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Aligned two-phase magnets: Permanent magnetism of the future? (invited) 
FL Skomski 
Department of Pure and Applied Physics, Trinity College, Dublin 2, Ireland 

Micromagnetic calculations are used to investigate coercivity and energy products of magnets 
consisting of an aligned hard-magnetic skeleton phase and a soft-magnetic phase with high 
saturation magnetization. Compared to the present-day theoretical limit of 516 W/m3 for 
single-phase Nd2Fe14B, the energy product in suitable nanostructured Sm,Fe17N,/Fee&035 
composites is predicted to be as high as 1090 kJ/m3. The influence of the skeleton’s texture and 
shape is discussed, and aligned nanocrystalline two-phase magnets are compared with 
remanence-enhanced isotropic magnets. In particular, it is shown how the nucleation-based 
analytical approach breaks down in the isotropic limit. Finally, we &line conceivabie processing 
methods and discuss potential applications of “megajoule” magnets. 

I. INTRODUCTION 

A key figure of merit of permanent magnetic materials is 
the energy product (BH)m,, which describes the ability to 
store magnetostatic energy. Energy product increases with 
coercivity H, and remanence M, but can never exceed the 
value ,uu,MF/4 corresponding to an ideal rectangular hyster- 
esis loop. Since M,.Gl,,, the spontaneous magnetization 
M. yields an “intrinsic” limit (BH),,6pu,M$4, but if 
magnetization were the only consideration then cr iron with 
ptoMo =2.15 T would be used for permanent magnets with 
energy products as high as 920 kJ/m3. In fact, the coercivity 
of bee iron is so low that energy products of iron magnets are 
only of order 1 kJ/m3, and in the past it was necessary to 
resort to cumbersome bar and horseshoe shapes to avoid 
spontaneous demagnetization into a multidomain state by the 
magnet’s own magnetostatic field. For this reason the quest 
for improved energy product has involved a search for com- 
pounds with a large magnetization combined with the strong 
uniaxial anisotropy needed to develop hysteresis. 

In former years, the problem was to achieve the neces- 
sary anisotropy, but more recently the focus has shifted to the 
problem of enhancing the magnetization. Modern high- 
performance magnets such as SmCoS, Nd,Fe,,B, or the in- 
terstitial nitride Sm,Fe,,N, consist of 3d atoms which are 
exchange coupled to rare-earth atoms which provide the 
uniaxial anisotropy required of a permanent magnet.lH7 In 
reality, coercivity as high as 4.4 T has been achieved in 
Sm3Fe,,N3-based magnets,* but for practical purposes there 
is usually no call for coercivity very much greater than 
Mo/2. On the other hand, the magnetization is reduced due 
to the rare-earth and nonmagnetic elements. The light rare- 
earths’ atomic moments are at best slightly larger than that of 
iron, but they occupy more than three times the volume. 
Nevertheless, it has been possible to use NdaFeIhB which has 
pOMO = 1.6 1 T and ,q,M$4 = 5 16 kJ/m3 to achieve room- 
temperature energy products exceeding 400 kJ/m3 in 
laboratory-scale magnets.” At about 200 “C, which is a tech- 
nologically important temperature region, SmzFe17N3 is po- 
tentially the best permanent magnetic material,1’5 but here 
suitable processing methods have not yet been developed. 

Energy product has doubled every twelve years since the 
beginning of the century, and much effort is being made to 
yield further quantitative and qualitative progress in the per- 

formance of permanent magnetic materials9 However, the 
outlook for discovering new ternary phases with magnetiza- 
tion significantly higher than that of those available, at 
present, is poor.3 Permanent magnets based on the appear- 
ance of a new-rare-earth iron intermetallic phase could offer 
better temperature stability, yet higher anisotropy field or im- 
proved corrosion resistance, but the scope for significant im- 
provements in the spontaneous magnetization is very limited. 
For instance, interstitial modification with small atoms such 
as nitrogen or carbon is effective for enhancing Curie tem- 
perature and anisotropy, 1,5,10,11 but it has rather little effect on 
the magnetization-the moment increase is, on the whole, a 
zero sum game.3 

In the case of isotropic magnets, which are often more 
easy to produce than oriented magnets, the comparatively 
low remanence M,.sJMO/2 reduces the theoretical energy 
product by a factor 4. However, the production of nanocrys- 
talline composites such as Nd,Fe,,B/F%BFe and 
Sm,Fe17N3/Fe by melt spinningI’ and mechanical alloying,13 
respectively, shows that it is possible to combine the high 
magnetization of soft-magnetic materials and the surplus an- 
isotropy of rare-earth intermetallics. Soft magnetic phases 
such as bee iron often reduce the energy product by degrad- 
ing coercivity, but if the soft regions are small enough then 
exchange coupling stabilizes the magnetization direction of 
the soft phase. This kind of exchange coupling improves the 
low remanence of the isotropic hard phase,12-16 but the en- 
ergy product, though improved with respect to the isotropic 
single-phase rare-earth material, does not reach the level at- 
tained in oriented single-phase rare-earth magnets. In other 
words, new approaches are necessary if the energy product is 
ever to dotible again. 

Kecent work by Skomski and Coey3117,‘* has shown how 
it should be possible to substantially increase the energy 
product in oriented nanostructured two-phase magnets by ex- 
ploiting exchange coupling between hard and soft regions 
(Fig. 1). The idea behind these systems is to break out of the 
straightjacket of natural crystal structures by artificially 
structuring new materials. The concept is similar to that of 
the 4f-3d intermetallics themselves, but on a different scale, 
where the atoms are replaced by a mesoscopically structured 
hard-magnetic skeleton with surplus anisotropy and small 
soft-magnetic blocks. Based on analytical calculations; a 
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FIG. 1. Spherical soft inclusions in an aligned hard matrix. 

well-defined and realistic upper limit to the energy product 
of permanent magnets has been established, and energy 
products of order I MJ/m3 have been predicted for suitable 
multilayered and random structures. 

Here, we summarize the background and results of these 
calculations, relate them to the problem of remanence en- 
hancement in isotropic magnets, and draw conclusions with 
respect to future developments in permanent magnetism. 

II. BACKGROUND 

A. Micromagnetic free energy 

To predict the performance of a permanent magnetic ma- 
terial we have to calculate the average magnetization (M) as 
a function of the applied magnetic field H=He, . A conve- 
nient starting point is the (magnetic) free energy F, where the 
properties of the magnetic material enter as temperature- 
dependent parameters. Locally stable magnetic confrgura- 
tions are obtained by putting SF/&I(r) =0, where S.../mM(r) 
denotes the functional derivative with respect to the magne- 
tization M(r) =M,(r)s(r) with s2 = 1. Typically, the free en- 
ergy of permanent magnets exhibits two or more metastable 
equilibrium states, and tracing the magnetic configuration 
s(r) as a function of an external field H=He, is quite a 
demanding task. 

On a mesoscopic level, i.e., assuming that the magneti- 
zation is a continuous variable, the free energy of a perma- 
nent magnet reads19P20 
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!?IG. 2. Dependence of the reduced effective anisotropy constant KeE/K,, on 
the reduced remanence M’/Mk . M’/M,,=1/2 and M,/M,= 1 mean isotro- 
pic texture and complete alignment, respectively. 

F= I h,(r) + vab9 + m(r) + ~Ar)W. (1) 

The contributions to the free-energy density are (i) the ex- 
change free-energy density vXC =A (r)[Vs(r)12, where the ex- 
change stiffness A(r) describes the tendency towards parallel 
spin alignment, (ii) the energy density of the (uniaxial) an- 
isotropy 

-K3(ns)6,- c4 

where n is the unit vector of the local c-axis direction, (iii) 
the Zeeman energy density vH= - ~,M,(r)Hs,(r), where 
M[=He, is the external magnetic field, and (iv) the magneto- 
static dipole interaction 

1 vAr)dr= - i i 1 M;j(l-r') - . z,j=t 

XMi(r)Mj(r’)drdr’, (3) 

with Kij(r)=,Uo(3rirj- 6ijr2)/(4Vr5) and M(r) 
=Xilwi(r)ei . Note that putting n(r)=e, in Eq. (2) is equiva- 
lent to the familiar expression ?&=K, sin2 e 
+K, sin4 0+K3 sin6 0, where 8 is the angle between magne- 
tization and z direction. 

B. Coercivity and energy product 

Mechanical work to be done by a permanent magnet 
implies a magnetic hardness (coercivity) which keeps the 
magnetization in the desired direction. If the coercivity H, is 
too small, or if the hysteresis loop has an unfavorable shape, 
then the energy product won’t reach the theoretical value 
,~eM$4 deduced from the saturation magnetization M,, . 

Depending on the real structure of a permanent magnet, 
there are different hardening mechanisms. Here we treat 
aligned nanostructured two-phase magnets as nucleation- 
controlled magnets. The nucleation field HN= -H is defined 
as the {reverse) field at which the original state s(r)-e, be- 
comes unstable. Mathematically, this requires the determi- 
nant of the continuous matrix @F/Ss(r)&(r’) to vanish. 
Note, however, that the introduction of pinning centers is a 
potential way of improving the coercivity by inhibiting the 
propagation of the reversed nucleus, so H,p%H, is a lower 
limit to the coercivity. 

The determination of HN is a fairly demanding task,19-21 
and we have to introduce suitable approximations. Due to the 
long-range character of IKij(r), the magnetostatic interaction 
is the most complicated one. A simple, though nontrivial, 
approximation is to replace the external magnetic field by 
H,,=H-D(M,), h w ere D is the demagnetizing factor. It 
has been shown quite generally20-22 that for a homogeneous 
ellipsoid 

where the factor D Me arises from the gain in magnetostatic 
energy due to an incoherent rotation process. The > sign in 
Eq. (4) indicates that incoherent rotation costs exchange en- 
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ergy, but the corresponding coercivity contribution scales as 
A/(/L~M,$~), where L is the magnet’s size, and is practically 
negligible. In the case of coherent rotation (the Stoner- 
Wohlfarth model), HN= 2KlIpuoMo- (1-3D)M,,/2, and 
there is no influence of a “demagnetizing” field in spherical 
magnets where D = l/3. The result of the Stoner-Wohlfarth 
model is consistent with Eq. (4). 

Equation (4) is called Brown’s paradox, because real 
permanent magnets always seem to violate this inequality. 
This violation is due to the existence of inhomogenities in 
real magnets while Eq. (4) applies to homogeneous ellipsoids 
only.“1’22 In the following, we restrict ourselves to the so- 
called “intrinsic” D = 0 hysteresis loop of macrosco ic mag- 
nets, from which the energy product is determined. E 

Ill. MODEL AND CALCULATION 

To determine the nucleation field we assume ideal align- 
ment of the hard phase, i.e., n(r)=e, , and rewrite s(r)-e, as 

s= &=zq+nl, m=s,ex+syey, m’41. (5) 

Now series expansion of Eq. (1) yields the quadratic form 

F= 
J-i 

A(f){Vm}2+K,(r)m2+ f pLoMo(r)Hm’ 1 dr. 

(6) 
Recall that Ka and Ka do not enter this expression,” so the 
nucleation field of ideally anisotropic hard magnets depends 
on K1 only. The case of partially anisotropic and isotropic 
magnets will be discussed in Sec. IV. The equation of state 
SF/&n(r)=0 is given by the identity 

SF drl drl -- 
am(r) - - 

v- - 
i 1 dVm(r) + am(r) ’ 

and reads 

A(r)V2m+VA(r)Vm-[2Kl(r)+~&fo(r)H]m=0. 
(8) 

Except for the VA(r)Vm term (see Sec. IV), Eq. (8) is 
equivalent to Schrodinger’s equation for a particle moving in 
a three-dimensional potential 2K, (r)+p&a(r)H, which al- 
lows us to apply ideas familiar from quantum mechanics to 
discuss micromagnetics. Note that the x and y components of 
m=mxex+m,e,, are decoupled and degenerate in Eq. (8), so 
the vector m(r) can be replaced by any unspecified nucle- 
ation mode P(r). It is, however, convenient to think of T(r) 
as the magnetization m,(r) in x direction. 

Finally, for our inhomogeneous two-phase magnets we 
assume that the r dependence of the parameters A, Kl, and 
Ma is given by AI,, Kh , Mh , and A,, K, , M, for hard (index 
h) and soft (index S) regions, respectively. Let the volume 
fraction of the hard regions become fh ; the fraction of the 
soft regions is then given by f, = 1 - fh . 

The nucleation field HN is obtained as lowest eigenvalue 
of the Eq. (8). In the homogeneous ‘cconstant-potential” 
case, the ground-state eigenfunction is a plane wave with 
k=O, and Eq. (8) reduces to the familiar form 
HN= -H= 2KlI,uoMo. In the case of inhomogeneous mag- 
nets, the nucleation problem Eq. (8) can be solved by series 
expansion or an appropriate ansatz, which has been done for 

special one-, two-, and three-dimensional configu- 
rations.‘7*19>24-27 An example is a spherical soft inclusion (di- 
ameter D, KS= 0 j in a hard-magnetic matrix (cf. Fig. 1). 
Introducing spherical coordinates and using the interface 
boundary condition A,(e.V)9,=A,(e.V)9.h we obtain the 
eigenvalue equation17 

g{ p JTcot(; Jyjy-lJ+I 
+; J==$Ko, (9 

which can be solved numerically. It turns out that the nucle- 
ation field reaches a high-coercivity plateau if the size of the 
soft inclusion is smaller than the Bloch wall thickness 
8, = r(A ,,I&) 1’2 of the hard phase. This plateau corre- 
sponds to complete exchange coupling. If the diameter D of 
the soft inclusion is too large, then the magnetization be- 
comes unstable and the coercivity falls off as l/D’. 

For sufficiently small reverse fields IHI<H,(D) the 
single soft inclusion is perfectly aligned and slightly en- 
hances the remanence provided M,>M, . On the other hand, 
when the distance between the soft inclusions is small, the 
magnetization modes can “tunnel” through the hard region 
which no longer acts as an effective potential barrier. In fact, 
this micromagnetic “exchange interaction” can reduce the 
nucleation field considerably when the thickness of the hard 
region is less than S,, . To obtain physically reasonable nucle- 
ation fields, the complete A(r), K,(r), and M,(r) profiles 
have to be taken into account. 

IV. RESULTS 

A. Coercivity 
1. Plateau limit 

In the plateau region, where the soft regions are very 
small, the problem can be treated in perturbation theory.3P17P18 
As in quantum mechanics, the lowest order eigenvalue cor- 
rection is obtained by using the normalized unperturbed 
function “PO. This yields the nucleation field 

H =2 fs&+fh&a 
N El.o(fsMs+fhM/z) ’ (10) 

Note that this result is independent of the shape of the soft 
and hard regions so long as the hard regions remain aligned. 

2. Multilayer limit 
It is comparatively easy to treat one-dimensional struc- 

tures such as multilayers, since the micromagnetic 
multilayer problem is analogous to the periodic multiple 
quantum well problem. For a multilayered structure of alter- 
nating soft and hard magnetic layers the nucleation field is 
given by the implicit equationi 

g-G$xG ,,,i; 4-j 

=$ Jytan(; JT), (11) 
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where 1, and I, denote the thicknesses of the hard and soft 
layers, respectively. Note, that this result does not depend on 
whether the orientation of the crystallographic c axis of the 
hard phase is perpendicular or longitudinal. 

6. Energy product 

Equation (10) implies an ideally rectangular hysteresis 
loop with energy product ,uaM~/4, remanence Mr=fh 
Mh +f, M, , and (minimum) coercivity H,=M,/2. Putting 
K,=O in the plateau limit we obtain with H,=M,/2 the 
maximum energy product 

(BH j,,=; po@( I- p”(M;TIMh)M,). W! 
h 

Due to the large Kh , the second term in the bracket is small 
so the energy product approaches the ultimate value of 
poMi/4. The corresponding volume fraction of the hard 
phase is fh=pOMz/4Kh. 

The intermetallic with the most favorable combination 
of magnetization and anisotropy is Sm,Fe,,N3. If we con- 
sider the SmzFe,-IN,/Fe system and assume values 
poM,=2.15 T, pOMh=1.55 T, and Kh=12 MJ/m3, we 
obtain a theoretical energy product of 880 kJ/m3 (110 
MGOej for a volume fraction of only 7% of the hard phase.r7 
A further increase of the energy product is possible if iron is 
replaced by Fe65C03S with poM,= 2.43 T-the theoretical 
energy product of the Sm2Fe17N3/Fe6&035 system might be 
as high as 1090 kJ/m3 (137 MGOej, with fh=9%. It is re- 
markable that these optimum magnets are almost entirely 
composed of 3d metals, with only about 2-wt % samarium. 

Another possibility is a multilayered structure of alter- 
nating soft and hard magnetic layers. Assuming 
A,= 1.67X lo-” J/m and Ah= 1.07X lo-l1 J/m we de- 
duce from Eq. (11) that a SmzFe17Ns/Fe6,Co,S “megajoule 
magnet” is obtained for layer thicknesses lh=2.4 nm and 
Z,= 9 .O nm. The macroscopic shape of the magnet must of 
course correspond to the optimum operating point on the BH 
curve; it should approximate an ellipsoid with c/a=O.55. 
Note that A is generally of order lo-l1 J/m, so HN and 
(BH),, do not depend very much on the exchange-stiffness 
inhomogenity. 

C. Texture 

As we have seen, k;(r) and K3(r) do not inliuence the 
nucleation field so long as the unit vector in the easy axis 
direction n remains parallel to the field e,. The situation 
becomes much more difficult when the hard regions are only 
partially aligned or even isotropic. For instance, the compo- 
nents m, and m,, of m [cf. Eq. (S)] are now coupled in a very 
complicated way. However, in lowest order perturbation 
theory the m, and my decouple, and after some calculation 
we find that K1 in Eq. (8) has to be replaced by 

KeE=- $ (K,+2K2+4K3)+ ; (K1+4Kz+9K3)(n,2) 

6 - $ (2K2+9K3)(n:)+ B K3(n,). (13) 

The ensemble average ’ 
(...)=a-rJ...f(B)sin Bd0 where f(; deno~~~~~ textur: 
function of the hard phase. Note that Eq. (13) reduces to 
KeE=K, in the ideally anisotopic limit PQ= 1. 

To discuss the overall behavior of K,, we use the single- 
parameter texture function f (0) = (1 + V)COS” e28 and restrict 
ourselves to the case K,= K,=O. Using ~z==cos ti we obtain 

K,=&( ;;;I::) 7 (14) 

where M’ is the remanence of the hard regions in the 
interaction-free limit, i.e., M’=Mh for ideally anisotropic 
magnets and M’ = 0.5 Mh for isotropic magnets. In lowest 
order perturbation theory the nucleation field is proportional 
to K&, so HN= 0 for M’ = 0.5 Mh in this approximation. 
This means, that the nucleation field vanishes in the isotropic 
limit if soft and hard regions are extremely small. An alter- 
native interpretation is given by Eq. (l2), where Kh has to be 
replaced by KeE. The smallness of the l/Kh correction term 
in Eq. (12) requires the effective anisotropy to be very 
large,29 which is contradictory to KeE=O, and it is not pos- 
sible to apply Eq. (12) to isotropic materials. 

D. Isotropic magnets 

In the case of an isotropic matrix with randomly oriented 
hard regions alternative methods have to be used to calculate 
the coercivity. An estimate is obtained from a simple model 
where two hard regions with n,=ez and n,=fe, are subject 
to an effective coupling AI&. As it can be shown easiry, 
the weak-coupling limit (isolated grains) yields M,=Mh/2. 
In the case of strong exchange coupling the orientation of the 
grains is given by s1~s2=ex/~+ez/~, which yields the en- 
hanced remanence M,=M,,Iv?. Note that the instability of 
the aligned M(r)=Mhez state implies M,<M, for 
remanence-enhanced single-phase magnets. 

On the other hand, exchange coupling destroys coerciv- 
ity. For weak coupling we find H,= 2KhlpOMh, while the 
strong-coupling coercivity H,= K$&V?poM~)-’ de- 
creases with increasing exchange interaction. As expected, 
this result reduces to H,= 0 in the “plateau limit” (intiniteIy 
large A or infmitely small R,*). 

V. DISCUSSION 

A. Performance and processing 

A conceivable way to exploit the surpIus anisotropy in 
modern rare-earth permanent magnets is to use aligned two- 
phase magnets where the hard phase acts as a skeleton which 
keeps the magnetization of the soft phase in the desired di- 
rection. Micromagnetic analysis shows that the nucleation 
field in suitabIe nanostructured materials is proportional to 
the volume-averaged anisotropy. 

Equation (12), which represents a hardness expansion 
with respect to the small parameter p&M,-- Mh)Ms/K1, 
predicts the energy product of aligned nanostructured two- 
phase magnets to be nearly as high as the ultimate value 
poM$4. From the point of view of exchange coupling, the 
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mechanism is similar to the remanence enhancement in iso- 
tropic magnets, but yields a saturation magnetization which 
is larger than that of the aligned hard phase. 

The practical problem is to realize a structure where the 
soft regions are sufficiently small to avoid nucleation at 
small fields while having the hard regions crystallographi- 
tally oriented. One conceivable solution is a disordered two- 
phase magnet with a common c axis throughout the hard 
regions. The energy product Eq. (12) is independent of the 
shape of the soft regions, so long as their size lies in the 
plateau region. However, soft regions much larger than this 
plateau size drastically reduce the nucleation field,29 and it is 
difficult to see how the formation of large soft-magnetic 
clusters might be avoided in practice. Furthermore, the hard 
skeleton has to be aligned to avoid the anisotropy reduction 
described by Eq. (14). Note that remanence-enhanced isotro- 
pic two-phase magnets operate on a slightly larger length 
scale. 

A more realistic possibility may be a multilayered struc- 
ture of alternating soft- and hard-magnetic layers. Conceiv- 
able production methods are laser ablation deposition3’ or 
molecular-beam epitaxy. As discussed in Sec. IV, the 
permanent-magnetic performance of the multilayer is inde- 
pendent of whether the hard phase is perpendicularly or lon- 
gitudinally aligned. It is worthwhile mentioning that perma- 
nent magnetic multilayers are one-dimensional systems, 
whose eigenmodes are subject to weak localization (Ander- 
son localization). Weak localization in one-dimensional sys- 
tems is caused by an arbitrarily small disorder,31732 and 
second-order perturbation theoryz9 yields zero coercivity if 
the disorder is described by Gaussian or Poisson correlations. 
The reason for this coercivity breakdown is the small but 
finite probability of thick soft layers, since the coercivity is 
determined by the thickest soft layer around which the nucle- 
ation mode is localized. This means that weak localization 
does not destroy coercivity if there is an upper limit to the 
thickness of the soft layers. 

Equation (1) is based on classical micromagnetic consid- 
erations; the sizes of the hard and soft regions must be large 
compared to atomic dimensions so that a continuum model 
can be applied. The model must break down when I, or lh is 
smaller than about 1 run. However, due to the small prefactor 
(MS- M,,)/M, , 0.28 for the Sm2Fe17N3/Fe system, the en- 
ergy product is not much affected if the fraction of the hard 
phase is increased. We still have an energy product of almost 
800 kJ/m3 (100 MGOe) in the Sm,Fe,,N.@e system when 
f/*%3 0%) and we can use the extra hard material to out- 
weigh quantum-mechanical size effects, to improve the ther- 
mal stability, suppress the effect of random stray fields and to 
create pinning centers.17’29 

6. Outlook 

Table I gives a tentative discussion of the question to 
what extent “giant-energy product” magnets will ever be 
exploited commercially. At present, the actual production of 
these structures represents a realistic but nevertheless ex- 
tremely demanding challenge. In other words, the advantages 
of hypothetical “megajoule” magnets-very high energy 
product and low raw material costs-are largely outweighed 

TABLE I. Permanent magnet processing and applications. 

Material Performance 
Processing 

costs 
Raw material 

price 

Steel 
Ferrites 
Sm% 
Nd,Fer$ 
Sm,Fe,,Na 
“MJ” magnets 

low 
moderate 
high 
high 
high 
very high 

low 
moderate 
moderate 
moderate 
high 
very high 

low 
low 
high 
moderate 
moderate 
low 

by the complicated processing requirements. We therefore 
believe that the use of aligned nanostructured two phase 
magnets will be restricted to special applications such as mi- 
cromechanics or thin-film electronics. 

Of course, this emphasis on processing is likely to be a 
feature of all future permanent magnets, even if we include 
“exotic” systems such as magnetically hard room- 
temperature superconductive currents or nanoscale magnetic 
clusters where the > sign in Eq. (4) can be utilized.’ Let us 
imagine, for example, that it is possible to produce a single- 
phase permanent magnet somewhat better than Nd,Fe,,B by 
quenching from a high-pressure equilibrium state. The pro- 
cessing of this material will almost certainly be much more 
expensive than that of NdZFellrB, leading to much less wide- 
spread commercial applications. In our opinion, singular 
events such as the discovery of Nd,Fe,,B are unlikely to 
happen again, and most future technological and scientific 
progress will be in directions other than improving the en- 
ergy product. 

VI. CONCLUSIONS 

In conclusion, it is likely that substantial improvements 
in the energy product of permanent magnets can be achieved 
by exchange hardening in nanoscale combinations of a soft 
phase and an oriented hard phase, structured according to the 
principles we have outlined. For example, the maximum en- 
ergy product of nanostmctured SmaFe17N3/Fe65C03, multi- 
layers is predicted to be as high as 1090 kJ/m3 (137 MGOe). 
The high energy product, which is based on nucleation- 
controlled coercivity, breaks down in the limit of remanence- 
enhanced isotropic magnets. The actual production of the 
new material-a demanding but realistic aim-will be ex- 
pensive, which restricts the potential use of ‘giant-energy- 
product’ magnets to special applications. 
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