.35 0.09 B0.5V	HD 155401 6.14 -0.04 B9Vn	HD 155334 8.20 ··· A1V	HD 155402 7.75 -0.04 B2II	HD 155450 6.01 0.07 B1II	HD 155403 8.20 -0.03 B2V HD 155506 7.75 0.06 D1V	HD 155550 8.01 0.06 B6V	HD 155600 7.93 0.15 B7V	Blend $8.34 \cdots B2Vn, B7Vn$	Blend 8.08 ··· B7IV,B8V HD 155806 5.53 -0.01 O8Va	HD 155851 8.19 0.13 B0Vn	Blend 7.93 ··· B6V,B2V	HD 155889 6.54 ··· O9V	HD 155940 6.21 -0.03 B9.5V	HD 155888 8.69 0.06 B3V	HD 155983 9.40 ··· B8V	HD 156004 7.82 ···· B4III	HD 156090 8.50 0.13 B3HI HD 156090 8.50 0.00 B8IV	Bochum 13 a 6.50 ··· ···	HD 156212 7.91 0.54 B0Iab	HD 156187 9.21 0.08 B3V	HD 156254 9.25 0.10 B9V	HD 156262 0.81 0.02 B9.5V HD 156260 0.44 0.04 Dotti	ILD 100403 3.11 0.01 D2III Bland 7.65 B2V B2V B9 / B2III	Blend 6.12 B5Vne.B2V.B.B	Blend 6.81 ··· Seven B stars	Blend 7.57 B4/B5V:,B9II:	HD 156506 7.01 0.12 A2V
m_{1781} Identification V $(V - B)$ Spectral Type	7.18 HD 154333 7.40 ··· B9.5V	6.92 HD 154664 8.73 0.04 B2V 8.24 HD 154754 9.30 ··· B7111/IV	7.98 HD 154783 5.93 0.29 Am	7.97 HD 155014 8.60 ··· B8/B9II	7.62 Blend 8.51 ··· B8/B9II/III,B8/B9I	5.90 HD 155217 8.65 ··· B1V	8.73 HD 155311 9.70 ··· B8II/III	5.10 HD 1552/3 8.90 ··· B3IV 6.62 HD 155320 8.35 0.09 B0.5V	5.18 HD 155401 6.14 -0.04 B9Vn	8.25 HD 155334 8.20 ··· A1V	4.46 HD 155402 7.75 -0.04 B2II	3.68 HD 155450 6.01 0.07 B1II	0.49 HD 100403 8.20 -0.03 B2V 4.30 HD 166606 7.76 0.06 D1V	6.56 HD 155550 8.01 0.06 B6V	5.53 HD 155600 7.93 0.15 B7V	3.88 Blend 8.34 \cdots $B2Vnn, B7Vn$	3.66 Blend 8.08 ··· B71V,B8V 9.63 HD 155806 5.53 -0.01 O8Ve	6.19 HD 155851 8.19 0.13 B0Vn	6.92 Blend 7.93 ··· B6V,B2V	3.03 HD 155889 6.54 ··· 09V	5.61 HD 155940 6.21 -0.03 B9.5V	2.75 HD 155888 8.69 0.06 B3V	7.94 HD 155983 9.40 ··· B8V	5.69 HD 156004 7.82 ··· B4III	9.00 HIJ 150118 9.00 0.13 B3111 6.89 HID 156099 8.50 0.09 B81V	7.89 Bochum 13 ^a 6.50 ··· ···	7.92 HD 156212 7.91 0.54 B0Iab	5.72 HD 156187 9.21 0.08 B3V	6.72 HD 156254 9.25 0.10 B9V	0.02 HU 130232 0.81 0.02 H9 2020 6 01 HD 156360 0.44 0.04 D9111	6.91 Riend 7.65 R31/ R91/ R91/ R91/	4.71 Blend 6.12 B5Vne.B2V.B.B	4.62 Blend 6.81 ··· Seven B stars	6.13 Blend 7.57 ··· B4/B5V;,B9II:	6.54 HD 156506 7.01 0.12 A2V
$m_{1375} m_{1781}$ Identification $V (V - B)$ Spectral Type	··· 7.18 HD 154333 7.40 ··· B9.5V	···· 6.92 HD 154664 8.73 0.04 B2V ··· 8.24 HD 154754 9.30 ··· B7111/IV	··· 7.98 HD 154783 5.93 0.29 Am	··· 7.97 HD 155014 8.60 ··· B8/B9II	··· 7.62 Blend 8.51 ··· B8/B9II/III,B8/B9I	5.70 5.90 HD 155217 8.65 ··· B1V	··· 8.73 HD 155311 9.70 ··· B8II/III	··· 5.10 HD 155320 8.30 ··· B31V ··· 6.62 HD 155320 8.35 0.09 B0.5V	5.29 5.18 HD 155401 6.14 -0.04 B9Vn	··· 8.25 HD 155334 8.20 ··· A1V	3.97 4.46 HD 155402 7.75 -0.04 B2II	3.82 3.68 HD 155450 6.01 0.07 B1II	ייי ט.40 הוט נסט4ט3 8.20 -0.03 ואיז שבע 2.03 א.30 נוט וגגגה א.77 ה. א. שווע	6.09 6.56 HD 155550 8.01 0.06 B6V	··· 5.53 HD 155600 7.93 0.15 B7V	4.58 3.88 Blend $8.34 \cdots B2Vnn, B7Vn$	··· 3.66 Blend 8.08 ··· B7IV,B8V 2.23 2.63 HD 155806 5.53 -0.01 O8Ve	5.62 6.19 HD 155851 8.19 0.13 B0Vn	6.69 6.92 Blend 7.93 B6V,B2V	2.50 3.03 HD 155889 6.54 O9V	0.20 ···· III 155940 9.33 0.03 B3 V 5.96 5.61 HD 155940 6.21 -0.03 B9 5V	··· 2.75 HD 155888 8.69 0.06 B3V	··· 7.94 HD 155983 9.40 ··· B8V	5.16 5.69 HD 156004 7.82 ··· B4III	9.00 HID 156090 8.50 0.13 B3111	··· 7.89 Bochum 13 a 6.50 ··· ···	··· 7.92 HD 156212 7.91 0.54 B0Iab	5.61 5.72 HD 156187 9.21 0.08 B3V	6.72 HD 156254 9.25 0.10 B9V	0.09 0.02 HJJ 150252 0.81 0.02 159.5V 7 31 6 01 HJJ 156560 0.44 0.04 159111	5.00 6.91 Rind 7.65 R3V R2V R9/R3111	4.73 4.71 Blend 6.12 ··· B5Vne B2V.B.B	4.36 4.62 Blend 6.81 ··· Seven B stars	5.76 6.13 Blend 7.57 ··· B4/B5V;,B9II:	··· 6.54 HD 156506 7.01 0.12 A2V
δ_{1950} m1375 m1781 Identification V $(V-B)$ Spectral Type	-28:39 ··· 7.18 HD 154333 7.40 ··· B9.5V	-33:45 ···· 6.92 HD 154664 8.73 0.04 B2V -29:54 ··· 8.24 HD 154754 9.30 ··· B7111/1V	$-30:18 \cdots 7.98 \text{ HD } 154783 5.93 0.29 \text{ Am}$	-30:43 7.97 HD 155014 8.60 B8/B9II	-32:54 7.62 Blend 8.51 B8/B9II/III,B8/B9I	-32:09 5.70 5.90 HD 155217 8.65 ··· B1V	-29:35 ··· 8.73 HD 155311 9.70 ··· B811/111	-33:3U ···· 5.1U HJJ 1552/3 8.9U ··· B31V -34:17 ··· 6.62 HD 155320 8.35 0.09 B0.5V	-27:43 5.29 5.18 HD 155401 6.14 -0.04 B9Vn	-25:33 ··· 8.25 HD 155334 8.20 ··· A1V	-33:17 3.97 4.46 HD 155402 7.75 -0.04 B2II	-32:22 3.82 3.68 HD 155450 6.01 0.07 B1II	-33:33 ··· 3.43 HJ 133403 8.20 -0.03 B2V -33:16 3 03 4 30 HD 155506 7.75 0 06 D1V	-32:47 6.09 6.56 HD 155550 8.01 0.06 B6V	-32:11 ··· 5.53 HD 155600 7.93 0.15 B7V	-33.11 4.58 3.88 Blend 8.34 $B2Vnn, B7Vn$	-33:11 ···· 3.66 Blend 8.08 ··· B71V,B8V -33:29 2.23 7.63 HD 155806 5.53 -0.01 0.8Ve	-32:38 5.62 6.19 HD 155851 8.19 0.13 B0Vn	-31:57 6.69 6.92 Blend 7.93 ··· B6V,B2V	-33:41 2.50 3.03 HD 155889 6.54 O9V	-33.03 0.20 III 155940 9.30 0.03 B37 -30.09 5.96 5.61 HD 155940 6.21 -0.03 B9.5V	-33:38 ··· 2.75 HD 155888 8.69 0.06 B3V	-26:04 ··· 7.94 HD 155983 9.40 ··· B8V	-32:17 5.16 5.69 HD 156004 7.82 B4III	-31:24 9.05 HD 156090 8.50 0.13 B3HI -33:13 6.82 HD 156090 8.50 0.09 B8TV	-35:30 ··· 7.89 Bochum 13 a 6.50 ··· ··	-27:42 ··· 7.92 HD 156212 7.91 0.54 B0Iab	-32:07 5.61 5.72 HD 156187 9.21 0.08 B3V	-31:56 6.72 HD 156254 9.25 0.10 B9V	-20:30 0.09 0.02 HU 100232 0.81 0.02 B9.3V -23:10 7 31 6 01 HD 166960 0.44 0.04 D9111	-00.10 1.01 0.01 11D 100207 0.11 D.2111 -34.10 5.00 6.91 Riand 7.65 R3V R8V R9/R9/R111	-32:27 4.73 4.71 Blend 6.12 ··· B5Vne B2V B B	-32:18 4.36 4.62 Blend 6.81 ··· Seven B stars	-31:04 5.76 6.13 Blend 7.57 B4/B5V;,B9II:	-31:17 6.54 HD 156506 7.01 0.12 A2V
α_{1950} δ_{1950} m_{1375} m_{1781} Identification V $(V-B)$ Spectral Type	17:02:42 -28:39 ··· 7.18 HD 154333 7.40 ··· B9.5V	17:05:06 -33:45 ··· 6.92 HD 154664 8.73 0.04 B2V 17:05:14 -29:54 ··· 8.24 HD 154754 9.30 ··· B7III/IV	17:05:32 -30:18 ··· 7.98 HD 154783 5.93 0.29 Am	17:00:44	17:07:13 -32:54 ··· 7.62 Blend 8.51 ··· B8/B9II/III,B8/B9I	17:08:24 -32:09 5.70 5.90 HD 155217 8.65 B1V	17:08:34 -29:35 ··· 8.73 HD 155311 9.70 ··· B8II/III	17:09:06 -33:30 ··· 5.10 HJJ 1552/3 8:90 ··· B31V 17:09:08 -34:17 ··· 6.62 HJJ 155320 8.35 0.09 B0.5V	17:09:13 -27:43 5.29 5.18 HD 155401 6.14 -0.04 B9Vn	17:09:14 -25:33 ··· 8.25 HD 155334 8.20 ··· A1V	17:09:39 -33:17 3.97 4.46 HD 155402 7.75 -0.04 B2II	17:09:44 -32:22 3.82 3.68 HD 155450 6.01 0.07 B1II	17:103:44 -33:33 ··· 3.43 HJ 1334U3 8.20 -0.03 B2V 17:10:19 23:16 2.02 4.30 HD 155506 7.75 0.06 D1V	17:10:28 -32:47 6.09 6.56 HD 155550 8.01 0.06 B6V	17:10:33 -32:11 ··· 5.53 HD 155600 7.93 0.15 B7V	17:10:50 -33:11 4.58 3.88 Blend $8.34 \cdots B2Vnn,B7Vn$	17:11:34 -33:11 ··· 3.66 Blend 8.08 ··· B7IV,B8V 17:17:07 -33:20 2.23 2.63 HD 155806 5.53 -0.01 O8Ve	17:12:20 -32:38 5.62 6.19 HD 155851 8.19 0.13 B0Vn	17:12:23 -31:57 6.69 6.92 Blend 7.93 ··· B6V,B2V	17:12:30 -33:41 2.50 3.03 HD 155889 6.54 O9V	17.12.38 -30.09 5.96 5.61 HD 155940 6.21 -0.03 B3V	17:12:41 -33:38 ··· 2.75 HD 155888 8.69 0.06 B3V	17:13:00 -26:04 ··· 7.94 HD 155983 9.40 ··· B8V	17:13:21 -32:17 5.16 5.69 HD 156004 7.82 B4III	17:13:45 -51:24 ··· 9.05 HJ 150118 9.06 0.13 B3111 17:13:53 -33:13 ··· 6.82 HD 156099 8.50 0.09 B81V	17:14:08 -35:30 ··· 7.89 Bochum 13 ^a 6.50 ··· ···	17:14:14 -27:42 ··· 7.92 HD 156212 7.91 0.54 B0Iab	17:14:19 -32:07 5.61 5.72 HD 156187 9.21 0.08 B3V	17:14:30 -31:56 6.72 HD 156254 9.25 0.10 B9V	1/:14:33 -20:33 0.09 0.02 HJ 100232 0.81 0.02 B9:3V 17:14:44 23:40 7.21 6.01 HD 166.960 0.44 0.04 D-011	17:14:45 -20:10 1.01 0.01 11D 100200 0:44 0.04 DZIII 17:14:45 -24:10 5.00 6.91 Pland 7.65 P2V P8V P9/P2111	17:15:08 -32:27 4.73 4.71 Blend 6.12 B5Vne.R2V.R.R	17:15:11 -32:18 4.36 4.62 Blend 6.81 ··· Seven B stars	17:15:46 -31:04 5.76 6.13 Blend 7.57 B4/B5V;,B9II:	17:15:54 -31:17 ··· 6.54 HD 156506 7.01 0.12 A2V

B811,B3111,B2/B3 B9111,A2 38IIIp,B2/B3II,? Spectral Type B8/B9V,A2IV B1/B2III A0,B8 B2II1 B7IV/V,B4IV B2II/II1 B8/B9I1 B3V A3V B0.5Iab,B9IV B2/B3Ib/II B8/B9Ib/II B5/B6V B1/B2II A1IV A0Ib/II B1.5III B8II B9IIIsp B91Ve B2/B3 B8 F0V B8V B8V B9V F0V B011 B611 A9V: B9V B3IV B9111 72Iae B2II A0V B5II 39V B6V 39V (V-B)... -0.21 0.42 0.17 0.14 ... 0.42 0.44 0.32 ... 0.18 -0.01 -0.09 -0.02 0.35 0.36 ... 0.21 : : : 0.54 ÷ ÷ : : ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ $\begin{array}{c} & \vdots \\ & \vdots \\$ 7.91 7.56 7.61 7.70 8.10 8.41 8.43 8.43 8.43 8.43 8.43 8.43 8.06 7.80 8.07 8.21 8.21 2 HD 160430 NGC 6405 ° HD 160575 HD 160592 HD 160592 HD 160644 HD 160578 HD 160839 NGC6416 367 Identification HD 161004 HD 160895 SAO 185668 HD 160812 HD 160841 HD 161038 HD 161085 HD 161086 Blend HD 161141 HD 161187 HD 161187 HD 161249 HD 161277 HD 320641: HD 161083 HD 161082 Blend HD 316204 HD 161434 HD 161390 Blend Blend HD 161471 HD 161561 HD 161575 HD 161575 HD 161610 HD 161649 HD 161649 HD 161628 HD 161665 HD 161665 Blend HD 160872 HD 161103 Blend Blend $\begin{array}{c} 7.8 \\ 8.21 \\ 8.25 \\ 8.2$ $m_{1375} m_{1781}$ 6.40 8.68 5.10 7.82 5.83 5.19 8.06 ... 7.24 6.52 ... 6.07 6.40 ... 6.67 5.04 6.67 ... 6.69 8.40 5.96 : : 4.58 : : : $\begin{array}{c} -23:50\\ -32:66\\ -32:66\\ -32:66\\ -32:65\\ -32:65\\ -32:15\\ -32:15\\ -32:15\\ -22:52\\ -21:43\\ -34:58\\ -34:52\\ -22:11\\ -22:11\\ -22:11\\ -22:12\\$ δ_{1950} -34:52 -22:40 -32:24 -38:06 -40:52 -22:12 -40:11 -35:13 -34:18 -34:18 -26:22 -40:58 -34:34 -34:34 -36:43 -35:52 -35:52 -32:39 -38:07 17:38:00 17:38:21 17:38:57 17:38:57 17:39:16 17:39:16 17:40:03 17:40:13 17:40:14 17:40:14 17:40:14 17:40:15 17:40:15 17:40:15 17:40:15 17:41:24 17: 17:41:33 17:41:42 17:41:42 17:41:42 17:42:03 17:42:03 17:42:03 17:42:03 17:42:03 17:42:03 17:42:15 17:42:15 17:43:10 17:43:10 17:43:42 17:43:42 17:43:43 17:43:43 17:43:42 17: 17:44:10 17:44:13 17:44:19 17:44:28 17:44:29 17:44:36 17:44:51 17:44:59 17:45:01 17:45:12 7:44:52 α_{1950} No. B9III/IV,A0IV/V Spectral Type Ap A0V,B2II/III A0V,B8ÌV/V 31.5IV+B B9V+B(9)B6/B7III B8V A2V,B9V B8IV O5/6(e) B6/B7III A0V,B9IV B7III B2III,B5 B1Ib:n A0V B311 B6V B911/111 B911/111 B511/111 B8/B9II B,B3V B7/B8II B3Vne B4III: BOIII B2III B3III B3IV B9Ib B9III B6III 35IV 35V 33II 34V.: 39V (V-B)0.36 0.17 0.17 0.19 0.17 0.15... 0.23 0.19 ... 0.26 0.07 -0.07 0.060.08 0.28 0.02 0.22÷ : : : : 0.21 : ÷ ÷ ÷ ÷ : ÷ ÷ ÷ ÷ ÷ : ÷ ÷ : : $\begin{array}{c} 8.85\\ 8.20\\ 6.06\\ 7.21\\ 7.21\\ 7.21\\ 7.21\\ 7.21\\ 7.60\\ 7.40\\ 7.60\\ 7.60\\ 7.60\\ 7.60\\ 9.10\\ 9.28\\ 8.14\\ 8.14\\ 8.14\\ 6.32\\ 9.28\\ 9.10\\ 9.11\\ 9.11\\ 9.28\\ 9.30\\ 9.11\\ 9.30\\$ 8.44 8.30 7.70 7.98 9.05 9.05 9.50 9.50 7.47 7.47 8.25 7.90 7.18 ... ÷ \geq HD 158618 HD 158643 HD 158644 HD 158644 HD 158651 HD 158756 HD 158775 HD 158926 HD 158926 HD 158926 HD 159991 Blend HD 1599133 HD 1599133 HD 159316 Blend HD 159318 HD 159318 HD 159316 Blend HD 159376 HD 159376 Blend HD 159376 HD 159376 HD 159376 HD 159377 HD 1593776 HD 1593777 Identification HD 159573 HD 159652 HD 159574 HD 159782 HD 159782 HD 159783 HD 159783 NGC 6405 ^c HD 160069 HD 160319 HD 160281 HD 160370 HD 159938 HD 160109 NGC 6405 Blend Blend Blend m_{1781} $\begin{array}{c} 4.54\\ 7.49\\ 6.65\\ 6.65\\ 8.68\\ 8.68\\ 8.68\\ 8.68\\ 6.39\\ 6.39\\ 6.39\\ 6.42\\ 6.42\\ 6.42\\ 8.42\\ 8.42\\ 8.42\\ 8.42\\ 8.42\\ 8.42\\ 8.13\\ 7.23\\$ 7.42 9.39 5.87 8.646.977.777.777.778.198.198.326.466.466.468.038.248.237.00... 12.09 6.70 6.48 9.36 8.12 9.156.97 6.02 6.93 7.89 3.64 : ÷ ÷ m_{1375} ... 6.41 4.64 6.36 -1.71 5.29 5.86 5.86 5.04 5.04 6.103.28··· 6.41 6.28 5.08 6.135.543.493.27 ... 6.57 6.23 ÷ 6.81 ÷ ÷ ÷ ÷ ÷ : : ÷ ÷ ÷ ÷ ÷ : -37:22 -39:38 -32:41 -28:58 -32:08 -32:08 -32:28 -26:14 -35:01 -35:01 -29:38 -33:02 -37:10 -37:10 -35:44 -32:09 -32:33 -34:53 -32:47 -31:49 -38:48 -21:59 -38:46 -35:42 -40:18 -28:26 -28:40 -30:13 -23:56 -32:52 -32:53 -33:01 -39:49 -29:56 -38:27 -33:08 32:12 δ_{1950} -33:32 32:17 -40:1524:55 28:54 32:44 -20:43 -27:52 30:21 $\begin{array}{c} 17:28:36\\ 17:28:39\\ 17:28:39\\ 17:29:21\\ 17:29:47\\ 17:29:47\\ 17:30:00\\ 17:30:47\\ 17:30:55\\ 17:31:06\\ 17:31:06 \end{array}$ 17:28:28 17:28:29 17:31:24 17:31:27 17:34:55 17:35:22 17:35:49 17:36:40 17:36:10 17:36:10 17:36:12 17:36:26 17:36:33 17:36:46 17:36:50 17:37:05 17:37:16 17:37:30 17:28:30 [7:37:10 7:37:12 α_{1950} No.

01
-H-
0
H .
•
4
0
H
14
·.
JS.
JJS.
ApJS.
SADJS.
6ApJS.
96ApJS.
.996ApJS.
1996ApJS.

1996ApJS..104..101S

No	. 0x1950	61950	m_{1375}	m_{1781}	Identification	V (I	V - B	Spectral Type	No.	α_{1950}	61950 1	n1375 m	1781 I	dentification	V (V - B	Spectral Type
36	1 18:00:40	-22:51	3.33	3.40	Blend	6.78	:	B1/B2II/III,B2II	406	18:04:11	-21:27	4.09	4.45	HD 165516	6.28	0.12	B1/2Ib
36	$\begin{bmatrix} 2 & 18:00:45 \\ 0 & 10 \end{bmatrix}$	-23:21	6.16	6.24	Blend	8.39	÷	B5V,B4III:	407	18:04:21	-25:07	:	8.05	HD 165517	8.44	0.48	B0Ia
36	3 18:00:44	-27:45	:	7.83	Blend	9.54		B8,A0IV:	408	18:04:26	-38:48	:	5.99	SAO 209738	8.30	÷	B8/B9III
00	4 10:00:44	61:07-			HD 164/41	9.00	0.29	B2Ib/II	409	18:04:31	-35:02	7.53	7.66	SAO 209746	8.60	:	B8/B9II
36 36	10:00:51 6 18:00:51	06:30 08:00	0.08	0.30 7 76	HD 164769	9.25	-0.07	B2III D8 /DATT DATT /TT	410	18:04:31	-25:35	6.94	6.49	HD 165555	8.80 - 2.1	: ;	B7II/III
26.26	18-00-50	35.06		01.1 8 0.9		9.14	:	B0/B9III,B8II/II	411	18:04:32	-38:34	4.54	5.22	HD 165470	7.34	-0.17	
00	10:00:01 I			20.0		01.0	:	D9.51 V Dett (11	412	18:04:34	-22:07	5.34	5.60	Blend	8.72	:	B3,B5III
36	0 10:00:05	20.47	7.00	2.19	NGC 0330	0.04 10.00	:	U8lab:,B2IV/V	413	18:04:43	-23:06	6.38	6.25	HD 165613	8.40	:	B9III
	9 TO:00101	14:20- 0	. 1	10.0	10401 UU	10.20		B9 Do /Dorr	414	18:04:48	-2.1:08	: ;	06.7	SAU 186327	10.6U	:	BSIII
10	10:10:01 1 10:10:21 0	-31:39	, 03 10	01.1	HD 164/98	20.2	0.12	B2/B3II	415	18:04:48	-22:54	5.99	6.14	Blend	8.07	÷	B2III,B5,?
- 10	11:10:21 1	-21:23	10.0		HD 164867	67.7	0.03	B911/111	416	18:04:57	-34:33	6.79	7.05	Blend	7.80	÷	B9II,B1Ib
10	11:10:21 2	16:22- 0	3.17	3.04	NGC 6531 *	6.90	÷	B,B1/B2III	417	18:04:59	-27:19	6.87	7.43	SAO 186331	8.80	:	B8/B9III
1.0	3 18:01:02	-30:53	:	8.75 10	HD 164868	9.66	÷	B3II/III	418	18:05:04	-36:21	6.98	7.35	SAO 209758	9.00	:	B8/B9V
31	18:01:25	-28:30	:	1.91	SAU 186234	10.40	:	B7/B8V	419	18:05:04	-25:22	5.38	÷	HD 165655	8.16	0.31	B1Ia/Iab
37	5 18:01:41	-38:17	:	9.14	HD 164937	10.70	÷	B9II/III	420	18:05:12	-22:17	4.34	4.69	Blend	8.51	:	B2IV,B5
37	6 18:01:45	-30:14	÷	8.19	SAO 209678	8.50	÷	B9111/IV	421	18:05:22	-23:26	6.17	6.69	HD 165705	9.59	0.16	B2III
37	7 18:01:47	-20:58	÷	8.21	HD 164991	0.00	:	B2/B3II	422	18:05:29	-21:16	4.37	4.95	HD 165763	7.78	-0.25	WC
37	8 18:01:51	-23:37	5.07	5.67	HD 164993	9.11	0.12	B2/B3II	423	18:05:35	-22:43	6.46	6.57	HD 165765	10.00	:	B2III
37	9 18:01:55	3 -24:40	4.01	3.89	HD 165016	7.33	-0.04	B2Ib	424	18:05:41	-31:11	6.74 (6.87	Blend	7.50	:	B9V.B6Ib/II.B9
89 10	0 18:01:57	7 -24:23	2.81	2.76	NGC 6530 °	4.60	0.14	:	425	18:05:45	-22:11	4.32	4.76	HD 165812	7.95	-0.01	B1/B2II
89 09	1 18:02:17	-36:35	5.41	5.95	HD 165063	7.46	-0.07	B8	426	18:05:48	-25:28	4.73	4.93	HD 165814	6.61	0.02	B4ÍV
38	2 18:02:15	3 -22:58	:	7.40	HD 313846	10.16	0.68	WN	427	18:05:59	-23:26	5.71 (6.28	Blend	9.00	:	?,B3II/III
38	3 18:02:25	5 -23:43	4.99	5.58	HD 165132	8.07	0.08	B5/B6Ib	428	18:06:01	-36:40	4.37	4.88	HD 165793	6.58	-0.03	Bill
38	4 18:02:37	7 -21:09	:	9.61	HD 165151	8.90	÷	B9III	429	18:06:02	-34:01	:	6.34	SAO 209777	9.20	:	B4III
38	5 18:02:41	-21:59	:	7.18	HD 165152	10.60	:	B8II	430	18:06:11	-22:47	6.61 (6.87	HD 165894	9.60	:	B3IV/V
38	6 18:02:50) -26:58	5.93	6.41	HD 165225	8.39	÷	B2II/III	431	18:06:14	-24:00	4.34	4.70	C 367 h	7.28	0.12	B6III:
38	7 18:02:50) -31:30	6.71	6.86	Blend	8.09	:	B8,B8	432	18:06:20	-24:40		7.69	Blend	8.82		B9110.B51V
38	8 18:02:52	29:26	5.20	5.54	HD 165207	8.26	-0.12	B2IV	433	18:06:23	-38:34	:	8.02	SAO 209793	8.30	:	AIV
38	9 18:02:58	3 -24:12	4.38	4.56	HD 165246	7.72	0.09	:11160	434	18:06:23	-21:31	:	6.82	Blend	8.51	:	B5Ib,B9Ib
39	0 18:02:55	3 -22:11	6.02	6.51	Blend	8.12	÷	B4V,B3V	435	18:06:23	-26:19	~	8.66	SAO 186372	9.60	:	B6V
30	1 18:03:00) -34:20	6.08	6.34	SAO 209711	7.90	÷	B5III/IV	436	18:06:36	-35:32	:	7.08	Blend	7.89	:	B8,A1/A2V,B8
39	18:03:05	3 -34:29	6.10	6.29	Blend	8.17	÷	B8II,B4V	437	18:06:37	-34:52	6.53	7.51	HD 165955	9.18	-0.02	B3Vn
39	3 18:03:06	-39:01	:	7.54	SAO 209709	9.20	÷	B5III/IV	438	18:06:39	-32:34	7.56	7.99	SAO 209791	9.10	:	B9III
36	14 18:03:11	-22:28	6.42	6.83	Blend	8.8P	:	B2III,B8	439	18:06:45	-22:04	:	6.38	HD 166054	10.10	÷	B3
39	15 18:03:22	21:42	:	6.53	HD 313792	9.93	0.08	B5	440	18:06:46	-24:05		4.84	Blend	9.39	:	B4Ib,B
39	18:03:25	3 -22:43	:	8.26	Blend	8.0P	÷	Six A and B stars	441	18:06:49	-32:10	:	8.76	HD 166003	7.70	:	AIV
39	7 18:03:26	3 -32:23	÷	7.83	SAO 209720	8.80	÷	B7II	442	18:06:55	-23:44	3.87	4.45	Blend	7.71	:	B9II:.B1V.B0.5V.B1V
39	18:03:36 J	5 -28:22	5.94	6.19	HD 165365	8.00	:	B7/B8III	443	18:07:06	-23:49		4.40	HD 166107	7.95	0.08	B2V
39	18:03:41	1 -36:36	:	6.84	CPD-36 7998	8.20	:	A0V	444	18:07:19	-24:26	:	8.18	HD 315259	10.21	0.16	B9
40	0 18:03:45	3 -29:04	6.56	6.47	Blend	7.24	:	B9III,A0II/III	445	18:07:19	-21:37	:	7.55	HD 313936	10.0P	:	A
40	1 18:03:54	1 -37:31	:	8.13	SAO 209728	9.30	÷	B8II/III	446	18:07:20	-32.50	8.39	7.81	HD 166113	10.80	:	B5Ib/II
40	12 18:03:52	3 -26:07	6.24	6.75	Blend	9.14	÷	B4II,B2III	447	18:07:22	-22:24		7 83	Blend	8.8P	:	BSII B3 B3
40	13 18:03:52	20:28	:	7.39	Blend	8.60	÷	B3II,B8Ib	448	18:07:25	-25:20	:	8.73	HD 166193	10.40	:	B9III
40	14 18:04:00) -22:34	:	7.90	Blend	8.6P	÷	B8,B8,A0	449	18:07:26	-29:54	:	7.54	SAO 186397	00.6	:	B&V
40	15 18:04:0) -30:40	6.92	7.39	SAO 209733	8.80	:	B5II/III B5II/III	450	18:07:27	-23:55	4.43	-	HD 166192	8.52	0.20	B2II

Spectral Type		B8III/IV B9IV/V,B9V	B7II	B0.5III	B911/111 D711/111		B5	B7/B8III	B9IV	B0.5Ia/I	Ap	BŷV	A0IV	B3III	B8/B9Ib/II,B9.5V,B9.5II	B9Ib	A2IV	B5II/III,B4II/II	B9II/III,B7II	B9II,A0V	B7II	O9.5/B0Ib/II	B8II,B9V	FU Delli /11/		B311/111	B8IV/V	B5III	B7/B8II	A7V:	B3/B4IV/V	B9/B9.5V	A0IV,B5III	B6III	B8II	B5IV/Vne	B8V	B8Ib/II	B8/B91b/11,B5	B8II	B911/111	B7III B8/B9IV,A0IV/V
(V-B)		-0.02	:	-0.12	:	0.18		:	:	0.07	:	:	:	-0.10	:	:	÷	÷	÷	÷	0.04	:	:		0.0		:	:	0.38	0.19	-0.11	÷	:	÷	-0.08	-0.04	0.05	÷	÷	÷	÷	: :
		7.95 9.93	9.60	8.48	9.90	0.00 8.28	9.50	9.70	6.80	5.38	9.00	6.80	7.30	7.01	8.75	10.80	8.90	8.31	9.11	8.64	7.65	8.96	10.07	9.20	0.00	9.10	9.40	8.30	7.33	6.18	6.16	9.10	7.74	9.50	7.02	8.60	7.67	9.00	8.59	9.10	9.80	9.80 9.27
Identification		HD 167016 Blend	SAO 186514	HD 167003	CT1701 UH	HD 167203	HD 167200	HD 167074	HD 167147	HD 167264	HD 167288	HD 167230	SAO 209923	HD 167233	Blend	HD 167414	HD 167344	Blend	Blend	Blend	HD 167363	HD 167402	Blend	HD 3141/8 HD 16741	CAD 900048	SAO 186576	SAO 209954	SAO 209952	HD 167599	HD 167666	HD 167647	HD 167750	Blend	SAO 209964	HD 167686	HD 167775	HD 167795	SAO 209970	Blend	SAO 186615	HD 167865	SAO 186616 Blend
m_{1781}		6.45 9.55	7.15	5.42	0.0 10.0	0.00 8.13	6.68	7.73	6.20	:	8.65	5.67	7.77	4.93	7.05	7.42	8.54	7.00	7.42	7.90	6.42	6.62	7.58	9.00 6.00	0.33	6.31	8.36	6.91	6.26	7.97	3.99	7.01	6.73	7.49	6.19	7.23	6.33	7.18	8.12	1.91	7.75	9.52 10.91
m_{1375}		6.39	6.96	5.00	•	: :	6.06	÷	5.87	2.02	÷	5.47	:	4.42	6.93	÷	÷	6.72	:	÷	6.19	6.73	÷		0.94	5.94	:	6.79	6.21	÷	3.50	÷	6.52	7.57	6.09	6.79	6.34	6.71	÷	:	÷	: :
δ1950		-28:51 -29:33	-28:24	-33:09	10:17-	-24:00	-22:28	-38:11	-34:36	-20:45	-23:07	-33:07	-35:39	-36:35	-28:06	-22:31	-38:18	-29:09	-25:34	-38:55	-31:11	-30:08	-25:50	20.05	28.00	-29:52	-35:34	-32:58	-31:19	-28:41	-34:07	-23:33	-27:54	-30:12	-33:25	-29:16	-23:18	-36:22	-25:10	-29:44	-23:38	-27:27 -22:02
α1950		18:11:24 18:11:25	18:11:25	18:11:29	10:11:01	18:11:58	18:12:02	18:12:04	18:12:06	18:12:11	18:12:20	18:12:25	18:12:26	18:12:31	18:12:31	18:12:48	18:12:48	18:12:53	18:12:54	18:12:55	18:12:56	18:13:05	18:13:09	10:13:10	18-13-20	18:13:35	18:13:57	18:13:58	18:14:00	18:14:07	18:14:19	18:14:25	18:14:27	18:14:31	18:14:31	18:14:43	18:14:45	18:14:46	18:14:49	18:14:50	18:14:52	18:14:53 18:15:09
j		496 497	498	499 500	200	502	503	504	505	506	507	508	509	510	511	512	513	514	515	516	517	518	019	070 891	170	523	524	525	526	527	528	529	530	531	532	533	534	535	536	537	538	539
	+			_		-																											_									
Spectral Type N	1117	B1V B3		B7II/III B3/B/III	BgIII	B3Vne	A0IV/V,B7II/III	A0V	B0.5Iab:ne	B5II/III,B5II/III	B8II,B8II/III	B6III	B9.5V	B9II	B9IVspe	B1Ib	B9V	B4III	A0V	B5IV	B5111,B8/B9V+B/A	A0V	AUV +, B9	B9V	B2III	B7V	B8/B9V,B9	B9,B8II	B6III	B9IV/V	B01a/ab	B'III	B8/B9III	B9		B9V,B9III	III68/88	B8III	B2III:	A0V	D211	B3III B3III
(V - B) Spectral Type N		-0.14 BIV B3		0.00 B3/B/III	B9111	-0.03 B3Vne	··· A0IV/V,B7II/III	A0V	0.21 B0.5Iab:ne	B5II/III,B5II/III	··· B8II,B8II/III	-0.05 B6III	··· B9.5V	··· B9II	-0.01 B9IVspe	0.08 B1Ib	B9V	··· B4III	··· A0V		··· B5111,B8/B9V+B/A	··· A0V	0.36 A9/A91/A0/E0	B9V	··· B2III	B7V	··· B8/B9V,B9	··· B9,B8II	-0.02 B6III	··· B9IV/V	0.26 B0la/ab	··· B7II	··· B8/B9111	··· B9		··· B9V,B9III	III68/B9III	-0.05 B8111	0.22 B2III:	A0V	0.00 D1711	-0.02 B811/111 -0.02 -0.
V (V - B) Spectral Type N	2110 PLD 318	0.10 -0.14 BIV 10.4P ··· B3		10.10 ··· B7II/III 8.30 0.00 B3/B/III	6.90 ··· B9III	8.72 -0.03 B3Vne	7.98 ··· A0IV/V,B7II/III	8.50 A0V	8.72 0.21 B0.51ab:ne	8.59 ··· B5II/III,B5II/III	9.44 ··· B8II,B8II/III	8.23 -0.05 B6III	8.40 · · · B9.5V	9.60 ··· B9II	6.51 -0.01 B9IVspe	7.22 0.08 B1Ib	7.90 ··· B9V	7.30 ··· B4III	8.80 ··· A0V	10.90 B5IV	0.82 ··· B5111,B8/B9V+B/A	8.20 ··· A0V	7 30 0 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.70 B9V	9.00 ··· B2III	9.30 B7V	8.7P B8/B9V,B9	8.34 · · · B9,B8II	8.06 -0.02 B6III	9.20 B9IV/V	8.53 0.26 B01a/ab	5.90 ··· B/II	7.20 B8/B9III	9.70 ··· B9	7.60 ··· A0111/IV	9.70 ··· B9V,B9III	7.80 B8/B9III	8.40 -0.05 B8III	3.85 0.22 B2III:		0.39 U.06 B2II	9.40 B3III B311/111 0.40
Identification V $(V - B)$ Spectral Type N		HD 313961 10.4P B3		HD 166294 10.10 B7II/III HD 166293 8 30 0.09 B3/B4III	HD 166326 6.90 R9III	HD 166345 8.72 -0.03 B3Vne	Blend 7.98 ··· A0IV/V,B7II/III	SAO 209840 8.50 ··· A0V	HD 166443 8.72 0.21 B0.5Iab:ne	Blend 8.59 B511/111,B511/111	Blend 9.44 ··· B8II,B8II/III	HD 166425 8.23 -0.05 B6III	SAO 209838 8.40 B9.5V	HD 166503 9.60 ··· B9II	HD 166469 6.51 -0.01 B9IVspe	HD 166546 7.22 0.08 B1Ib	SAU 186445 7.90 B9V	HD 166450 7.30 B4III	SAU 186449 8.80 ··· A0V	HD 166530 10.90 B5IV	Blend bis 0.82 cdots B5111, B8/B9V+B/A bis 3000000000000000000000000000000000000	SAU 209851 8.20 ··· A0V	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SAO 209856 8.70 B9V	HD 166693 9.00 ··· B2III	SAO 209862 9.30 B7V	Blend 8.7P B8/B9V,B9	Blend 8.34 B9,B8II	HD 166789 8.06 -0.02 B6III	SAO 209871 9.20 B9IV/V	HD 166852 8.53 0.26 B01a/ab	HD 100(90 0.90 B71	HD 166810 7.20 B8/B9III	SAU 2098/6 9.70 B9	HD 100807 7.60 ··· A0111/IV	blend 9.70 ··· B9V,B9III	SAU 209885 7.80 B8/B9III	HU 166832 8.40 -0.05 B8III	HD 166937 3.85 0.22 B2III:	SAO 209886 7.70 ··· A0V		HD 167014 9.40 B31II
m_{1781} Identification V $(V-B)$ Spectral Type N		7.37 HD 313961 10.4P B3	7.06	10.12 HD 166294 10.10 ··· B7II/II 6 50 HD 166293 8 30 0 00 B3/B4III	6.88 HD 166326 6.90 ··· BollT	7.39 HD 166345 8.72 -0.03 B3Vne	6.92 Blend 7.98 ··· A0IV/V,B7II/III	8.49 SAO 209840 8.50 A0V	6.12 HD 166443 8.72 0.21 B0.5Iab:ne	7.76 Blend 8.59 B511/111,B511/111	6.95 Blend 9.44 \cdots B8II,B8II/III	7.01 HD 166425 8.23 -0.05 B6III	8.57 SAO 209838 8.40 B9.5V	7.14 HD 166503 9.60 ··· B9II	5.98 HD 166469 6.51 -0.01 B9IVspe	HD 166546 7.22 0.08 B1Ib	7.23 SAO 186445 7.90 ··· B9V	5.35 HD 166450 7.30 ··· B4III	9.02 SAO 186449 8.80 ··· A0V	8.50 HD 166530 10.90 ··· B5IV	0.26 Blend 0.82 B5111, B8/B9V+B/A	8.39 SAU 209851 8.20 ··· A0V	6.41 HD 166619 7.30 0.36 $A_0V + D^3$	7.73 SAO 209856 8.70 B9V	··· HD 166693 9.00 ··· B2III	7.07 SAO 209862 9.30 B7V	7.94 Blend 8.7P ··· B8/B9V,B9	9.37 Blend 8.34 · · · B9,B8II	6.35 HD 166789 8.06 -0.02 B6III	9.03 SAO 209871 9.20 B9IV/V	7.27 HD 166852 8.53 0.26 B01a/ab	0.00 HD 100/90 0.90 B/II	0.40 HJJ 160810 7.20 ··· B8/B9III	1.35 SAU 2098/6 9.70 B9	1.11 HD 100807 7.50 ··· A0111/1V	8.82 Blend 9.70 ··· B9V,B9III	0.83 SAU 209885 7.80 ··· B8/B9III	0.03 HU 166832 8.40 -0.05 B8III	3.24 HD 166937 3.85 0.22 B2III:	7.43 SAO 209886 7.70 A0V		0.12 HD 100908 (.10 -0.02 B811/11 9.08 HD 167014 9.40 ··· B3111
m1375 m1781 Identification V $(V - B)$ Spectral Type N	100 246 HD 166107 818 210	2.31 9.40 HID 10019/ 0.10 -0.14 BIV ··· 7.37 HID 313961 10.4P ··· B3	7.06	•••• 10.12 HD 166294 10.10 •••• B711/III 6.26 6.50 HD 166293 8.30 0.00 B3/BATT	6.72 6.88 HD 166326 6.90 B9111	7.12 7.39 HD 166345 8.72 -0.03 B3Vne	6.86 6.92 Blend 7.98 ··· A0IV/V,B7II/III	··· 8.49 SAO 209840 8.50 ··· A0V	6.10 6.12 HD 166443 8.72 0.21 B0.51ab:ne	\cdots 7.76 Blend 8.59 \cdots B5II/III,B5II/III	··· 6.95 Blend 9.44 ··· B8II,B8II/III	6.92 7.01 HD 166425 8.23 -0.05 B6III	··· 8.57 SAO 209838 8.40 ··· B9.5V	···· 7.14 HD 166503 9.60 ··· B9II	6.27 5.98 HD 166469 6.51 -0.01 B9IVspe	4.08 ··· HD 166546 7.22 0.08 B1Ib	7.28 7.23 SAO 186445 7.90 B9V	5.11 5.35 HD 166450 7.30 ··· B4III	··· 9.02 SAU 186449 8.80 ··· A0V	8.90 HJ 166530 10.90 B5IV	\cdots 0.28 blend 0.82 \cdots b5111, b8/b9V+b/A	··· 8.39 SAO 209851 8.20 ··· A0V	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	··· 7.73 SAO 209856 8.70 ··· B9V	5.46 ··· HD 166693 9.00 ··· B2III	··· 7.07 SAO 209862 9.30 ··· B7V	··· 7.94 Blend 8.7P ··· B8/B9V,B9	··· 9.37 Blend 8.34 ··· B9,B8II	6.14 6.35 HD 166789 8.06 -0.02 B6III	··· 9.03 SAO 209871 9.20 ··· B9IV/V	0.94 7.27 HD 100852 8.53 0.26 B01a/ab	0.33 0.38 HJ 100/90 0.90 B/II	··· 0.46 HJJ 166810 7.20 ··· B8/B911	···· 1.33 SAU 2098/6 9.70 ··· B9	//////////////////////////////////	··· 8.82 Blend 9.70 ··· B9V,B9III	0.09 0.80 SAU 209885 7.80 B8/B9III	0.63 HD 166832 8.40 -0.05 B8III	3.54 3.24 HD 166937 3.85 0.22 B2III:	7.43 SAO 209886 7.70 A0V	0.33 0.00 FLU 10030/ 0.39 0.06 B211 5 80 5 10 11D 155050 7 15 0.00 D511/111	0.02 0.12 HD 167014 0.40 B3111 10 -0.02 D311/111 0.03 HD 167014 0.40
δ_{1950} m1375 m1781 Identification V $(V-B)$ Spectral Type N	-23:48 2.01 2.45 HD 166107 6.16 0.11	-22:13 7.37 HD 313961 10.4P B3	-23:27 7.06	-22:55 ··· 10.12 HD 166294 10.10 ··· B711/111 -21:19 6.26 6.50 HD 166993 8.30 0.09 B3/B4111	-35:02 6.72 6.88 HD 166326 6.90 Bolli	-32:25 7.12 7.39 HD 166345 8.72 -0.03 B3Vne	-29:52 6.86 6.92 Blend 7.98 ··· A0IV/V,B7II/III	-37:02 ··· 8.49 SAO 209840 8.50 ··· A0V	-20:44 6.10 6.12 HD 166443 8.72 0.21 B0.51ab:ne	$-26:01 \cdots 7.76$ Blend $8.59 \cdots$ B5II/III, B5II/III	-23:59 ··· 6.95 Blend 9.44 ··· B8II,B8II/III	-32:40 6.92 7.01 HD 166425 8.23 -0.05 B6III	-34:36 ··· 8.57 SAO 209838 8.40 ··· B9.5V	-23:52 ··· 7.14 HD 166503 9.60 ··· B9II	-28:54 6.27 5.98 HD 166469 6.51 -0.01 B9IVspe	$-20.26 + 4.08 \cdots$ HD 166546 7.22 0.08 B1Ib	-29:35 7.28 7.23 SAU 186445 7.90 B9V	-34:05 5.11 5.35 HD 166450 7.30 ··· B4III	-26:23 ··· 9.02 SAO 186449 8.80 ··· A0V	-2/1:20 ··· 8.30 HJ 166330 10.90 ··· B5IV	-39:20 ··· 3.28 Blend 0.82 ··· B5111,B8/B9V+B/A	-36:28 ··· 8.39 SAO 209851 8.20 ··· A0V	-21.01 $AUV + DS-28.15$ 6 16 6 41 HD 166619 7 30 0.36 A9/A3V7 A0/ED	-35:13 ··· 7.73 SAO 209856 8.70 ··· B9V	-20:59 5.46 ··· HD 166693 9.00 ··· B2III	-32:22 ··· 7.07 SAO 209862 9.30 ··· B7V	-22:28 ··· 7.94 Blend 8.7P ··· B8/B9V,B9	-29:23 ··· 9.37 Blend 8.34 ··· B9,B8II	-27:13 6.14 6.35 HD 166789 8.06 -0.02 B6III	-34:54 ···· 9.03 SAO 209871 9.20 ··· B9IV/V	-22:43 0.94 7.27 HD 166852 8.53 0.26 B01a/ab	-31:39 3.33 3.38 HJ 100(90 0.90 B/1]	-38:24 ··· 6.46 HJJ 166810 7.20 ··· B8/B9111	-31:38 ··· 1.33 SAU 2098/6 9.70 ··· B9		-23:39 ···· 8.82 Blend 9.70 ··· B9V,B9III	-34:18 0.09 0.85 SAU 209885 7.80 B8/B9III	-30:33 ···· 6.63 HD 166832 8.40 -0.05 B8III	-21:04 3.54 3.24 HD 166937 3.85 0.22 B2III:	-37:36 7.43 SAO 209886 7.70 A0V	-20:19 0.00 0.00 LL 100301 0.09 U.U D.21 11. 0.00 0.00 0.00 -20.0	-2.1.31 3.02 0.1.2 HJ 100996 1.10 -0.02 B811/III -23:41 9.08 HD 167014 9.40 B3111
α_{1950} δ_{1950} m_{1375} m_{1781} Identification V $(V-B)$ Spectral Type N	18-07-30 -23-48 2-01 2-45 HD J66107 6-16 -11	18:07:39 -22:13 7.37 HD 313961 10:4P B3	18:07:43 -23:27 ··· 7.06 ··· ··	18:07:47 -22:55 ··· 10.12 HD 166294 10.10 ··· B7II/II 18:07:47 -21:19 6.26 6.50 HD 166393 8.30 0.00 P3/PATT	18:08:16 -35:02 6.72 6.88 HD 166326 6.90 B9III	18:08:24 -32:25 7.12 7.39 HD 166345 8.72 -0.03 B3Vne	18:08:29 -29:52 6.86 6.92 Blend 7.98 ··· A0IV/V,B7II/III	18:08:29 -37:02 ··· 8.49 SAO 209840 8.50 ··· A0V	18:08:30 -20:44 6.10 6.12 HD 166443 8.72 0.21 B0.51ab:ne	18:08:36 -26:01 ··· 7.76 Blend 8.59 ··· B5II/III,B5II/III	18:08:38 -23:59 ··· 6:95 Blend 9:44 ··· B8II,B8II/III	18:08:39 -32:40 6.92 7.01 HD 166425 8.23 -0.05 B6III	18:08:41 -34:36 ··· 8:57 SAO 209838 8.40 ··· B9.5V	18:08:45 -23:52 ··· 7.14 HD 166503 9.60 ··· B9II	18:08:49 -28:54 6.27 5.98 HD 166469 6.51 -0.01 B9IVspe	18:08:50 -20:26 4.08 ··· HD 166546 7.22 0.08 BIIb	18:08:00 - 29:39 / 28 / 28 / 28 2A 186445 7.90 · · · B9V	18:08:51 -34:05 5.11 5.35 HD 166450 7.30 B4III	18:08:52 - 26:23 · · · · 9.02 SAU 186449 8.80 · · · A0V	18.00.02 20.30 8.30 HJ 166530 10.90 B5IV	10.03.03 - 239.20 ··· 3.28 Blend 0.52 ··· B5111, B8/B9V+B/A	18:09:10 -36:28 ··· 8.39 5AO 209851 8.20 ··· A0V	12.00.01 2.1.01 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	18:09:30 -35:13 ··· 7.73 SAO 209856 8.70 ··· B9V	18:09:40 -20:59 5.46 ··· HD 166693 9.00 ··· B2III	18:09:48 -32:22 ··· 7.07 SAO 209862 9.30 ··· B7V	18:09:52 -22:28 ··· 7.94 Blend 8.7P ··· B8/B9V,B9	18:10:07 -29:23 ··· 9.37 Blend 8.34 ··· B9,B8II	18:10:10 -27:13 6.14 6.35 HD 166789 8.06 -0.02 B6III	18:10:19 -34:54 ··· 9.03 SAO 209871 9.20 ··· B9IV/V	18:10:23 -22:43 0.94 1.27 HD 166852 8.53 0.26 B01a/ab		18:10:26 -38:24 ··· 0.46 HD 166810 7.20 ··· B8/B9111	16:10:30 - 27:38 - · · · 7:33 - 2AU 2098 (b - 9.70 - · · · · · · · · · · · · · · · · · ·		18:10:39 -23:39 ··· 8.82 Blend 9.70 ··· B9V,B9III	18:1U:41 -34:18 0.69 6.85 SAO 209885 7.80 B8/B9III	18:10:40 - 36:53 · · · 6:63 HD 166832 8:40 -0.05 B8III	18:10:49 - 21:04 3:54 3:24 HD 166937 3:85 0.22 B2III:	18:10:56 -37:36 ··· 7.43 SAO 209886 7.70 ··· A0V		16:11:03 -27:31 3:32 0:12 HJ 100996 1.10 -0:02 B81/111 18:11:08 -23:41 9.08 HD 167014 9.40 B3111

 $\ensuremath{^\circ}$ C American Astronomical Society $\ensuremath{\,\bullet\,}$ Provided by the NASA Astrophysics Data System

1996ApJS..104..101S

Spectral Type		A3V,B8/B9II A1V	A0V	B4III	 Dol/	B911/1V B9111/1V	B6III	A1V,B8V,B9V	A0V	B5IV	B5III	B8V	A0,A2III	B5II,B3III	B8III/IV	B9V	B9.5111	B8/B9III	P8/P9V	A3/A4V.B9IV/V	B8IV	B9.5IV	B8/B9II		B8/B9III	B8II	B8III:	A 3117	R9IV/V	AOV	A2III	A0V	B2/B3III	B2Vnne	B2III	B8V	A3III,B8/B9III	B8V,B9IV	A3III,B9IV/V	B9V	A1IV/V	B8II
V-B		: :	:	:	:	0.22		÷	:	-0.08	0.04	÷	÷	:	÷	÷	:	-0.04	: :		:	÷	:	÷	0.02	÷	: ;	0.15		:	:	:	:	0.07	:	:	:	:	:	:	÷	÷
	1	8 00 8	8.40	9.00	0.30	8.50	8.40	8.23	8.00	6.30	7.37	8.80	8.30	7.89	10.20	8.60	10.30	7.12	8.40	6.22	7.90	8.00	9.10	:	8.74	7.77	10.40	8.86 6.50	0. 0 8 90	9.20	11.00	8.40	9.80	6.59	10.30	6.90	6.45	7.57	6.81	8.70	7.50	10.30
Identification	114	SAO 210101	SAO 210102	SAO 186780	CAO 910191	HD 169292	SAO 210120	Blend	SAO 210122	HD 169398	HD 169425	SAO 186803	Blend	Blend	HD 169697	SAO 186825	HD 169731	HD 169679	TVINIZ OVS	Blend	HD 169832	HD 169937	SAO 186846	÷	HD 169873	HD 169872	HD 170018	TV171111	SAO 210218	SAO 210221	HD 170100	SAO 210224	SAO 186878	HD 170235	HD 170182	HD 170213	Blend	Blend	Blend	SAO 186890	HD 170415	HD 170460
m_{1781}	00 1	8.40 8.40	8.05	7.89	9.12 8.14	8.73	7.54	8.58	7.83	4.48	6.10	7.72	9.07	6.13	7.71	8.25	9.55	5.92	7.30	6.38	5.94	9.03	8.58	7.03	16.7	6.94	10.05	8.75 6.60	0.00	11.91	8.95	8.77	6.95	4.77	7.79	6.04	6.08	6.33	6.86	9.47	8.35	8.88
m1375		: :	:	7.70	: :	:	7.42	:	:	4.20	5.78	:	:	:	:	÷	: }	5.67	: :		:	:	:	:	:	6.62	:	: :	: :	:	:	:	÷	4.30	7.06	5.78	÷	5.91	÷	÷	÷	÷
δ1950	11.70	-37:14 -30:44	-33:20	-26:31	-36:03 -36:46	-24:26	-30:58	-33:10	-37:10	-33:58	-31:48	-27:22	-35:25	-23:26	-26:35	-29:34	-24:50	-36:03	-30:54	-26:47	-36:01	-24:36	-26:14	-25:21	-33:25	-32:31	-27:42	-27:20	-20:36	-35:51	-31:32	-32:51	-26:43	-25:17	-32:17	-33:59	-25:34	-33:33	-33:10	-26:59	-28:52	-31:26
α1950	10.00.50	18:21:05	18:21:10	18:21:29	18:21:33	18:21:49	18:21:59	18:22:02	18:22:11	18:22:36	18:22:37	18:22:38	18:23:15	18:23:20	18:23:39	18:23:41	18:23:53	18:24:06	18:24:07	18:24:41	18:24:41	18:24:43	18:24:44	18:24:45	18:24:45	18:24:50	18:25:01	18:25:31	18:25:46	18:25:48	18:26:01	18:26:05	18:26:07	18:26:15	18:26:17	18:26:18	18:26:18	18:26:37	18:26:50	18:27:02	18:27:05	18:27:20
No.	и и и	587	588	589	590	592	593	594	595	596	597	598	599	600	601	602	603	604	609 909	607	608	609	610	611	612	613	614	010 616	010	618	619	620	621	622	623	624	625	626	627	628	629	630
	ļ												1	Ξ																												
Spectral Type	B7/B8III	B7/B8II.B8/B9III	B7II	B7/B8IV	A1/A21V,AU BRIV	B8/B9II	AIV	B8/B9III	B5II/III	B2/B3III	B5Ib,B8,B8Ib	B8V	B9.5V	B8111/1V,B9111,B811/1	B6/B7III	BollI Don'i Do	B91V,B9	BUV	B8/B9II	A2IV/V	B8/B9V	:	B8II	B7III,B9V	A6V Deu	B61D		A3III (1180, 710 A3	B8II	AIV	A4IV	B9.5II	B8IV	B1Ib	A0,B9III	B7Ib/II	B2IIIp	B9.5V	09.511	B7/B8III	B2 D0 mm	1110.64
V - B) Spectral Type	-0.07 B7/B8III	··· B7/B8II.B8/B9III	··· B7II	··· B7/B8IV	AI/AZIV,AU 0.08 BRIV	B8/B9II	··· AIV	III68/B9	··· B5II/III	··· B2/B3III	··· B5Ib,B8,B8Ib	··· B8V	··· B9.5V	··· B8111/1V,B9111,B811/1	0.15 B6/B7III		··· B91V,B9			··· A2IV/V	B8/B9V		··· B8II	··· B7III,B9V	A6V			0.26 A3III	··· B8II	··· A1V	··· A4IV	0.16 B9.5II	··· B8IV	0.08 B1Ib	··· A0,B9III	-0.14 B7Ib/II	0.05 B2IIIp	B9.5V	0.04 09.511	··· B7/B8III		1110.8d 20.0
V $(V - B)$ Spectral Type	6 92 -0 07 B2/B8III	9.65 ··· B7/B8II.B8/B9III	9.50 ··· B7II	$10.30 \cdots B7/B8IV$	6.00 ··· A1/A21V,AU 8.89 0.08 B8IV	10.90 · · · · B8/B9II	8.90 ··· AIV	8.60 · · · B8/B9III	9.90 ··· B5II/III	$8.60 \cdots B2/B3III$	8.8P B51b,B8,B81b	7.80 ··· B8V	9.30 ··· B9.5V	7.43 B8111/1V,B9111,B811/1	9.27 0.15 B6/B7III		9./0 ··· B91V,B9		1110.50 ··· B8/B9II	7.00 A2IV/V	9.30 · · · B8/B9V		9.50 · · · B8II	$8.17 \cdots B7III, B9V$	6.70 ··· A6V			6.16 0.26 A3III	9.40 ··· B8II	9.30 ··· A1V	8.80 · · · A4IV	8.80 0.16 B9.5II	7.90 ··· B8IV	8.27 0.08 B1Ib	8.13 ··· A0,B9III	5.34 -0.14 B7Ib/II	8.49 0.05 B2IIIp	7.90 B9.5V	9.34 0.04 09.5II	9.60 B7/B8III		1100 U.UZ D9.011
Identification V $(V - B)$ Spectral Type	HD 167846 6 92 -0.07 B7/B8III	Blend 9.65 ··· B7/B8II.B8/B9III	HD 168002 9.50 ··· B7II	HD 167982 10.30 ··· B7/B8IV	Dieud 0.00 ··· A1/A21V,AU HD 168056 8.89 0.08 BAIV	HD 168140 10.90 ··· B8/B9II	SAO 209993 8.90 ··· AIV	SAO 186642 8.60 ··· B8/B9III	SAO 186652 9.90 ··· B5II/III	$SAO 209996 8.60 \cdots B2/B3III$	$Blend 8.8P \cdots B5lb, B8, B8lb C C A C 310000 7 00 0000$	SAO 210002 7.80 ··· B8V	2AU 180003 9.30 ··· B9.5V	Diend 7.43 B8111/1V, B9111, B811/1	HD 168331 9.27 0.15 B6/B7III			HD 168424 10.00 ··· B9IV HD 168434 10.40 D0 ETTT	HD 168435 9.70 B8/B9II	HD 168400 7.00 $- A2IV/V$	SAO 186684 9.30 B8/B9V		SAO 210031 9.50 ··· B8II	Blend 8.17 ··· B7III,B9V	HD 168525 6.70 A6V	HD 168402 6 00 ··· B01D	111/ 100433 0.30 ··· D0V Bland 6.06 ··· A511/ D011/111	HD 168646 6.16 0.26 A311	HD 168680 9.40 ··· B8II	SAO 210052 9.30 ··· A1V	SAO 186723 8.80 ··· A4IV	HD 168709 8.80 0.16 B9.5II	HLD 168708 7.90 ··· B8IV	HD 168750 8.27 0.08 B1Ib	Blend 8.13 · · · A0,B9III	HLD 168733 5.34 -0.14 B7Ib/II	HD 168785 8.49 0.05 B2IIIp	HD 168942 7.90 B9.5V	HD 168941 9.34 0.04 09.511	HD 168989 9.60 ··· B7/B8III	HD 313043 10.01 0.07 B2 HD 120009 1 80 0 00 HD 120009	1110.69 70.0 0.1 770.00 TU
m_{1781} Identification V $(V-B)$ Spectral Type	5.79 HD 167846 6.92 -0.07 B77B8111	8.35 Blend 9.65 ··· B7/B8II.B8/B9III	7.73 HD 168002 9.50 ··· B711	8.48 HD 167982 10.30 ··· B7/B8IV	0.00 Diction 0.00 AI/AZIV,AU 8.06 HD 168056 8.89 0.08 BAIV	9.06 HD 168140 10.90 ··· B8/B9II	8.55 SAO 209993 8.90 ··· AIV	7.71 SAO 186642 8.60 ··· B8/B9III	7.77 SAO 186652 9.90 ··· B5II/III	6.85 SAO 209996 8.60 ··· B2/B3III	8.20 Blend 8.87 ··· B51b,B8,B81b	0.80 SAU 210002 7.80 ··· B8V	9.30 3AU 180003 9.30 ··· B9.5V	0.45 Blend 7.43 B8111/1V,B9111,B811/1	5.4/ HD 108331 9.2/ 0.15 B6/B7111	0.04 IIL 106230 0.80 ··· B3III		0.00 HJ 106422 10.00 ··· 1591V 8.73 HD 168434 10.40 ··· 15065111	7.65 HD 168435 9.70 ··· B8/B9II	8.54 HD 168400 7.00 A2IV/V	8.36 SAO 186684 9.30 ··· B8/B9V	9.47	8.09 SAO 210031 9.50 ··· B8II	6.76 Blend 8.17 B7III,B9V	8.29 HD 168525 6.70 ··· A6V	0.00 HJ 106323 11.00 ··· 15015 6 11 HJ 168403 6 00 Devi	0.11 111/ 100430 0.30 ··· D0V 7.07 Bland 6.06 ··· AFIV D011/111	7.84 HD 168646 6.16 0.26 A3111	8.79 HD 168680 9.40 B8II	8.41 SAO 210052 9.30 ··· A1V	8.85 SAO 186723 8.80 ··· A4IV	9.00 HD 168709 8.80 0.16 B9.5II	6.18 HJJ 168708 7.90 ··· B8IV	6.62 HD 168750 8.27 0.08 B1Ib	7.44 Blend 8.13 ··· A0,B9III	4.08 HD 168733 5.34 -0.14 B7Ib/II	6.49 HD 168785 8.49 0.05 B2IIIp	8.62 HD 168942 7.90 ··· B9.5V	7.24 HD 168941 9.34 0.04 09.5II	7.40 HD 168989 9.60 ··· B7/B8III	0.20 HU 310043 10.01 0.07 B2 1 05 HD 160009 1 90 0 00 D FIII	IIIC'AG 70'0 00'I 770A0I TU CE'I
$m_{1375} m_{1781}$ Identification V $(V - B)$ Spectral Type	5.50 5.79 HD 167846 6.92 -0.07 B27/B8HT	··· 8.35 Blend 9.65 ··· B7/B8II.B8/B9III	··· 7.73 HD 168002 9.50 ··· B71	7.60 Diged 8.60 10.30 B7/B8IV	7.39 8.06 HD 168056 8.89 0.08 BRIV	··· 9.06 HD 168140 10.90 ··· B8/B9II	··· 8.55 SAO 209993 8.90 ··· AIV	6.99 7.71 SAO 186642 8.60 ··· B8/B9III	··· 7.77 SAO 186652 9.90 ··· B5II/III	6.43 6.85 SAO 209996 8.60 ··· B2/B3III	8.20 Blend 8.8P B51b,B8,B81b 6.42 6.90 6.40 910000 7.90 501	0.43 0.80 SAU 210002 7.80 ··· B8V		0.34 0.48 blend 7.43 B8111/1V,B9111,B811/1	8.4/ HIJ 168331 9.27 0.15 B6/B7111	0.20 0.01 HIG 100230 0.80 ··· BJILI		··· 0.00 HJ 106422 10.00 ··· B91V ··· 8.73 HD 168434 10.40 ··· B0.6111	··· 7.65 HD 168435 9.70 ··· B8/B9II	··· 8.54 HD 168400 7.00 ··· A2IV/V	··· 8.36 SAO 186684 9.30 ··· B8/B9V	9.47	···· 8.09 SAO 210031 9.50 ··· B8II	6.29 6.76 Blend 8.17 B7III,B9V	··· 8.29 HJ 168525 6.70 ··· A6V	0.00 FLD 106323 TL.UU 1501D 5.87 6.11 HD 168403 6.00 DEXT	0.01 0.11 111/ 100430 0.90 D0V	··· 7.84 HD 168646 6.16 0.26 A3III	··· 8.79 HD 168680 9.40 ··· B8II	··· 8.41 SAO 210052 9.30 ··· A1V	··· 8.85 SAO 186723 8.80 ··· A4IV	9.00 HD 168709 8.80 0.16 B9.5II	6.00 6.18 HID 168708 7.90 ··· B8IV	6.10 6.62 HD 168750 8.27 0.08 B1Ib	··· 7.44 Blend 8.13 ··· A0,B9III	3.81 4.08 HD 168733 5.34 -0.14 B7Ib/II	5.88 6.49 HD 168785 8.49 0.05 B2IIIp	8.62 HD 168942 7.90 B9.5V	6.72 7.24 HD 168941 9.34 0.04 09.511	··· 7.40 HD 168989 9.60 ··· B7/B8III	0. 0. 0.20 HU 315043 10.01 0.07 B2	1110.65 70.0 00.1 770601 TU 06.1 60.7
δ_{1950} m_{1375} m_{1781} Identification V $(V-B)$ Spectral Type	-34:42 5.50 5.79 HD 167846 6.92 -0.07 B27/B8III	-24:24 ··· 8.35 Blend 9.65 ··· B7/B8II.B8/B9III	-22:35 ··· 7.73 HD 168002 9.50 ··· B7II	-37:48 ··· 8.48 HD 167982 10.30 ··· B7/B8IV	-23:41 1.00 Dieuta 0.00 AI/A2IV,AU -28:15 7.39 8.06 HD 168056 8.89 0.08 BRIV	-25:43 ··· 9.06 HD 168140 10.90 ··· B8/B9II	-37:37 ··· 8.55 SAO 209993 8.90 ··· AIV	-29:01 6.99 7.71 SAO 186642 8.60 ··· B8/B9III	-28:28 ··· 7.77 SAO 186652 9.90 ··· B511/III	-36:04 6.43 6.85 SAO 209996 8.60 B2/B3III	-24:31 8.20 Blend 8.8P B51b,B8,B81b	-34:48 0.43 0.80 SAO 210002 7.80 B8V	-20:12 ···· 9.30 3AU 180003 9.30 ··· B9.5V	-32:22 0.34 0.46 Blend 7.43 B8111/1V,B9111,B811/1	-24:31 ··· 3.4/ HJJ 168331 9.2/ 0.15 B6/B7111	-30.21 3.20 3.04 HIJ 106230 0.80 B3III		-22.10 ··· 0.00 HJ 108422 10.00 ··· Byly -23.20 ··· 8 73 HD 168424 10.40 ··· By 5111	-25:32 ··· 7.65 HD 168435 9.70 ··· B8/B9II	-33.23 8.54 HD 168400 7.00 A2IV/V	-28:23 ··· 8.36 SAO 186684 9.30 ··· B8/B9V	$-23:30 \cdots 9.47 \cdots \cdots \cdots \cdots \cdots$	-33:39 ··· 8.09 SAO 210031 9.50 ··· B8II	-37:17 6.29 6.76 Blend 8.17 B7III,B9V	-20:01 ··· 8.29 HD 168525 6.70 ··· A6V	-22:30 ··· 0.00 FLD 106323 II.00 ··· 15010 -30.58 5.87 6.11 HD 169403 6.00 Devi	-20:00 0:01 0.11 111/100430 0.30 ··· 150V -33:15 ··· 7.07 Rland 6.06 ··· AETV DOTT/TTT	-28:28 ··· 7.84 HD 168646 6.16 0.26 A3111	-25:22 ··· 8.79 HD 168680 9.40 ··· B8II	-33:35 ··· 8.41 SAO 210052 9.30 ··· A1V	-28:13 ··· 8.85 SAO 186723 8.80 ··· A4IV	$-24:55 \cdots 9.00$ HD 168709 8.80 0.16 B9.5II	-22:50 6.00 6.18 HJ 168708 7.90 B8IV	-26:26 6.10 6.62 HD 168750 8.27 0.08 B1Ib	-26:57 7.44 Blend 8.13 A0,B9III	-36:41 3.81 4.08 HD 168733 5.34 -0.14 B71b/II	-30:10 5.88 6.49 HD 168785 8.49 0.05 B2IIIp	-27:33 8.62 HD 168942 7.90 B9.5V	-26:59 6.72 7.24 HD 168941 9.34 0.04 09.511	-23:04 ··· (.40 HD 168989 9.60 ··· B7/B8III	-20:10 0.28 HJJ 313043 10.01 0.07 B2 -34.95 9.00 1.05 HJD 160099 1.80 0.09 HD 2711	1110.69 70.0 0.01 770.01 TU 0.6.1 6.0.7 0.7.4.6-
α_{1950} δ_{1950} m_{1375} m_{1781} Identification V $(V-B)$ Spectral Type	18:15:12 -34:42 5.50 5.79 HD 167846 6.92 -0.07 B27/B8III	18:15:23 -24:24 ··· 8:35 Blend 9:65 ··· B7/B8IL.B8/B9III	18:15:27 -22:35 ··· 7.73 HD 168002 9.50 ··· B7II	18:15:40 -37:48 8:48 HD 167982 10.30 B7/B8IV 18:15:59 90:41 7 80 D1-2	10:15:53 -28:15 7.39 8.06 HD 168056 8.89 0.08 PSIV,AU	18:16:05 -25:43 ··· 9.06 HD 168140 10.90 ··· B8/B9II	18:16:08 -37:37 ··· 8.55 SAO 209993 8.90 ··· A1V	18:16:12 -29:01 6.99 7.71 SAO 186642 8.60 ··· B8/B9III	18:16:20 -28:28 ··· 7.77 SAO 186652 9.90 ··· B5II/III	18:16:34 - 36:04 6.43 6.85 SAO 209996 8.60 B2/B3III 18:16:40 94:37 8.66 Discip	10:10:42 - 24:37 ··· 8.20 Blend 8.8P ··· B51b,B8,B81b	16:10:43 - 34:48 0.43 0.80 SAU 210002 7.80 ··· B8V	10.16.57 20.00 7.1 7.20 2AU 180003 9.30 B9.5V	10:10:33 -32:22 0.34 0.48 Blend 7.43 B8111/1V, B9111, B811/1	10:10:33	10.10.00 -301.21 3.20 3.04 ALV 106230 0.80 ··· BJ1H 18.17.06 -94.08 9.00 Pland - 6.70 5.21	18:17:07 99:10 ··· 0.95 DIGIO 9.10 ··· B917,B9 18:17:07 99:10 0.66 DIJ 16040 9.00 ··· D917,B9	10.11.01	18:17:31 -25:32 ··· 7.65 HD 168435 9.70 ··· B8/B9II	18:17:32 -33:23 ··· 8.54 HD 168400 7.00 ··· A2IV/V	18:17:37 -28:23 ··· 8.36 SAO 186684 9.30 ··· B8/B9V	$18:17:53 - 23:30 \cdots 9.47 \cdots \cdots \cdots \cdots \cdots \cdots$	18:17:56 -33:39 ··· 8.09 SAO 210031 9.50 ··· B8II	18:17:58 -37:17 6.29 6.76 Blend 8.17 B7III,B9V	18:17:50 -20:07 ··· 8.29 HJJ 168525 6.70 ··· A6V	10/11/09	10:10:02 -30:00 3:01 0.11 111 103433 0.30 ··· D0V 18:18:04 -32:15 ··· 7.07 R]and 6.06 ··· AFIV D017/111	$18:18:43 - 28:28 \cdots 7.84$ HD $168646 6.16 0.26$ A3111	18:18:47 -25:22 ··· 8.79 HD 168680 9.40 ··· B8II	18:18:48 -33:35 ··· 8.41 SAO 210052 9.30 ··· A1V	18:18:51 -28:13 ··· 8.85 SAO 186723 8.80 ··· A4IV	$18:18:57 - 24:55 \cdots 9.00$ HD 168709 8.80 0.16 B9.5II	VISU - 222:00 0.00 0.18 HJ 168708 7.90 1881	18:19:11 -26:26 6.10 6.62 HJD 168750 8.27 0.08 B1Ib	18:19:14 -20:57 ··· 7.44 Blend 8.13 ··· A0,B9III	10:10:00	18:19:31 -30:10 5.88 6.49 HJD 168785 8.49 0.05 B2IIIp	18:20:04 -27:33 ··· 8.62 HD 168942 7.90 ··· B9.5V	18:20:14 -26:59 6.72 7.24 HD 168941 9.34 0.04 09.511	18:20:1/ -23:04 ··· 7.40 HJ 168989 9.60 ··· B7/B8III	10.20143 - 20110 ··· 0.20 HU 313043 10.01 0.07 B2 18.30.51 24.35 3.00 1.05 HD 160009 1.60 0.09 Do 2011	1110'69 70'0 00'1 77001 111 021 20'7 07'EC 10'07'01

SCHMIDT & CARRUTHERS

Vol. 104

TABLE 3—Continued

No.	α ₁₉₅₀	δ_{1950}	m_{1375}	m_{1781}	Identification	V	(V - B)	Spectral Type
631	18:27:34	-33:04		6.65	HD 170479	5.34	0.16	A5V
632	18:28:12	-24:53	6.79	6.63	HD 170531	7.50		B4III
633	18:28:31	-30:08	6.19	6.60	HD 170638	8.62		B3II/III
634	18:28:40	-29:12		8.70	SAO 186924	9.40		B7/B8Ib/II
635	18:28:52	-32:41		7.61	SAO 210281	8.40	•••	B9V
636	18:29:00	-27:16	6.60	6.77	HD 170770	7.76	0.12	B5IV
637	18:29:18	-31:34		10.51	Blend	9.21		A0,B9V
638	18:29:47	-26:30		8.77	HD 170956	10.90		B8Ib/II
639	18:29:50	-30:11		8.34	Blend	8.00	•••	A0V,A0,B9IV/V
640	18:30:07	-27:34		8.69	HD 171032	8.91	0.15	B8III
641	18:30:39	-33:04	2.49	2.95	HD 171034	5.28	-0.11	B2IV-V
642	18:30:52	-31:14		7.52	SAO 210322	8.90	•••	A0V
643	18:30:57	-30:57	6.73	6.58	HD 171117	7.30	•••	B9IV
644	18:31:13	-25:23	6.53		Blend	8.44		B9.5IV/V,B2II/III,B8IV/V
645	18:32:31	-30:57		8.36	SAO 210354	9.20	• • •	B8II
646	18:32:53	-32:43		7.45	SAO 210358	8.90		B8/B9Ib/II
647	18:34:40	-28:01	6.54		HD 171757	8.95	0.11	B3IIIe
648	18:35:46	-30:33	6.87		HD 171963	7.60	• • •	B8/B9III
649	18:36:45	-29:22	6.56		HD 172140	9.94	-0.02	B0.5III

^a This object is an unresolved clump of star in the cluster Bochum 13.

^b This object is an unresolved clump of stars in the cluster NGC 6383. The magnitude and spectrum refer to the brightest star, HD 159176, which should dominate the ultraviolet flux.

^c These objects are unresolved clumps of stars in the cluster NGC 6405.

^d These objects are unresolved clumps of stars in the cluster NGC 6475.

^e These objects are unresolved clumps of stars in the cluster NGC 6530.

^f This object consists of a number of stars in the cluster NGC 6530, but the ultraviolet is likely to be dominated by HD 164794 and NGC 6530-9. The V magnitude is a combination of those two stars.

⁸ This object is an unresolved clump of stars in the cluster NGC 6531.

^h This object is an unresolved group of stars in the cluster Colinder 367. The magnitude and spectrum refer to HD 165921, which should dominate the ultraviolet flux.

the last column of Table 1. Note that these standard deviations together with the number of stars used imply that the standard errors of the mean zero points are all smaller than 0.07 mag.

From Figure 2 and the previously adopted zero point, we derived the scale corrections to the magnitudes of Paper III. They are

$$m_{1375} = 1.111 m_{1375}' - 0.44, \tag{1}$$

$$m_{1781} = 1.156m'_{1781} - 0.94, \qquad (2)$$

for the Scorpius field, and

$$m_{1375} = 1.111 m_{1375}' - 0.57, \tag{3}$$

$$m_{1781} = 1.156m'_{1781} - 0.96, \tag{4}$$

for the Sagittarius field, where m'_{1375} and m'_{1781} are the ultraviolet magnitudes listed in Paper III, while m_{1375} and m_{1781} are the corrected values.

3. COMBINATION OF THE GALACTIC CENTER DATA WITH THE OVERLAPPING FIELDS

A detailed comparison was made of the magnitudes from Table 3 with those from Paper III (after applying the corrections given in eqs. [1]-[4]). Table 4 summarizes this comparison. Column (3) lists the number of stars in common between the Galactic center field and the fields from Paper III, while the mean differences for all the stars in common are listed in column (4). Column (5) gives the standard errors of the means. The sense of all the differences is that the Galactic center magnitudes are fainter. It can been that all except one of the differences are statistically significant.

There are several possible causes of the differences between the various data sets. Since the cameras were positioned differently from one field to another and more significantly, rotated, individual stars fall on different locations of the camera cathode for the different fields. Thus, sensitivity variations across the field could produce differences of the type seen here. However, a plot of the residuals versus location in the field failed to show any convincing trend. A second possibility is that the calibration differences arise from the use here of the *IUE* spectra from the final archive and processed by the NEWSIPS software. Since the final archive should be more homogeneous and

 TABLE 4

 Comparison of Overlapping Fields with the Galactic Center Field

Field (1)	Camera (2)	n (3)	$\left< \Delta \right>$ (4)	σ (5)
Sagittarius	1	111	0.145	0.019
0	2	203	0.087	0.022
Scorpius	1	10	0.017	0.045
-	2	17	0.218	0.076

=

1996ApJS..104..101S

represents the final calibration of the *IUE* data, we have chosen to place all the data in the scale of the Galactic center photometry. Accordingly, the values in column (4) of Table 4 were subtracted from the corresponding corrected magnitudes from Paper III.

The differences for stars in common between the Paper III magnitudes (after the application of eqs. [1]–[4] and the adjustment of the zero points described in the previous paragraph) and the magnitudes from Table 3 were used to estimate the uncertainties. The standard deviations of individual magnitudes are $\sigma_{1375} = 0.13$ and $\sigma_{1781} = 0.21$. These should be taken as our best estimate of the internal accuracy of the ultraviolet photometry. They are somewhat smaller than the errors estimated in Paper III. This is reasonable, since the earlier estimates were known to be upper limits.

A collated list of the magnitudes for the three fields covering the Galactic center was formed after correcting the earlier magnitudes as detailed above. It contains 1500 objects. This list is presented in Table 5. This table will appear in AAS CD-ROM Series, Vol. 6, 1996. The first part is printed here for guidance as to form and content.

4. DISCUSSION

In Paper III we compared our ultraviolet photometry with previous observations. In view of the recalibration of the photometry discussed in the previous section, it is of interest to revisit this question. Accordingly, we searched the S201 catalog (Page, Carruthers, & Heckathorn 1982) for stars in common with Table 5. A total of 154 stars with both m_{1375} and S201 magnitudes were found, and the magnitudes are plotted in Figure 3. As was the case in Paper III, the scatter is larger for the S201 m_L magnitudes than for the m_C magnitudes. For the latter, the five low points between $m_{1375} = 6$ and $m_{1375} = 8$ had large interframe discrepancies in the S201 catalog. Accordingly, they were omitted from consideration. Fitting to the remaining points, we obtained the relationship m_{c} = $0.99m_{1375} + 0.30$ with a scatter about the fit of 0.43 mag. Thus, the 11% scale difference between the two sets of data found in Paper III is resolved by the recalibration, and the zero-point offset has been reduced by about 0.2 mag. The data from the two missions are now in satisfactory agreement.

Since the Galactic center field overlaps the Scorpius and Sagittarius fields to a large degree, the characteristics of the stars are essentially the same as discussed in Paper III. Hence, we will not discuss this field further here.

Figure 4 shows the frequency distributions of the stars in the ρ Oph field with respect to the ultraviolet magnitudes. A comparison of this diagram with Figure 5 of Paper III shows that while all three fields have a few stars per magnitude at bright levels, the Scorpius and Sagittarius fields have roughly 6 times more stars at fainter levels (say between $m_{1375} = 5.5$ and 7.0

 TABLE 5

 Collated List of Objects from the Scorpius, Sagittarius, and Galactic Center Fields

No.	$lpha_{1950}$	δ_{1950}	m_{1375}	m_{1781}	Identification	V	(V - B)	Spectral Type
1	15:57:51	-40:17	• • •	6.19	HD 143248	6.21	0.01	A0V
2	15:59:43	-43:17	••••	7.16	Blend	7.29	• • • •	B9V,A0V
3	16:01:08	-40:42		8.18	HD 143824	7.70	•••	A1V
4	16:01:36	-37:40		5.67	Blend	7.13		B8/B9V,A1V
5	16:01:37	-39:18		6.30	HD 143939	7.10	• • • •	B9p
6	16:02:41	-39:41		8.66	Blend	7.78	• • •	A5,B6IV/V
7	16:03:07	-45:01		6.65	HD 144197	4.72	0.23	Am
8	16:03:15	-36:39		1.63	HD 144294	4.20	-0.14	B2.5Vn
9	16:03:25	-39:06		10.40	SAO 207329	8.00		A1V
10	16:04:03	-43:09		8.98	HD 144351	7.10	• • •	A1V
11	16:04:51	-44:43	• • •	8.47	Blend	9.29		B7III/IV,A2
12	16:04:51	-43:42		8.89	HD 144478	7.90	• • •	B9V
13	16:04:55	-36:06		5.41	HD 144591	6.90	• • •	B9V
14	16:05:19	-38:58	• • •	5.29	Blend	6.08	• • •	A1.5III,A7IV
15	16:06:02	-44:50	• • •	8.14	GC 21695	9.8	• • •	B9II
16	16:06:27	-44:41	• • •	7.72	HD 144851	8.73	0.08	B8V
17	16:06:50	-40:00	5.74	6.49	HD 144965	7.06	0.15	B3Vne
18	16:06:56	-42:41	• • •	8.43	Blend	7.60	• • •	B9V,B9V,A2,A
19	16:08:01	-41:00		8.40	HD 145191	5.86	0.27	F0IV
20	16:10:50	-43:36	7.36	• • •	Blend	9.31	• • •	B9II/III,B9
21	16:11:35	-39:30	6.81	6.70	Blend	6.88	• • •	B9.5V,A3V
22	16:11:35	-47:14		3.60	$HD \ 145842$	5.14	-0.13	B8V
23	16:14:09	-42:54	8.01	8.64	HD 146335	8.20	0.19	B6III
24	16:14:59	-45:44	• • •	8.62	Blend	8.9P	• • •	B2III,B8
25	16:15:54	-42:35	• • •	6.64	HD 146667	5.45	0.10	A3Vn
26	16:16:32	-43:14	8.06	8.34	Blend	7.49	• • •	B8V,A0V,A1V
27	16:16:39	-46:14	• • •	7.91	Blend	7.7P		A0V,B9III/IV
28	16:17:05	-39:19	4.47	4.92	Blend	5.78	• • •	B9V,B9V
29	16:17:47	-47:00	• • •	8.33	Blend	7.70	• • •	A0IV,B3III
30	16:17:47	-48:03		5.43	HD 147001	6.52	-0.05	B7V

NOTE.—Table 5 is presented in its entirety in computer-readable form in the AAS CD-ROM Series, Vol. 6, 1996. The first part is presented here for guidance regarding its form and content.

FIG. 3.—Comparison of m_{1375} with the S201 magnitudes for the Galactic center field.

FIG. 5.—The frequency distribution of stars in the ρ Oph field with respect to spectral type.

and $m_{1781} = 6.0$ and 7.5). We attribute this difference in the distributions and the relatively small total number of stars in the ρ Oph field to the fact that this field is away from the Galactic plane ($b^{II} = 18^\circ$ at the field center). Hence, there are few distant OB stars.

Finally, Figure 5 presents the distribution of stars in the ρ Oph field with respect to spectral type. As in other fields, early A stars are the most numerous. However, the proportion of

FIG. 4.—The frequency distribution of stars with respect to m_{1781} and m_{1375} for the ρ Oph field

© American Astronomical Society • Provided by the NASA Astrophysics Data System

No. 1, 1996

1996ApJS..104..101S

early B stars is smaller than in the Scorpius and Sagittarius fields (Paper III) but comparable to the Monoceros and Orion fields (Papers I and II). In Paper III, we attributed the abundance of hot stars in Scorpius and Sagittarius to the presence of OB associations in those regions.

We thank B. C. Dohne and Brian Dorland for assistance in the data analysis. We also thank many coworkers at the Naval Research Laboratory and elsewhere who assisted in or contributed to the development and flight of the far-ultraviolet cameras on STS-39. The flight opportunity and mission support were provided by the Air Force Space Test Program. The instrument development was sponsored by the Office of Naval Research. Data needed for this research were obtained from the National Space Science Data Center, which is operated by NASA at the Goddard Space Flight Center, and the SIMBAD database, which is operated by CDS in Strasbourg, France. The use of these facilities made an important contribution to this project and is gratefully acknowledged.

REFERENCES

Gordon, K. D., Witt, A. N., Carruthers, G. R., Christensen, S. A., & Dohne, B. C. 1994, ApJ, 432, 641

- Houk, N. 1982, The Michigan Catalogue of the Two Dimensional Spectral Types for the HD Stars, Vol. 3 (Ann Arbor: Univ. Michigan)
- Houk, N., & Smith-Moore, M. 1988, The Michigan Catalogue of the Two Dimensional Spectral Types for the HD Stars, Vol. 4 (Ann Arbor: Univ. Michigan)
- Page, T., Carruthers, G. R., & Heckathorn, H. M. 1982, Revised S201 Catalog of Far-Ultraviolet Objects, NRL Report 8487 (Washington: Naval Research Laboratory)
- Schmidt, E. G., & Carruthers, G. R. 1993a, ApJ, 408, 484 (Paper I)
- ------. 1993b, ApJS, 89, 259 (Paper II) ------. 1995, ApJS, 96, 605 (Paper III)

© American Astronomical Society • Provided by the NASA Astrophysics Data System

FIG. 1.—Prints of the far-UV images of the two fields: (a) Galactic center, camera 1 ($\lambda_{eff} = 1375 \text{ Å}$); (b) Galactic center, camera 2 ($\lambda_{eff} = 1781 \text{ Å}$); (c) ρ Oph field, camera 1; (d) ρ Oph field, camera 2.

PLATE 4

1996ApJS..104..101S

