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The fundamental theorem of arithmetic says that any integer greater than 2 can
be written uniquely as a product of primes. For the ring Z[

√−5], although unique
factorization holds for ideals, unique factorization fails for elements. We investigate
both elements and ideals of Z[

√−5]. For elements, we examine irreducibility (the
analog of primality) in Z[

√−5] and look at how often and how badly unique fac-
torization fails. For ideals, we examine irreducibility again and a proof for unique
factorization.
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1 Introduction

In describing the natural understanding we have of factoring, the famous mathe-

matician Paul Erdös would have said,“Every baby knows that any integer greater

than one can be factored into a product of primes.” While Erdös often exagger-

ated what babies know, it is certainly true that most grade school children know it.

Moreover, the Fundamental Theorem of Arithmetic states that such a factorization

is unique, up to the ordering of the primes. Surprisingly, although factorizations

are unique for the integers, factorizations are not unique in general. One setting in

which unique factorization fails is the ring Z[
√−5] = {a + b

√−5 | a, b ∈ Z}. For

instance, the number 6 has two different factorizations in this ring:

6 = (2)(3) = (1 +
√−5)(1−√−5).

To verify that the two factorizations are truly different, we would need to know that

the factors 2, 3, 1 − √−5, and 1 +
√−5 are “prime” in Z[

√−5]; we will see that

later in Chapter 3.

The ring Z[
√−5] is interesting for many reasons. It is, as we will see in Chapter 6,

the first complex quadratic number ring where unique factorization fails for elements.

So, in looking at this ring, we will be interested in when an element can be factored,

what the factorizations are, how many factorizations exist, and how many elements

have more than one factorization. As it turns out, although unique factorization

fails for elements of Z[
√−5], it holds for ideals in Z[

√−5]. This result comes from

the fact that Z[
√−5] is what is called a Dedekind domain.
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In Chapter 2, we define an “irreducible” element in Z[
√−5] as the analog to a

“prime” number in Z. We also review some definitions and results from ring theory

and number theory.

In Chapter 3, we begin to analyze the reducible elements of Z[
√−5]. If an

integer (number of the form a + 0
√−5) factors in Z, it will factor in Z[

√−5]. For

prime numbers, however, the situation is more complicated. For example, 29 =

(3 + 2
√−5)(3 − 2

√−5), but 11 remains unfactorable. We then provide sufficient

conditions for reducibility. For example, a + b
√−5 is reducible if a ≡ ±b mod 6.

Of course, we also want to know when an element is irreducible and Chapter

4 presents a näıve algorithm to decide when an element of Z[
√−5] is irreducible;

we use it to study the density of “primes” in the two settings. The algorithm also

provides data for investigating how often and how badly unique factorization fails

in Z[
√−5]. A discussion of this data is included at the end of Chapter 4.

Historically, the ring Z[
√−5] motivated Richard Dedekind to develop the entire

theory of ideals [D]. Dedekind discovered that factorization for ideals is unique. His

remarkable insight into this ring opened up an entire area of study in algebra and

algebraic number theory, namely, the theory of Dedekind domains. In Chapter 5,

we look at factorizations of ideals in the ring. We also classify again what happens

to primes from Z in Z[
√−5], but this time as ideals.

Classical results in the theory of quadratic forms explain why factorization is

not unique in Z[
√−5]. It turns out that when there is only one equivalence class of

quadratic forms corresponding to a quadratic number ring, elements of the ring have

2



unique factorization; when a ring has more than one corresponding equivalence class

of quadratic forms, however, unique factorization fails. This is the case for Z[
√−5],

where the corresponding quadratic forms are x2 + 5y2 and 2x2 + 2xy + 3y2. For

more insight into the theory of quadratic forms, see p.10 of [D]. In Chapter 6, we

look at quadratic numbers rings to show that Z[
√−5] is the smallest of its kind for

which unique factorization fails. Then we take another look at Dedekind domains

and prove Dedekind’s result of unique factorization for ideals.

3



2 Background

We will use Z for the set of integers, Q for the set of rational numbers, and C for

the set of complex numbers.

2.1 Basic Definitions

In order to study Z[
√−5], we must first understand some of the underlying ideas in

basic abstract algebra.

Definition 2.1. A ring is a nonempty set with two binary operations, addition and

multiplication, such that, for all x, y, z in the ring:

(1) x + y = y + x

(2) (x + y) + z = x + (y + z)

(3) There exists an additive identity, 0, such that x + 0 = x.

(4) There exists an additive inverse, −x, such that x +−x = 0.

(5) x(yz) = (xy)z

(6) x(y + z) = xy + xz and (y + z)x = yx + zx

Moreover, a ring is called commutative if, in addition to (1)-(6), xy = yx for all

x, y in the ring. A ring for which there exists a multiplicative identity, 1, such that

1 · x = x · 1 = x for all x is called a ring with identity.

Most systems of numbers in which the usual notions of addition and multiplica-

tion hold, such as Z, Q or Z[
√−5], are commutative rings with identity. The set of

even integers, for instance, is a commutative ring without identity.
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Definition 2.2. A unit is a nonzero element x of a commutative ring such that

there is a nonzero element y in the ring with xy = 1. A zero-divisor is a nonzero

element x of a commutative ring such that there is a nonzero element y in the ring

with xy = 0.

In Z[
√−5], note that there are no zero divisors. Indeed, if there were zero

divisors, there would exist non-zero elements a + b
√−5 and c + d

√−5 such that

(a+b
√−5)(c+d

√−5) = (ac−5bd)+(ad+bc)
√−5) = 0. This would imply ac = 5bd

and ad = −bc. Assuming that c and d are not zero, bc
d

= −5bd
c

which implies either

b = 0 or c2 = −5d2. If b = 0, then ac = 0 which implies a = 0 as c 6= 0, contradicting

the fact that a + b
√−5 is non-zero. Since both c2 and d2 are nonnegative, the only

way c2 could equal −5d2 is if c = d = 0, which contradicts our assumption. Thus,

there do not exist zero-divisors in the ring. We will see in Chapter 3 that the only

units in Z[
√−5] are ±1.

Definition 2.3. An integral domain is a commutative ring with identity and no

zero-divisors.

By the above argument, the ring Z[
√−5] is an integral domain.

Definition 2.4. A field is a commutative ring with identity in which every nonzero

element is a unit.

An example of a field is Q, since the set of rationals is closed under addition,

subtraction, and multiplication, and every nonzero element has a multiplicative

inverse in Q.
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Definition 2.5. A nonzero, nonunit element α of a commutative ring that is divisi-

ble only by units and itself is called irreducible. An element α of a commutative ring

R is reducible if there exist nonzero, non-unit elements β, γ ∈ R such that α = βγ.

In other words, a nonzero, non-unit element that is not irreducible is reducible.

Examples of irreducible elements are 2, 3, and 1 ± √−5, which we saw in the in-

troduction, and whose irreducibility will be confirmed in Chapter 3. Examples of

reducible elements are 2 + 2
√−5 = 2(1 +

√−5) and 29 = (3 + 2
√−5)(3− 2

√−5).

Definition 2.6. Let R be a commutative ring. The polynomial ring R[x] over R

is just the set of polynomials in the indeterminate x with coefficients in R, namely

R[x] = {anxn + an−1x
n−1 + · · ·+ a1x + a0|ai ∈ R, n ∈ N}.

Some examples of polynomial rings include Q[x] and Z[x], the sets of polynomials

with coefficients in Q and Z, respectively. It is well-known that there exists a well-

defined division algorithm for the set of integers. That is, for a, b ∈ Z where b 6= 0,

there exists q, r ∈ Z such that a = bq+r where 0 ≤ r < b. Analogous to the integers,

the polynomial ring F [x] where F is a field has a well-defined division algorithm

(see p. 286 of [G]). That is, for all a(x), b(x) ∈ F [x] where b(x) 6= 0, there exists

q(x) and r(x) such that a(x) = b(x)q(x) + r(x) where 0 ≤ deg r(x) < deg b(x)

and the gcd(a, b) can be found by repeated use of the division algorithm. We will

use the division algorithm for integers in Proposition 5.12 and for polynomial rings

in Proposition 6.6 to say that if a and b are relatively prime, we can find a linear

combination of a and b that equals 1.

6



2.2 Perfect Squares modulo p

In the following chapter, we will need to determine when an integer is a perfect

square modulo p. This section summarizes the relevant notation and results from

number theory that we will need.

Definition 2.7. Let p be a prime. The Legendre symbol for an integer a is defined

as follows:

(
a

p

)
=





1 if a is a perfect square mod p,

−1 if a is not a perfect square mod p,

0 gcd(a, p) > 1.

We will use the following well-known theorems about Legendre Symbols. Proofs

can be found in any elementary number theory textbook. See p. 561 of [HJ], for

instance.

Theorem 2.8. Let a ≡ b mod p where p is a prime. Then
(

a
p

)
=

(
b
p

)
.

Theorem 2.9. Let a, b, p ∈ Z where p is a prime. Then
(

ab
p

)
=

(
a
p

)(
b
p

)
.

Theorem 2.10. Let p be an odd prime. Then
(
−1
p

)
= (−1)

p−1
2 .

Theorem 2.11 (Quadratic Reciprocity Theorem). Let p, q be odd primes.

Then
(

q
p

)(
p
q

)
= (−1)

q−1
2
· p−1

2 .
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3 Reducibles

The failure of unique factorization in Z[
√−5] is the motivation for our study. How-

ever, before we study the factorizations of an element, we must determine when

an element has non-trivial factorization, that is, when it is reducible. This chap-

ter describes various sufficient conditions for reducibility of an element. We begin

our study with norms and show how they can help us determine if an element is

reducible.

3.1 Norms

Definition 3.1. The element α = a− bi is called the conjugate of α = a + bi.

Definition 3.2. The norm N of α ∈ C is defined to be N(α) = αα = |α|2.

Notice that the norm N is the square of the usual norm in C. Using the square

of the usual norm allows us to avoid irrational numbers since, for a, b ∈ Z, the norm

N(a+b
√−5) = a2 +5b2 is an integer. Interestingly enough, N(α) satisfies the usual

norm properties shown below.

Lemma 3.3. Let α ∈ Z[
√−5]. Then N(α) = 1 if and only if α = ±1.

Proof. Let α = a + b
√−5 and 1 = N(α) = a2 + 5b2. Then b must be 0 and a must

be ±1.

Lemma 3.4. Let α, β ∈ C. Then N(αβ) = N(α)N(β).

8



Proof. The multiplicative property of our norm follows from the same property of

the usual complex norm, but we prove it here anyway. Let α = a+bi and β = c+di.

Then

N(αβ) = N((a + bi)(c + di))

= N((ac− bd) + (ad + bc)i)

= (ac− bd)2 + (ad + bc)2

= a2c2 − 2abcd + b2d2 + a2d2 + 2abcd + b2d2

= a2c2 + a2d2 + b2c2 + b2d2

= a2(c2 + d2) + b2(c2 + d2)

= (a2 + b2)(c2 + d2)

= N(α)N(β).

These lemmas also prove that the only units are ±1 since αβ = 1 implies

N(α)N(β) = 1 which implies N(α) = N(β) = 1. Lemma 3.4 simply says that

the multiplicative property of norms holds for α, β ∈ Z[
√−5]. Of course, since not

every integer has the form a2 +5b2, not every integer will be the norm of an element

in Z[
√−5]. The following lemma and proposition help us see exactly what integers

can be norms.

Lemma 3.5. There are no perfect squares ending in 2, 3, 7, or 8.

Proof. Since we are looking at the last digit of a given number, we need only look

at the integers mod 10. Consider Table 1.

9



x mod 10 0 1 2 3 4 5 6 7 8 9

x2 mod 10 0 1 4 9 6 5 6 9 4 1

Table 1: Perfect Squares modulo 10

Since 2, 3, 7, and 8, are not squares modulo 10, there do not exist perfect squares

in Z ending in 2, 3, 7, or 8.

With this in mind, we can now limit the number of possible norms.

Proposition 3.6. There are no norms ending in 2, 3, 7, or 8.

Proof. We want to show that for any a, b ∈ Z, the norm N(a + b
√−5) = a2 + 5b2

does not end in 2, 3, 7, or 8. Look at a2 + 5b2 mod 10. From the lemma above,

the possible values of a2 mod 10 are 0, 1, 4, 5, 6, or 9, and a quick check shows the

possible values of 5b2 mod 10 are just 0 and 5. Thus the possible values of a2 + 5b2

are just 0, 1, 4, 5, 6, and 9, as shown in Table 2.

a2 mod 10 0 0 1 1 4 4 5 5 6 6 9 9

5b2 mod 10 0 5 0 5 0 5 0 5 0 5 0 5

a2 + 5b2 mod 10 0 5 1 6 4 9 5 0 6 1 9 4

Table 2: Possible Norms modulo 10

Thus, there do not exist any norms in Z[
√−5] that end with 2, 3, 7, or 8.

10



Now that we have established some properties of the norm, we can find a way

to determine when an element is, in fact, reducible. If an element is reducible in

Z[
√−5], then its norm must have a nontrivial factorization in which the integer

factors must be possible norms in Z[
√−5]. If no such factorization exists, the

element must be irreducible. Consider, for example, the element 1 +
√−5 of norm

6. If 1 +
√−5 = αβ, then N(1 +

√−5) = N(αβ) = N(α)N(β). The only nontrivial

factorization of 6 ∈ Z is 2 · 3, and by Proposition 3.6, no elements in Z[
√−5] have

norms 2 or 3, so no such α, β exist, and 1 +
√−5 is irreducible. Similarly, 2, 3,

and 1 − √−5 are irreducible, which verifies the assertion in the introduction that

(1 +
√−5)(1−√−5) and (2)(3) are distinct factorizations of 6.

On the other hand, consider the element 7+
√−5 of norm 54. By Proposition 3.6,

the only possible norms that multiply to 54 are 6 and 9. So, if there exists a

factorization of 7 +
√−5, the factors must have norms 6 and 9. Checking all the

factors with norms 6 and 9, one can find that

7 +
√−5 = (1 +

√−5)(2−√−5),

so 7 +
√−5 is reducible.

3.2 Rational Integers

We just saw how norms can help us determine the reducibility of an element, but this

strategy can be quite time-consuming. We would like to find concrete conditions to

determine reducibility, that is, we would like statements of the form “if an element is

11



of a particular form, it is reducible.” Let us begin with the set Z. The set of integers

is contained in Z[
√−5]. So, if a number is reducible in Z, it will automatically be

reducible in Z[
√−5]. However, if a number is prime in Z, it is not necessarily

irreducible in Z[
√−5].

Definition 3.7. If p is a prime number in Z, we say p is a rational prime in

Z[
√−5].

The factorization of rational primes in Z[
√−5] is well-known. For example,

the rational prime 5 becomes reducible as 5 = (
√−5)(−√−5) and 41 becomes

reducible as 41 = (6 +
√−5)(6 −√−5), but 13 remains irreducible. The following

lemma explains what happens when a rational prime is reducible.

Lemma 3.8. If p is a rational prime and reducible, then −5 is a square modulo p.

Proof. Let p be reducible. If p = αβ where α, β are not units, then p2 = N(p) =

N(αβ) = N(α)N(β) and N(α) = p. If α = a + b
√−5, then a2 + 5b2 = p. Then

a2 + 5b2 ≡ 0 mod p which implies a2 ≡ −5b2 mod p. Thus (ab−1)2 ≡ −5 mod p

since b is a unit in Zp.

After presenting the following lemma, we can describe exactly what happens to

rational primes in Z[
√−5].

Lemma 3.9. Let p be a prime. If gcd(a, p) = 1, then y ≡ ax mod p has a solution

(x0, y0) with 0 < |x0| < √
p and 0 < |y0| < √

p.

12



Proof. Let k = d√pe, and consider the set S = {y − ax | 0 ≤ x, y ≤ k − 1},

which has at most k2 distinct elements. There exist y1 − ax1, y2 − ax2 ∈ S with

x1 6= x2 or y1 6= y2 such that y1−ax1 ≡ y2−ax2 mod p by the pigeonhole principle

(since k2 > p). If x1 = x2, then y1 ≡ y2 mod p which implies y1 = y2, since

|y1 − y2| ≤ k − 1 < p, which is impossible. Similarly, if y1 = y2, we would have

x1 = x2, which is impossible. So y1 − y2 ≡ a(x1 − x2) mod p. Let x0 = x1 − x2

and y0 = y1 − y2. Then y0 ≡ ax0 mod p. By the way we defined S, we know

0 < x1, x2, y1, y2 <
√

p so 0 < |x1−x2|, |y1− y2| < √
p. Thus 0 < |x0|, |y0| < √

p and

(x0, y0) is the desired solution.

Theorem 3.10. Let R = Z[
√−5], and let p be a rational prime in R. Then

1. p = 5 is the square of an irreducible element.

2. If p ≡ 1 or 9 mod 20, then p is reducible.

3. If p = 2 or p ≡ 3, 7, 11, 13, 17, or 19 mod 20, then p is irreducible.

Proof. We will break the proof down into the following three cases.

1. Let p = 5. It is easy to see that 5 = (
√−5)(−√−5). We also know

√−5 is

irreducible as N(
√−5) = 5 and the only integers that divide 5 are 1 (where

all elements with norm 1 are units) and 5 (where only ±√−5 have norm 5).

Thus p acts like the square of an irreducible.

2. Let p ≡ 1 mod 20. By the Quadratic Reciprocity Theorem,
(

5
p

)(
p
5

)
=

(−1)
5−1
2
· p−1

2 = (−1)p−1 = 1, so
(
−5
p

)
=

(
−1
p

)(
5
p

)
= (−1)

p−1
2

(
p
5

)
= (−1)

p−1
2

(
20k+1

5

)
=

13



(−1)
p−1
2

(
1
5

)
= 1. Thus, there exists a solution z0 to z2 ≡ −5 mod p. By

Lemma 3.9, there exist x0, y0 such that y0 ≡ z0x0 mod p, with 0 < |x0|, |y0| <
√

p. Then y2
0 ≡ (z0x0)

2 mod p which implies y2
0 ≡ −5x2

0 mod p and so

y2
0 + 5x2

0 = kp for some k ∈ Z. Since 0 < |x0|, |y0| < √
p, we see y2

0 + 5x2
0 < 6p.

Therefore, 0 < k < 6. Since y2
0 + 5x2

0 = kp and p ≡ 1 mod 20, y2
0 ≡ k

mod 5. Since 0,±1 are the only squares modulo 5, k ≡ 0,±1 mod 5. So,

k = 1, 4, or 5.

Case 1: If k = 1, then p = y2
0 + 5x2

0 = (y0 + x0

√−5)(y0 − x0

√−5).

Case 2: If k = 4, then y2
0 + 5x2

0 = 4p, so y2
0 + x2

0 ≡ 0 mod 4. Since 0

and 1 are the only squares modulo 4, x2
0 ≡ y2

0 ≡ 0 mod 4, which means

x0 = 2a and y0 = 2b for some a, b ∈ Z. Then 4b2 + 20a2 = 4p and

p = (b + a
√−5)(b− a

√−5).

Case 3: If k = 5, then y2
0 + 5x2

0 = 5p and so 5|y0. Say y0 = 5a. Then

25a2 + 5x2
0 = 5p, so 5a2 + x2

0 = p and p = (x0 + a
√−5)(x0 − a

√−5).

Therefore, we can find a factorization of p for all k, so if p ≡ 1 mod 20, the p

is reducible.

Let p ≡ 9 mod 20. Then
(
−5
p

)
=

(
−1
p

)(
5
p

)
= (−1)

p−1
2

(
p
5

)
= (−1)

p−1
2

(
20k+9

5

)
=

(−1)
p−1
2

5−1
2

(
4
5

)
= 1. Thus, there exists a solution z0 to z2 ≡ −5 mod p. As

before, y2
0 + 5x2

0 = kp, but now we have p ≡ 9 mod 20. So y2
0 ≡ −k mod 5.

Then we still have k ≡ 0,±1 mod 5 as the possible values for k, which all

yield factorizations of p. Thus, p is reducible for all p ≡ 1, 9 mod 20.
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3. Let p = 2. To show it is irreducible, we will consider the norm. If 2 = αβ, then

4 = N(2) = N(αβ) = N(α)N(β). The possible values for N(α)N(β) are 2 · 2

and 4·1. There do not exist elements with norm 2, so without loss of generality,

let N(α) = 4 and N(β) = ±1. Then, β = 1 and 2 is irreducible by definition.

Let p ≡ 3 or 7 mod 20. The norm N(p) = p2 = p·p. As we saw in Lemma 3.6,

there does not exist an element in Z[
√−5] with norm p, thus a rational prime

p that is congruent to 3 or 7 mod 20 is irreducible in Z[
√−5]. Let p ≡ 11

mod 20. By Lemma 3.8, we need only to show that −5 is not a square modulo

p. This is the same as showing that the Legendre symbol
(
−5
p

)
is −1. Applying

Theorems 2.10 and 2.11 shows
(
−5
p

)
=

(
−1
p

) (
5
p

)
= (−1)

p−1
2

(
5
p

)
= −

(
5
p

)
and

from the proof of part 2
(

5
p

)
=

(
p
5

)
so

(
5
p

)
=

(
20k+11

5

)
=

(
1
5

)
= 1. Therefore,

(
−5
p

)
= −1, so −5 is not a perfect square mod p and, by our lemma, p is

irreducible. Similar arguments show that if p ≡ 13, 17, 19 mod 20, then p is

irreducible in Z[
√−5]. Here are the details.

Let p ≡ 13 mod 20. Then
(
−5
p

)
=

(
−1
p

)(
5
p

)
= (−1)

p−1
2

(
5
p

)
=

(
5
p

)
and so

(
−5
p

)
=

(
5
p

)
=

(
p
5

)
=

(
20k+13

5

)
=

(
3
5

)
= −1.

Let p ≡ 17 mod 20. Then
(
−5
p

)
=

(
−1
p

)(
5
p

)
= (−1)

p−1
2

(
5
p

)
=

(
5
p

)
and so

(
−5
p

)
=

(
5
p

)
=

(
p
5

)
=

(
20k+17

5

)
=

(
7
5

)
=

(
2
5

)
= −1.

Let p ≡ 19 mod 20. Then
(
−5
p

)
=

(
−1
p

)(
5
p

)
= (−1)

p−1
2

(
5
p

)
= −

(
5
p

)
and so

(
−5
p

)
= −

(
5
p

)
= −

(
p
5

)
= −

(
20k+19

5

)
= −

(
9
5

)
= −

(
4
5

)
= −1. In each case,

since −5 is not a square mod p, p is irreducible in Z
√−5 by Lemma 3.8.
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3.3 When is a general element reducible?

We saw what happens to rational integers in our ring, but we really want to know

when a general element a+b
√−5 is reducible in Z[

√−5]. Let’s start with the trivial

cases. Since we need not consider the 0 element, we may assume that at least one

of a, b is not 0. If a = 0 and b 6= 0, then b
√−5 is irreducible if and only if b = ±1.

If a 6= 0 and b = 0, then the element is simply an integer. If a is factorable in Z, it

will be reducible in R. However, if a is prime in Z, then we must refer to Theorem

3.10.

When we study reducibility of a general element a+ b
√−5, we must realize that

the set of elements of Z[
√−5] contains the set of integers. In fact, a simple integer

pair (a, b) generates four elements of Z[
√−5]: a+b

√−5, a−b
√−5,−a+b

√−5, and

−a− b
√−5. The following result shows that to determine the reducibility of these

four elements it is enough to consider only one of them.

Proposition 3.11. For a, b ∈ Z, the following statements are equivalent:

(1) a + b
√−5 is reducible.

(2) a− b
√−5 is reducible.

(3) −a + b
√−5 is reducible.

(4) −a− b
√−5 is reducible.
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Proof. Assume a + b
√−5 is reducible. Then there exists m,n, s, t ∈ Z such that

a + b
√−5 = (m + n

√−5)(s + t
√−5). This means a = ms− 5nt and b = mt + ns.

Then

−a− b
√−5 = −(ms− 5nt)− (mt + ns)

√−5 = (m + n
√−5)(−s− t

√−5),

a− b
√−5 = (ms− 5nt)− (mt + ns)

√−5 = (−m + n
√−5)(−s + t

√−5),

and

−a + b
√−5 = −(ms− 5nt) + (mt + ns)

√−5 = (−m + n
√−5)(s− t

√−5).

Thus (1) implies (2), (3), and (4). Analogous arguments show that each one of

(2), (3), and (4) implies the other three statements.

It is important to note that, although the signs of a and b do not affect the

(ir)reducibility of a+b
√−5 and its counterparts, the signs do matter in determining

the actual factorizations of a + b
√−5 and its counterparts, as shown in the above

proof. We will use this fact in the following chapter.

We can sometimes determine reducibility of a + b
√−5 based on properties of a

and b. The next five propositions do just this.

Proposition 3.12. Let a, b ∈ Z. If gcd(a, b) > 1, then a + b
√−5 is reducible.

Proof. Let gcd(a, b) = r > 1, that is, a = rs and b = rt for some integers s and t.

Then

a + b
√−5 = r(s + t

√−5),

so a + b
√−5 is reducible.
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Proposition 3.13. Let a, b ∈ Z. If a is a multiple of 5, then a+ b
√−5 is reducible.

Proof. Let a = 5m for some m ∈ Z. Then

a + b
√−5 = 5m + b

√−5 = (
√−5)(−m

√−5 + b),

so a + b
√−5 is reducible.

Proposition 3.14. If a ≡ ±b mod 6 and a2 +5b2 > 6, then a+ b
√−5 is reducible.

Proof. If a = ±b, then a+b
√−5 is reducible by Proposition 3.12. So assume a 6= ±b

and a2 + 5b2 > 6. First, let a ≡ b mod 6. Then a = b + 6k for some k ∈ Z and

a + b
√−5 = (b + 6k) + b

√−5

= (k + b + 5k) + (−k + k + b)
√−5

= ((k + b)− k
√−5)(1 +

√−5).

Since (k + b)− k
√−5 is not a unit for k 6= 0 and 1 +

√−5 is not a unit, we see that

a + b
√−5 is reducible.

Now let a ≡ −b mod 6. Then a = 5b + 6k for some k ∈ Z and

(5b + 6k) + b
√−5 = (k + 5(b + k)) + (b + k − k)

√−5

= (k + (k + b)
√−5)(1−√−5).

Since k + (k + b)
√−5 is not a unit for k 6= 0 and 1−√−5 is not a unit, we see that

a + b
√−5 is reducible.

Proposition 3.14 implies that at least one third of all the elements in the ring

are reducible (since one third of all elements have the form a ≡ ±b mod 6).
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Proposition 3.15. If a ≡ ±2b mod 9 and a2+5b2 > 9, then a+b
√−5 is reducible.

Proof. First, let a ≡ 2b mod 9 and write a = 2b + 9k for some k ∈ Z. Then

a + b
√−5 = (2b + 9k) + b

√−5

= (4k + 2b + 5k) + (−2k + 2k + b)
√−5)

= (2 +
√−5)((2k + b)− k

√−5).

To see that (2k + b)−k
√−5 is not a unit, note that it would only be a unit if k = 0

and b = ±1, which would imply a2 + 5b2 = 9 6> 9. Since 2 +
√−5 is also not a unit,

a + b
√−5 is reducible.

Now, let a ≡ −2b mod 9 and write a = −2b + 9k for some k ∈ Z. Then

a + b
√−5 = (−2b + 9k) + b

√−5

= (4k − 2b + 5k) + (2k − 2k + b)
√−5

= (2−√−5)((2k − b) + k
√−5)

To see that (2k− b)−k
√−5 is not a unit, note that it would be a unit only if k = 0

and b = ±1, which would again imply a2 + 5b2 = 9 6> 9. Since 2−√−5 is also not

a unit, a + b
√−5 is reducible.

The five propositions above are rather straight forward. So a natural question is

how powerful are these results? Using the algorithm described in the next chapter,

we can examine these questions. It turns out that these propositions account for all

the reducible elements up to norm 400. The“first” reducible element that does not

fall into one of these cases is 19+3
√−5, with norm 406. In fact, of the 250 reducible

elements with norm less than 1000, only 10 do not fall under the assumption of our
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propositions. If we go up to norm 10,000, only 214 out of 1620 reducible elements

are not described by our propositions. Figure 1 gives a graphical representation

of the reducible elements with norm under 1000. The term “interesting reducible”

refers to those elements not covered by the above five propositions.

0

10

5

b

10 3025200 155

a

Reducibles              

Interesting Reducibles  

Figure 1: Graph of Reducibles and Interesting Reducibles

Of course, even though these theorems are powerful, they do not cover all the

cases. When given a general element, we need to check if it falls under the conditions

of one of our five propositions. If it does not, we need a different approach, which

is the purpose of the algorithm described in Chapter 4.
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4 Irreducibles

Although the sufficient conditions in Chapter 3 cover many reducible cases, they do

not cover all reducible elements. We want something that can definitively tell us

when a given element is irreducible, much like the various tests for primality that

exist for the rational integers.

4.1 Irreducibility Algorithm

At the end of Section 3.1, we introduced a way to determine the factors of a given

element. It turns out that these computations can also determine if an element is

irreducible. If, by looking at the elements whose norms are factors of the norm of

our element, we do not find two elements that multiply to the element in question,

then our element is irreducible. Let’s look at an example. Consider the element

7+5
√−5 with norm 174. If it factors, Lemma 3.4 shows that the factors must have

norms that divide 174. So let us consider the factorizations of 174 and throw out

the impossible norms. We can check that

174 = 2 · 3 · 29 = 1 · 174 = 2 · 87 = 3 · 58 = 6 · 29.

Since the only factorization involving products of possible (nontrivial) norms is

6 · 29, we need only look at all elements of norms 6 and 29, namely ±1±√−5 and

±3± 2
√−5. Let’s compute the possible products:

(1 +
√−5)(3 + 2

√−5) = −9 + 5
√−5
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(1 +
√−5)(−3− 2

√−5) = 9 + 5
√−5

(1−√−5)(3− 2
√−5) = −9− 5

√−5

(1−√−5)(−3 + 2
√−5) = 9− 5

√−5

(1 +
√−5)(3− 2

√−5) = 15 +
√−5

(1 +
√−5)(−3 + 2

√−5) = −15 +
√−5

(1−√−5)(3 + 2
√−5) = 15−√−5

(1−√−5)(−3− 2
√−5) = −15−√−5

Since none of these multiply to 7 + 5
√−5, it must be irreducible. Thus, with some

computations, we can definitively find when a given element is irreducible!

We would like to know which elements are reducible and which are irreducible.

However, the above technique requires an exhausting amount of work by hand. So

we want to design a computer algorithm to give us a list of elements and tell us

whether each element is (ir)reducible. We will use the following simple algorithm

(for the code in Maple, see Appendix A).

1. Create a list S of all positive integer pairs (a, b) and compute the norms of the

corresponding elements ±a± b
√−5.

2. Check each element in S for reducibility using Propositions 3.12 – 3.15.

3. For each element a + b
√−5 of S, find all non-trivial two-factor factorizations

of N(a + b
√−5), where the factors are themselves norms.

4. For each nontrivial factorization N(a + b
√−5) = st found in step 2, multiply
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all elements of norm s with all elements of norm t. If there are two elements

whose product is a + b
√−5, then a + b

√−5 is reducible. If no such pair is

found, a + b
√−5 is irreducible.

4.2 Comparing Z[
√−5] with Z

With the algorithm, we can determine an endless number of irreducible elements

(supposing that there are infinitely many rational primes p ≡ 3, 7, 11, 13, 17, 19

mod 20). This allows us to study the irreducibles in our ring in a more efficient

way and even compare them with irreducibles in other rings, such as the ring of

integers. The set of irreducibles in Z is just the set of rational primes (primes in

Z). One of the most widely studied aspects of primes in Z is their density amongst

the other integers. In fact, there is a function, π(n), which denotes the number of

primes up to and including n. So the obvious question arises: What is the density

of irreducibles in Z[
√−5] and is it similar to that of the primes in the integers?

We want to define a function IR(n) for Z[
√−5] that is somehow analogous to

π(n) for the integers. Since Z[
√−5] is not an ordered set, we can not talk about the

elements of Z[
√−5] “less than” n, but we can talk about the elements with norm

less than or equal to n.

Recall that elements in our ring look like ±a± b
√−5. Do we want to count all

of these? The function π(n) only counts the positive numbers (those found on the

right of the real line). Analogously, we want to count only those elements on the
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right half of the complex plane. So let IR(n) be the number of irreducibles of the

form a ± b
√−5 with norms up to a given n with a, b ≥ 0. As an example, take

n = 20. Then

π(20) = |{2, 3, 5, 7, 11, 13, 17, 19}| = 8

and

IR(20) = |{2, 3,±√−5, 1±√−5, 2±√−5, 3±√−5}| = 10.

Is IR(n) the right analogy to π(n)? Let’s consider for a moment the number 7,

an element in both rings. For the function π(n), we need only go up to n = 7 to

count the number of primes up to 7, but for IR(n), we must go up to n = 49, the

norm of 7, to count the number of primes. So maybe the right analog for π(n) is

IR(n2) instead of IR(n). Let’s look at some values.

n 10 100 1000 10000

π(n) 4 25 168 1229

IR(n) 8 35 237 1832

IR(n2) 35 1832 ∗ ∗

Table 3: Comparison between number of irreducibles and number of primes.

We immediately see that IR(n2) is not the right comparison as the value for

n = 100 is already at 1832! However, there does seem to be a similarity in general

shape between π(n) and IR(n). Let’s look at this graphically in Figure 2.
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Figure 2: IR(n) and π(n)

It appears that π(n) is much smaller than IR(n) as n increases. However, the

number of elements in our ring up to a given norm n is different from the number of

elements in Z up to a given n. Going back to our previous example of n = 20, there

are 20 positive integers up to n = 20, yet 15 elements in Z[
√−5] with norm less

than 20 and a ≥ 0. So we can modify our comparison to reflect this difference. Since

we began discussing the density of primes and irreducibles, let us now compare π(n)
n

with IR(n)
Count(n)

where Count(n) is the number of elements up to a norm n much like

for the set of integers n is the number of elements up to n.
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n 10 100 1000 10000

Count(n) 10 75 718 4357

π(n)
n

.4 .25 .17 .12

IR(n)
Count(n)

.8 .47 .33 .26

Table 4: Density of primes and irreducibles

It is easy to see from the table that IR(n)
Count(n)

is about 2 times larger than π(n)
n

,

at least up to norm 10,000. This suggests that, as n gets larger, the density of

irreducibles follows a pattern similar to that of the density of rational primes.

4.3 Approximating IR(n)

The following well-known theorem gives us an approximation for the number of

primes up to a given n.

Theorem 4.1 (Prime Number Theorem). The number of prime numbers up to

a given n, denoted π(n) is approximated by the function n
ln(n)

for large n.

Proof. See pp. 278-291 in [A].

Inspired by the Prime Number Theorem, we might guess that IR(n) is approx-

imated by Count(n)
ln(Count(n))

.

We can see on Figure 3 that Count(n)
ln(Count(n))

vastly underestimates IR(n), so we try

to multiply it by some constant, as in Figure 4. Our constant (in this case 4.16)
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Figure 3: IR(n) and Count(n)
ln(Count(n))

comes from determining a linear fit for the two functions IR(n) and Count(n)
ln(Count(n))

of

the form y = Ax.

Although this is a good approximation up to norm 10,000, its easy to see that the

difference between the two functions will grow large as n gets larger as 4.16 Count(n)
ln(Count(n))

is more concave down. Thus, we have not found a good fit for IR(n). Finding a

good approximation is actually a rather complicated task that relates to Riemann

Zeta functions. For more information, see Chapter 12 in [A].
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Figure 4: IR(n) and 4.16 · Count(n)
ln(Count(n))

4.4 How often and how badly does unique factorization fail?

Now that we have an algorithm to determine the reducibility of an element, we can

use it to check just how badly unique factorization fails. We will return to looking at

only elements of the form a + b
√−5 where a, b > 0 (Proposition 3.11 implies that if

unique factorization fails for a+b
√−5, it will also imply for a−b

√−5.) It turns out

that, of the 375 elements (250 of which are reducible) up to norm 1,000, only 44 have

non-unique factorizations. Of these 44 elements, 38 have only two factorizations, 5

have three factorizations, and only one has four factorizations. The first element

with three factorizations is 21, whose factorizations are (3)(7), (4+
√−5)(4−√−5),
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and 1+2
√−5)(1−2

√−5) and the only element with four factorizations is 24+6
√−5.

This element has four factorizations as two of its factors, 6 and 12 + 3
√−5, each

have two factorizations themselves. So, in a sense, unique factorization does not fail

that badly (at least up to norm 1,000).

To take this point even further, of the 44 elements with more than one factoriza-

tion, there are 14 that have non-unique factorizations because one of their factors

has non-unique factorizations as well. For example, 12 has non-unique factoriza-

tions because 6 has non-unique factorizations. The factorizations of 6, as we saw in

the introduction, are (2)(3) and (1 +
√−5)(1 − √−5); the factorizations of 12 are

simply (2)(2)(3) and (2)(1 +
√−5)(1 − √−5). Of these 14 elements, 11 have two

factorizations, 2 have three factorizations, and 1 has four factorizations (the element

24 + 6
√−5 mentioned above. It turns out that only the elements with more than 2

factorizations actually have two factors that fail to have unique factorization.

Of the 16 elements (less than norm 1,000) with 3 irreducible factors per factor-

ization, 11 of them have a factor that has non-unique factorizations and of the 4

elements (less than norm 1,000) with 4 factors per factorization, 3 of them have a

factor that has non-unique factorizations. Thus only 30 of the 375 elements with

norm less than 1,000 are interesting cases where unique factorization fails.
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5 Factorizations of Ideals

In the previous chapters, we studied when and how the elements of Z[
√−5] factor,

and even how many factorizations they have. Now, we turn to the ideals of Z[
√−5],

where unique factorization holds.

5.1 Definitions and Results from Ideal Theory

Before we study the ideals, we must first establish what an ideal is and some results

that are necessary for our study. From now on, we will assume that all rings are

commutative and have an identity.

Definition 5.1. A subset S of a ring R is a subring of R if S is itself a ring with

the operations of R and 1 ∈ S.

Definition 5.2. A subring I of a commutative ring R is called an ideal of R if ra

is in I for every r ∈ R and every a ∈ I.

In any ring R, {0} is an ideal since a ·0 = 0 ∈ R for all a ∈ R, and the entire ring

is an ideal as it is closed under multiplication. We can also create ideals generated

by any other element of the ring.

Definition 5.3. An ideal I of a ring R is a principal ideal if there exists a ∈ R

such that I = (a) = {ar | r ∈ R}. In other words, I is generated by a.

An example of a principal ideal is (2) in Z. This is simply the set of even integers.

Another example is (2) in Z[
√−5], which is the set of elements a + b

√−5 where 2
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divides both a and b.

Definition 5.4. Let R be a commutative ring with unity and let a1, a2, ..., an be

elements of R. Then I = (a1, a2, ..., an) = {r1a1 + r2a2 + · · ·+ rnan | ri ∈ R} is an

ideal of R and is called the ideal generated by a1, a2, ..., an.

Some examples of ideals generated by specific elements in Z[
√−5] are

(
√−5) = {r√−5 | r ∈ Z[

√−5]} = {a√−5− 5b | a, b ∈ Z}

and

(2, 1 +
√−5) = {r2 + s(1 +

√−5) | r, s ∈ Z[
√−5]}.

We can also define operations on ideals.

Definition 5.5. The sum of two ideals I and J is defined as I + J = {a + b | a ∈

I, b ∈ J}. The product of two ideals I and J is defined as IJ = {∑ aibi | ai ∈

I, bi ∈ J}.

As irreducible elements acted as the building blocks for elements in Z[
√−5],

prime ideals will do the same for ideals of Z[
√−5].

Definition 5.6. A prime ideal I of a commutative ring R is a proper ideal of R in

which for all a, b ∈ R ab ∈ I implies a ∈ I or b ∈ I.

Definition 5.7. A proper ideal of a ring is an ideal that is strictly smaller than the

entire ring. A maximal ideal I of R is a proper ideal of R for which, whenever J is

an ideal of R and I ⊆ J ⊆ R, then J = I or J = R.
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The rest of this section describes results necessary for our analysis in the remain-

der of this thesis.

Definition 5.8. If R ⊆ S, where R and S are rings, then S is said to be integral over R

provided that every element of S is integral over R, namely, for any s ∈ S, there

exists a nonzero monic polynomial f(x) ∈ R[x] such that f(s) = 0. If every element

in S that is integral over R actually belongs to R, then R is called integrally closed

in S.

Notation. Let R be a ring and I be an ideal of R. Then R/I = {r + I | r ∈ R} is

called the quotient ring of R by I.

Some examples are Z/(2), which is just Z2 = {0, 1}, and Z[
√−5]/(6), which is

just Z6[
√−5] = {a + b

√−5|a, b ∈ Z6}.

The following two propositions are taken from [G, p.259].

Proposition 5.9. Let R be a commutative ring with identity and let I be an ideal.

Then R/I is an integral domain if and only if I is prime.

Proof. First, suppose that R/I is an integral domain. Let a, b ∈ R such that ab ∈ I.

Then (a + I)(b + I) = ab + I = I which implies either a + I = I or b + I = I since

R/I is an integral domain. If a + I = I, then a ∈ I. If b + I = I, then b ∈ I.

Therefore, since either a ∈ I or b ∈ I, I is prime.

Now, assume I is prime. We know R/I is a commutative ring with identity so

we need only show it has no zero divisors. Suppose a + I, b + I ∈ R/I such that
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(a + I)(b + I) = 0 + I = I. Then ab ∈ I, which implies a ∈ I or b ∈ I. Thus,

a + I = 0 + I or b + I = 0 + I. So, R/I has no zero divisors and R/I is an integral

domain.

Proposition 5.10. Let R be a commutative ring with identity and let I be an ideal

of R. Then R/I is a field if and only if I is maximal.

Proof. First, suppose R/I is a field and J is an ideal of R such that I ⊂ J . Let

a ∈ J , but a /∈ I. Then a + I is a nonzero element of R/I and, therefore, since R/I

is a field, there exists b ∈ I such that (a + I)(b + I) = 1 + I. Since a ∈ J , we have

ab ∈ J , and since 1 + I = (a + I)(b + I) = ab + I, we have 1 − ab ∈ I ⊂ J . So

1 = (1− ab) + ab ∈ J and J = R as J contains the identity. Thus I is maximal by

definition.

Now, suppose I is maximal and let a ∈ R but a /∈ I. To show R/I is a field,

we need only to show that a + I has a multiplicative inverse. Consider the ideal

J = {ar + b|r ∈ R, b ∈ I}. Then I ( J . Since I is maximal and I 6= J , we have

J = R and so J must contain the identity. There exists b′ ∈ I and c ∈ R such that

1 = ac + b′ and so 1 + I = ac + b′ + I = ac + I = (a + I)(c + I). Thus a + I has a

multiplicative inverse and R/I is a field.

Proposition 5.11. Every maximal ideal is a prime ideal.

Proof. Let M be a maximal ideal. Then by Proposition 5.10, R/M is a field. Since

every field is an integral domain, we see by Proposition 5.9 that I is prime.
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5.2 How ideals factor

In the previous chapter, we considered factorizations of elements in Z[
√−5]; here

we look at factorizations of ideals in Z[
√−5]. Much like an element of a ring R,

an ideal is reducible if it can be expressed as the product of two proper, nontrivial

ideals.

Let us first consider principal ideals. Say we have an element a ∈ Z such that

a = bc. Then the ideal generated by a can be factored as (a) = (b)(c). Thus, for

any composite integer, the corresponding ideal generated by that integer will also

be reducible. What about rational primes in Z[
√−5]? We know how they factor

as elements (Theorem 3.10), but how do they factor as ideals? We know that if a

prime is reducible as an element, it will be reducible as an ideal but if it is irreducible

as an element, will it be irreducible as an ideal? It turns out that sometimes it is

irreducible as an ideal but sometimes it is not. An ideal generated by an irreducible

element is not necessarily irreducible as an ideal, as we will see in Theorem 5.16.

First, we need to establish a way of factoring an ideal generated by certain rational

primes.

Proposition 5.12. Let p be an odd rational prime and suppose there exists z ∈

Z such that z2 ≡ −5 mod p. Then (p) = (z +
√−5, p)(z − √−5, p). Moreover,

(z +
√−5, p) and (z −√−5, p) are prime ideals.

Proof. Consider the ideal (z +
√−5, z +

√−5, p, z2+5
p

). This ideal contains both p

and (z+
√−5)+(z−√−5) = 2z, which are relatively prime since z 6≡ 0 mod p and
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p 6= 2. Then 1 is in the ideal as we can use the extended Euclidean algorithm to find a

linear combination of p and 2z that equals 1, and so R = (z+
√−5, z+

√−5, p, z2+5
p

).

So we need only show (p, z−√−5)(p, z+
√−5) = (p)(z+

√−5, z+
√−5, p, z2+5

p
). For

simplicity, let I = (p, z−√−5), J = (p, z +
√−5), K = (p), and L = (z +

√−5, z +

√−5, p, z2+5
p

). We will first show IJ ⊆ KL. To show this containment, it is enough

to show the four elements p2, p(z +
√−5), p(z −√−5), (z −√−5)(z +

√−5) ∈ IJ

are in KL. It is easy to see p2 = pp ∈ KL, p(z +
√−5) ∈ KL, p(z − √−5) ∈ KL,

and (z − √−5)(z +
√−5) = z2 + 5 = p z2+5

p
∈ KL. So, IJ ⊆ KL. To show

KL ⊆ IJ , consider the elements pp, p(z +
√−5), p(z − √−5), p z2+5

p
∈ KL. It is

again easy to see pp = p2 ∈ IJ, p(z +
√−5) ∈ IJ, p(z − √−5) ∈ IJ, p z2+5

p
=

z2 + 5 = (z −√−5)(z +
√−5) ∈ IJ . So KL ⊆ IJ which implies KL = IJ . Thus

(p) = (z +
√−5, p)(z −√−5, p).

Now we will show (z +
√−5, p) and (z − √−5, p) are prime ideals. Consider

Z[
√−5]

(p,z±√−5)
∼= Zp[

√−5]

(z±√−5)
∼= Zp. Of course Zp is an integral domain and by Proposition 5.10

(z ± √−5, p) is maximal. Since every maximal ideal is prime, (z +
√−5, p) is

prime.

Note that this proposition applies to rational primes that are reducible and some

that are irreducible as elements.

Example 5.13. Consider p = 23 (an irreducible element by Theorem 3.10). We

know 82 ≡ −5 mod 23 and so (23) = (8 +
√−5, 23)(8−√−5, 23).

Example 5.14. Consider p = 89 (a reducible element by Theorem 3.10). We
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know 232 ≡ −5 mod 89 and so (89) = (23 +
√−5, 89)(23 − √−5, 89). In this

case, 3± 4
√−5 is a factor of both 23+

√−5 and 89, so (89) = (23+
√−5, 89)(23−

√−5, 89) = (3+4
√−5)(3−4

√
5) which says (89) is actually the product of principal

ideals.

It turns out that we can find z such that z2 ≡ −5 mod p for all p such that

p ≡ 1, 3, 7, 9 mod 20. We will see this in Theorem 5.16

Definition 5.15. Let R be a number ring. A rational prime p in R is said to split if

it can be factored into a product of two irreducibles in R. A rational prime p in R is

said to ramify if it is the square of an irreducible element of R. Finally, a rational

prime that neither splits nor ramifies must itself be irreducible, and is sometimes

said to stay prime.

Theorem 5.16. Let Z[
√−5], and let p be a rational prime in Z[

√−5]. Then

1. (p) ramifies if p = 2 or p = 5.

2. (p) splits if −5 is a square modulo p. This can occur in one of two ways:

(a) If p ≡ 1 or 9 mod 20, then p factors in Z[
√−5] as a product of two

irreducibles a and b of Z[
√−5]. Then (p) = (a)(b).

(b) If p ≡ 3 or 7 mod 20, then p is reducible as an element and (p) is re-

ducible as an ideal.

3. The element p is irreducible in Z[
√−5] (and thus the ideal (p) is irreducible)
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if −5 is not a square modulo p, which is exactly when p ≡ 11, 13, 17, or 19

mod 20.

Proof. We will break the proof into four cases.

1. Let p = 2. Then (p) = (2) = (1 +
√−5, 2)(1 − √−5, 2) by Proposition 5.12.

Since 2− (1−√−5) = 1 +
√−5, we have (1 +

√−5, 2) = (1−√−5, 2). Thus

(2) = (1 +
√−5, 2)2. Let p = 5; then (p) = (5) = (

√−5)(−√−5) = (
√−5)2.

(a) Let p ≡ 1, 9 mod 20. By Theorem 3.10, p = ab for some non-units

a, b ∈ Z[
√−5]. Thus (p) = (a)(b).

(b) Let p ≡ 3 mod 20. We want to show that there exists z such that

z2 ≡ −5 mod p. Then, (p) would be reducible by Proposition 5.12.

Analogous to the proof of Theorem 3.10, we will use Legendre Symbols.

So
(
−5
p

)
=

(
−1
p

)(
5
p

)
= (−1)

p−1
2

(
5
p

)
= (−1)

20k+3−1
2

(
5
p

)
= −

(
5
p

)
and

(
−5
p

)
= −

(
5
p

)
= −

(
p
5

)
= −

(
20k+3

5

)
= −

(
3
5

)
= 1. Thus, there exists

z such that z2 ≡ −5 mod p and (p) is reducible. Let p ≡ 7 mod 20.

Then
(
−5
p

)
=

(
−1
p

)(
5
p

)
= (−1)

p−1
2

(
5
p

)
= (−1)

20k+7−1
2

(
5
p

)
= −

(
5
p

)
and

(
−5
p

)
= −

(
5
p

)
= −

(
p
5

)
= −

(
20k+7

5

)
= −

(
2
5

)
= 1. Thus, by Proposi-

tion 5.12, (p) = (p, z +
√−5)(p, z −√−5) for p ≡ 3 or 7 mod 20.

2. For p ≡ 11, 13, 17, 19 mod 20, we know there does not exist z such that

z2 ≡ −5 mod p by Theorem 3.10. Thus x2 + 5 is irreducible in Zp[x] and

Zp[x]

(x2+5)
is an integral domain. Of course, Zp[x]

(x2+5)
∼= Z[x]

(p,x2+5)
∼= Z[

√−5]
(p)

. Therefore,

if p ≡ 11, 13, 17, or 19 mod 20, then (p) is irreducible.
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So far, we have looked at all of the principal ideals in Z[
√−5] generated by

rational integers, but what about those generated by a general element? We can

nontrivially factor the ideal generated by a reducible elements: if α = βγ, then

(α) = (β)(γ). Let’s look at some examples. The ideal (2 + 4
√−5) can be factored

into (2)(1+2
√−5) and the ideal (7+

√−5) can be factored into (1+
√−5)(2−√−5).

What about irreducible elements in our ring? We already saw that (23) = (8 +

√−5, 23)(8 −√−5, 23) where 23 is irreducible in our ring. So we know that there

exist irreducible elements that are reducible as ideals.

Let us consider an ideal in Z[
√−5] generated by more than one rational integer.

If gcd(a, b) = r, then the ideal (a, b) is equal to the ideal (r). If gcd(a, b) = 1, then

the ideal (a, b) is R, where R is the whole ring. This works in general: for an ideal

(a, b, c, d, ...) where a, b, c, d, ... ∈ Z, if gcd(a, b, c, d, ...) = r, then (a, b, c, d, ...) = (r)

(Note that the ideal (1) is the whole ring.) We will see at the end of Chapter 6 that

all ideals in Z[
√−5] can actually be factored uniquely as products of prime ideals,

even though the generating elements can not be factored uniquely into irreducibles.
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6 Dedekind Domains

When we studied the factorizations of elements and ideals in Z[
√−5], we said with-

out proof that unique factorization fails for elements but does not fail for ideals.

This chapter will examine why unique factorization fails for elements but holds for

ideals.

6.1 Quadratic Number Rings

Before we show that our ring is a quadratic number ring and explain why unique

factorization fails, we need a bit of theory.

Definition 6.1. Let α ∈ C. Define Q(α) to be the smallest field contained in C that

contains both Q and α.

Proposition 6.2. The field Q(α) is exactly equal to the set

{
p(α)

q(α)
| p(α), q(α) ∈ Q[α], with q(α) 6= 0

}
.

Proof. By definition, Q(α) is the smallest field containing both Q and α. Since fields

are closed under addition and multiplication, we have αn ∈ Q(α) for all n ∈ N and

cαn ∈ Q(α) for all c ∈ Q and for all n ∈ N. Thus, cnα
n + cn−1α

n−1 + · · ·+ c1α+ c0 ∈

Q(α) for all ci ∈ Q and n ∈ N. Since Q(α) is a field, 1
bmαm+bm−1αm−1+···+b1α+b0

∈ Q(α)

whenever bmαm + · · ·+ b0 6= 0. Then

(cnα
n + · · ·+ c0)

(
1

bmαm + · · ·+ b0

)
=

cnα
n + · · ·+ c0

bmαm + · · ·+ b0

∈ Q(α).
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Therefore,
{

p(α)
q(α)

}
⊆ Q(α). Of course,

{
p(α)
q(α)

}
is a field containing α and Q, and

since Q(α) is the smallest such field, we have
{

p(α)
q(α)

}
= Q(α).

We want to show that Q(α) = Q[α] because elements of Q[α] are easier to

manipulate. In order to do so, we need more terminology and results.

Definition 6.3. If a complex number is a root of a nonzero monic polynomial in

Q[x], it is called an algebraic number. If it is a root of a nonzero monic polynomial

in Z[x], it is called an algebraic integer.

Some examples that are both algebraic numbers and algebraic integers are
√−5,

as
√−5 is a root of the monic polynomial x2 + 5, and −1, as −1 is a root of x + 1.

An example of an algebraic number that is not an algebraic integer is 1
2

as it is a

root of x − 1
2
, which is not in Z[x], and 2x − 1, which is not monic. Any other

polynomial satisfied by 1
2

is either not in Z[x] or is not monic. It is interesting to

point out (but more difficult to show) that π and e are not algebraic numbers.

Lemma 6.4. Let α ∈ C be algebraic over Q. Then there exists a monic irreducible

polynomial f(x) ∈ Q[x] such that f(x) = 0 and the degree of f is minimal among

all the nonzero polynomials where α is a root.

Proof. Let I = {h(x) ∈ Q[x] | h(α) = 0}. We know that I is non-empty as α is a root

of some polynomial over Q and that I is an ideal as hg(α) = h(α)g(α) = 0 ·g(α) = 0

for all g(x) ∈ Q[x] and h(α) − g(α) = 0 − 0 = 0. Let f(x) ∈ I be a polynomial of

minimal degree. Since every nonzero element of Q is a unit, we can multiply f(x)
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by the reciprocal of the leading coefficient to make it a monic polynomial. We need

only show that f(x) is irreducible. Assume that it is not, i.e., f(α) = r(α)s(α)

where r(x), s(x) ∈ Q[x] and deg r, deg s < deg f . Then 0 = f(x) = r(x)s(x) which

implies either r(α) or s(α) is zero and either r(x) or s(x) is in I. This contradicts

the minimality of f(x) in I, so f is irreducible.

Lemma 6.5. Let α ∈ C be algebraic over Q, let f(x) ∈ Q[x] be the minimal monic

irreducible polynomial for α, and let I = {h(x) ∈ Q[x] | h(α) = 0}. Then I = (f(x)).

Proof. It is easy to see that (f(x)) ⊆ I, since for all g(x) ∈ Q[x], the product

f(0)g(0) = 0 · g(0) = 0, which implies f(x)g(x) ∈ I. To show I ⊆ (f(x)), let

h(x) ∈ I. Then there exists q(x), r(x) ∈ Q[x] such that h(x) = f(x)q(x) + r(x)

where 0 ≤ deg r(x) < deg f(x) by the division algorithm. Substituting x = α,

we see that 0 = h(α) = f(α)q(α) + r(α) = 0 · q(α) + r(α) = r(α). Therefore,

r(α) ∈ I, which contradicts the minimality of deg f in I unless r(x) = 0. Therefore,

h(x) = f(x)q(x) ∈ (f(x)).

Proposition 6.6. If α is an algebraic number, then Q[α] = Q(α).

Proof. By definition, Q[α] is a ring and Q(α) is a field, so it is easy to see that

Q[α] ⊆ Q(α), since Q[α] contains Q and α. To show equality, we need only show

that Q[α] is a field. We will do so by defining a surjective map φ : Q[x] → Q[α] and

showing that Q[x]

ker φ
is a field. Let φ : Q[x] → Q[α] be defined by φ(f(x)) = f(a).

This map is surjective as any element a0 +a1α+a2α
2 + ...+anα

n ∈ Q[α] is mapped

from a0 + a1x + a2x
2 + ... + anxn ∈ Q[x]. Let f be the minimal monic irreducible
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polynomial for α. We want to show that ker φ = (f(x)). Of course, by the way

we defined I and by Lemma 6.5, ker φ = I = (f(x)). Now we want to show that

(f(x)) is maximal. Suppose there exists M such that (f(x)) ⊆ M ⊆ Q[x] and let

h(x) ∈ M \ (f(x)). Then gcd(f(x), h(x)) = 1 since f(x) is irreducible and Q[x] is

a unique factorization domain. Using the extended Euclidean algorithm in Q[x],

there exists a(x), b(x) such that f(x)a(x) + h(x)b(x) = 1 ∈ M. If M contains 1, it

must be the whole ring. Thus, M = R and (f(x)) is maximal. If (f(x)) is maximal,

then Q[x]
(f(x))

is a field by Proposition 5.10. Since Q[x]
(f(x))

is isomorphic to Q[α], we have

that Q[α] is a field and Q[α] = Q(α).

Definition 6.7. A number field has the form Q(α), where α is an algebraic number.

If we want to look at algebraic integers in a number field Q(α) (where α again is

an algebraic number), we can look at Z[α]. However, Z[α] does not always contain

all algebraic integers of Q(α). For example, in the ring Q(
√−3), −1+

√−3
2

is an

algebraic integer as it is a root of x2 +x+1 ∈ Q[x]; in fact, the algebraic integers of

Q(
√−3) are the elements of Z[−1+

√−3
2

]. In Q(
√−5), however, the algebraic integers

are exactly the set of elements in Z[
√−5]. In studying the algebraic integers of

quadratic number fields (number fields of the form Q(
√

d) where d ∈ Z and d is not

a perfect square), we are actually studying quadratic number rings.

Definition 6.8. For a quadratic number field Q(
√

d), the corresponding

quadratic number ring is the set {α ∈ Q(
√

d)|α is an algebraic integer}.

The corresponding quadratic number ring for Q(
√

d) depends on the integer d,
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as shown in the following proposition.

Proposition 6.9. The number ring corresponding to Q(
√

d), where d ∈ Z is square

free, is

• Z[
√

d] if d ≡ 2 or 3 mod 4, and

• Z[1+
√

d
2

] if d ≡ 1 mod 4.

Proof. See page 55 of [SD] for a discussion.

As we look at various extensions of Z, it turns out that unique factorization

holds in Z[i] and in Z(
√−2). It fails in Z(

√−3) because 4 = 2 · 2 = (1 +
√−3)(1−

√−3). However, Z(
√−3) is not a number ring. The corresponding number ring for

Q(
√−3) is actually Z[−1+

√−3
2

], where unique factorization does hold (looking at the

factorization of 4 above, we see that 1−√−3 is no longer irreducible). Continuing

on, we see that Z(
√−4) is a subset of Z(i) and so the next complex extension of Z is

Z[
√−5]. We have already stated that unique factorization fails in this ring and the

previous proposition shows that it is a number ring. Thus, if we consider Z[
√−d],

where d is a positive square free integer, d = 5 gives the first complex quadratic

number ring, in which unique factorization fails.

6.2 Dedekind domains

We are now ready to take a look at the ideals in Z[
√−5]. Richard Dedekind studied

our ring and its ideals, in particular. In fact, Z[
√−5] is the quintessential example

of what is now known as a Dedekind Domain.
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The point of the following sections is to show that unique factorization does hold

for ideals in Dedekind domains (and therefore in our ring), but before we get to that,

we must define a Dedekind domain.

Theorem 6.10. Let R be a commutative ring with identity. Then the following

conditions are equivalent:

1. R satisfies the ascending chain condition on ideals. That is, every chain of

ideals I1 ⊆ I2 ⊆ I3 ⊆ · · · ⊆ Ik ⊆ · · · must have In = In+1 = In+2 = · · · for

some n.

2. Every ideal of R is finitely generated.

3. Every nonempty set of ideals of R has a maximal element.

Proof. See [M, Exercise 3.12].

Definition 6.11. If any of the conditions of Theorem 6.10 hold for a commutative

ring R with identity, we say that R is a Noetherian ring.

Noetherian rings are named after Emmy Noëther, probably the most famous

female mathematician.

Theorem 6.12. Let R be an integral domain. Then the following conditions are

equivalent:

1. R satisfies all three of the following properties:

(a) R is a Noetherian ring.
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(b) Every nonzero prime ideal of R is maximal.

(c) R is integrally closed in its quotient field.

2. Every nonzero ideal of R can be written uniquely as a product of prime ideals

of R.

Proof. See [M, p.130].

Definition 6.13. If either of the conditions of the Theorem 6.12 hold for an integral

domain R, we say that R is a Dedekind domain.

Proposition 6.14. The ring Z[
√−5] is a Dedekind domain.

The proof relies on a substantial amount of background information that we have

not developed, so we provide a sketch of the proof below.

Proof. (Sketch) We will show Z[
√−5] satisfies the three properties in condition (1)

of Theorem 6.12.

(a) Since a nonzero ideal of Z is generated by its smallest positive element, every

ideal of Z is principal and so Z is Noetherian. The Hilbert Basis Theorem

guarantees that Z[x] is also Noetherian (see pg. 391 of [H]). Consider φ :

Z[x] → Z[
√−5] defined by φ(f(x)) = f(

√−5). We see that φ is surjective as

any element a + b
√−5 is the image of a + bx. Since the homomorphic image

of a Noetherian ring is Noetherian, Z[
√−5] is Noetherian.

(b) Let P be a nonzero prime ideal. To show that P is maximal, we will show

that Z[
√−5]/P is a field. Let 0 6= α ∈ P . Then αα = N(α) ∈ P . Thus,
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(N(α)) ⊆ P and Z[
√−5]/(N(α)) is finite, so Z[

√−5]/P is finite as well. By

Proposition 5.9, Z[
√−5]/P is a finite integral domain. Since all finite integral

domains are fields, we have that P is maximal by Proposition 5.10.

(c) Z[
√−5] is integrally closed in Q(

√−5). Let α ∈ Q(
√−5) be integral over

Z[
√−5]. Then α is integral over Z and α ∈ Q(

√−5)\Q implies α is a root of a

monic irreducible polynomial of degree 2 in Z[x]. The roots of this polynomial

must be α and α, thus if α = a + b
√−5, then a, b ∈ Z.

6.3 Unique Factorization for Ideals

We now prove Dedekind’s famous theorem that every ideal in a Dedekind domain can

be factored uniquely, up to ordering, as a product of prime ideals (Theorem 6.20).

The main theorem requires quite a bit of preliminary work, which we now present,

borrowing from Chapter 3 (pp. 127-134) of [M].

Lemma 6.15. If R is a Dedekind Domain and I 6= (0) is an ideal of R, then I

contains a product of nonzero prime ideals of R.

Proof. Let S = {J | J is an ideal of R and J does not contain a product of nonzero

prime ideals}. If S is non-empty, then S has a maximal element since R is Noetherian

by the definition of a Dedekind domain. Say M is a maximal element in S. Then

M is not a prime ideal since it would contain a product of primes. Therefore, there
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exists r, s ∈ R such that rs ∈ M , where r /∈ M and s /∈ M . Now, M+(r) and M+(s)

are ideals strictly larger than M , thus they are not in S and must contain products

of nonzero prime ideals. Say P1 · · ·Pu ⊆ M + (r) and Q1 · · ·Qv ⊆ M + (s), where

Pi, Qj are prime ideals of R. Then P1 · · ·PuQ1 · · ·Qv ⊆ (M + (r))(M + (s)) ⊆ M,

so M contains a product of prime ideals, which is a contradiction. Therefore, S is

empty.

Lemma 6.16. Let R be a Dedekind Domain with quotient field F, and let I be an

ideal of R, where I 6= R. Then there exists γ ∈ F \R such that γI ⊆ R.

Proof. Let 0 6= α ∈ I. Then (α) contains a product of prime ideals by the above

lemma. Let r = min {s | P1 · · ·Ps ⊆ (α)}, where P1, ..., Ps are nonzero prime ideals.

That is, suppose there exist prime ideals P1, P2, . . . Pr such that P1 · · ·Pr ⊆ (α) but

no product of r − 1 or fewer nonzero prime ideals is in (α). Since I 6= R, the ideal

I is contained in some maximal ideal M . Then P1 · · ·Pr ⊆ (α) ⊆ I ⊆ M . We

want to show that Pj ⊆ M for some j. Assume the opposite. Then for each i such

that 1 ≤ i ≤ r there exists ai ∈ M \ Pi and a1 · · · ar ∈ P1 · · ·Pr ⊆ M but ai /∈ M

for all i. This contradicts the fact that M is a prime ideal. Therefore, Pj ⊆ M

for some j. Assume P1 ⊆ M. Then every nonzero prime ideal of R is maximal

since R is a Dedekind domain, so P1 = M. Therefore, P1 · · ·Pr ⊆ (α) ⊆ I ⊆ P1.

Since P2 · · ·Pr * (α) by minimality of r, there exists β ∈ P2 · · ·Pr \ (α). Then

β
α

= 1
α
β ∈ 1

α
(P2 · · ·Pr) ⊆ F, but β

α
/∈ R; since that would imply β = rα ∈ (α) for

some r ∈ R. Let γ = β
α
. Now we need only to show γI ⊆ R. Let δ ∈ I ⊆ P1. Since
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P1β ⊆ P1(P2 · · ·Pr) ⊆ (α), δβ ∈ P1β ⊆ (α), which means δβ = rα for some r ∈ R.

Then γδ = β
α
δ = rα

α
∈ R. Thus γI ⊆ R.

Lemma 6.17. Let R be a Dedekind domain and I be a nonzero ideal of R. Then

there exists a nonzero ideal J of R such that IJ is a principal ideal.

Proof. Let I be a nonzero ideal of R and suppose α ∈ I. Define J := {β ∈ R |

βI ⊆ (α)}. Then J is a nonzero ideal of R containing α, and IJ ⊆ (α). We want

to show IJ = (α). Let L = 1
α
IJ = { 1

α
(
∑

aibi) | ai ∈ I, bi ∈ J}. Then L ⊆ R since

IJ ⊂ (α), and L is an ideal of R. We want to show L = R. Assume L ( R. Then,

by Lemma 6.16, there exists γ ∈ F \ R such that γL ⊆ R. Note that J ⊆ L since

every β in J can be written as β = 1
α
αβ ∈ 1

α
IJ = L. Thus, γJ ⊆ γL ⊆ R and so

γJI = γ(JI) = γ((α)L) = (γL)(α) ⊆ R(α) = (α). By the definition of J , γJ ⊆ J.

Since R is a Noetherian ring, J is finitely generated, say J = (β1, · · · , βt). Since

γJ ⊆ J , there exists zi,j ∈ R such that




γβ1

γβ2

...

γβt




=




z1,1β1 + z1,2β2 + . . . + z1,tβt

z2,1β1 + z2,2β2 + . . . + z2,tβt

...

zt,1β1 + zt,2β2 + . . . + zt,tβt




.
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So 


0

0

...

0




=




(z1,1 − γ)β1 + z1,2β2 + . . . + z1,tβt

z2,1β1 + (z2,2 − γ)β2 + . . . + z2,tβt

...

zt,1β1 + zt,2β2 + . . . + (zt,t − γ)βt




.

This says

[
β1

...
βt

]
is a solution to A−→x =

−→
0 where A = [(zi,j) − γI] and det A = 0.

Since, up to a sign, det A is a monic polynomial in γ with coefficients in R, γ is

integral over R. Therefore, since R is a Dedekind domain and thus integrally closed,

γ ∈ R. This contradicts the fact that we chose γ so that it was not in R. Thus

L = R and 1
α
IJ = R, which implies IJ = (α).

Lemma 6.18. Let I, J, L be ideals in a Dedekind Domain R. Assume I 6= 0 and

IJ = IL. Then J = L.

Proof. Let I, J, L be ideals where I 6= 0 and IJ = IL. Then by Lemma 6.17, there

exists an ideal H of R such that IH is principal. Say IH = (α). Then JI = LI

implies JIH = LIH, which implies J(α) = L(α). We need only show that we

can cancel the (α), i.e., for any element β ∈ J we can find an element γ ∈ L such

that β = γ. Let β ∈ J . Then βα ∈ J(α) = L(α). So for some γi ∈ J , we

have βα =
∑

γi(riα) = (
∑

riγi)α = γα for γ =
∑

riγi ∈ J. Since R is an integral

domain, β = γ and thus J ⊆ L. An analogous argument shows L ⊆ J , so L = J.

Lemma 6.19. Let 0 6= J ⊆ K be ideals in a Dedekind domain. There exists an

ideal I such that J = KI.
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Proof. Assume J ⊆ K and let L be an ideal such that LK is principal. Say LK =

(α). Then LJ ⊆ LK = (α) and 1
α
LJ is an ideal of R. Let I = 1

α
LJ . We see that

IK = 1
α
LJK = 1

α
(LK)J = 1

α
(α)J = J .

Theorem 6.20. Every proper nonzero ideal in a Dedekind Domain R can be uniquely

written as a product of prime ideals.

Proof. We must show both the existence and the uniqueness. We will begin with

the existence. Let S = {I | I 6= 0, I 6= R, I 6= P a1
1 · · ·P ak

k }. That is, the set S is the

set of all nonzero proper ideals that can not be written as a product of prime ideals.

If S is not the empty set, then S has a maximal element J , since R is Noetherian by

the definition of Dedekind domain. Since J 6= R, the ideal J is contained in some

maximal ideal M . By Lemma 6.19, there exists an ideal I such that MI = J and

so J = MI ⊆ I. If J = I, then MI = I and M = R by Lemma 6.18, which is a

contradiction. So, J ( I. By the maximality of J in S, we have I = P a1
1 · · ·P ak

k . So

J = MI is a product of prime ideals, too. This contradicts the fact that J ∈ S, so

S is empty.

Now, we must show uniqueness. Suppose P1 · · ·Pr = Q1 · · ·Qs for prime ideals

Pi, Qi. Then Q1 · · ·Qs ⊆ P1 which implies Qk ⊆ P1 for some j = 1, ..., s. Let j = 1.

Since every prime ideal is maximal by Theorem 6.12, P1 = Q1. By Lemma 6.18, we

have P2 · · ·Pr = Q2 · · ·Qs and by induction, r = s and Pi = Qi for all i.

50



7 Conclusions

In studying the ring Z[
√−5], we established many results about its elements and

its ideals. For elements, we established the following five very powerful conditions

for reducibility, namely, an element a + b
√−5 is reducible when at least one of the

following conditions is satisfied:

• One of a− b
√−5, −a + b

√−5, or −a− b
√−5 is reducible.

• gcd(a, b) > 1.

• a is a multiple of 5.

• a is congruent to ±b mod 6 where a 6= b.

• a is congruent to ±2b mod 9 and a2 + 5b2 > 9.

We designed a computer algorithm to determine reducibility for elements that

do not fall into any of the above five cases. Finally, we explained how often and

how badly unique factorization fails for elements of Z[
√−5]. We have also studied

reducibility for ideals, in particular for ideals generated by integers. We have proved

exactly what happens to ideals generated by rational primes in our ring. We also

glanced at the work of Richard Dedekind, who had the insight to take our ring and

develop a whole theory that described it and other rings. Dedekind’s work explains

exactly why unique factorization holds for ideals.

Although we generated several powerful results for the ring Z[
√−5], there is still

much to be done. Even though it gives us a definite answer, our näıve algorithm is
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not very efficient. In Chapter 4, we compared irreducibles in our ring to primes in

the set of integers, however, we did not reach any conclusive results. So we wonder if

there is a good approximation for the number of irreducible elements. What occurs

after norm 10,000? Throughout our study, we did not go beyond that norm. We

conjecture that similar patterns hold for the number of irreducibles and how badly

unique factorization holds, but are these assumptions true?

In all of the above, we have studied and discovered many interesting properties

of the ring Z[
√−5]. Perhaps the most interesting is the simple fact that unique fac-

torization fails for elements but holds for ideals. This division creates an interesting

dichotomy between elements and ideals, particularly being that ideals are, in some

sense, a generalization of elements of the ring.
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8 Appendix A

The following is the Maple code for the algorithm described in Chapter 4.

We begin by creating a list of possible elements with norm < 10001. Entries of

the list will look like [norm, i, j] for an element i + j
√−5.

> S:=[]:

> n:=10000:

> for i from 0 to floor(sqrt(n)) do

> for j from 0 to floor(sqrt(n/5)) while i^2 + 5*j^2< n+1 do

> S := [op(S),[expand(i^2+5*j^2),i,j]];

> od;

> od;

Next, we sort our list in ascending order of norms.

> prec := (x,y) -> evalb(op(1,x) < op(1,y));

> S:= sort(S,prec):

Now, we want to check irreducibility. To do this, we first make a list of every

norm that divides any particular norm. The following function returns all possible

factors for a given norm. Note that we start at k = 2 because the S[1] element is

the identity element 1.

> getpossiblefactors := proc(n)

> local k,

> T;

> T:=[];

> k:=2;

> while k < nops(S) do

> if modp(n,S[k][1]) = 0 and n <> S[k][1] then

> T := [op(T),S[k]]

> fi;

> k:=k+1;
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> od:

> return(T);

> end:

Now that we have a function to give all factors for a norm, we need a list of all

norms, so that we can make our database of all factors for all norms.

> listofnorms := {};

> for i from 1 to nops(S) do

> listofnorms:=listofnorms union {S[i][1]}:

> od:

> listofnorms:

Finally, we define the function L[n], our database of factors for a given norm.

When we input a norm n, Maple will output all factors of that norm.

> L := ’L’:

> i := 2:

> n := listofnorms[i]:

> while n < listofnorms[nops(listofnorms)] do

> L[n] := getpossiblefactors(n):

> i := i+1:

> n := listofnorms[i]:

> od:

> L[n] := getpossiblefactors(n):

To make a list a irreducible elements, we first make a list of all reducible elements.

To do so, we take care of the easy cases (those found in Propositions 3.12 and 3.13),

then we will perform step 3 of our algorithm (Chapter 4).

> R:={}:

> for k from 1 to nops(S) do

> for i from 1 to nops(L[S[k][1]])

> do for j from i to nops(L[S[k][1]]) do

> R := R union {‘if‘(gcd(S[k][2],S[k][3])>1 and

> S[k][2]<>0 and S[k][3]<>0,

> S[k],

> ‘if‘(S[k][2] mod 5=0,
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> ‘if‘(S[k][2]>0,

> S[k],

> ‘if‘(S[k][3]>1,

> S[k],

> NULL)),

> ‘if‘(S[k][2] = (L[S[k][1]][i][2])*(L[S[k][1]][j][2]) -

> 5*(L[S[k][1]][i][3])*(L[S[k][1]][j][3]) and S[k][3] =

> (L[S[k][1]][i][2])*(L[S[k][1]][j][3]) +

> (L[S[k][1]][i][3])*(L[S[k][1]][j][2]),

> S[k],

> ‘if‘(S[k][2] = (L[S[k][1]][i][2])*(L[S[k][1]][j][2]) -

> 5*(-L[S[k][1]][i][3])*(L[S[k][1]][j][3]) and S[k][3] =

> (L[S[k][1]][i][2])*(-L[S[k][1]][j][3]) +

> (L[S[k][1]][i][3])*(L[S[k][1]][j][2]),

> S[k],

> ‘if‘(S[k][2] = (L[S[k][1]][i][2])*(-L[S[k][1]][j][2]) - .

> 5*(L[S[k][1]][i][3])*(L[S[k][1]][j][3]) and S[k][3] =

> (L[S[k][1]][i][2])*(L[S[k][1]][j][3]) +

> (L[S[k][1]][i][3])*(-L[S[k][1]][j][2]),

S[k],

> ‘if‘(S[k][2] = (L[S[k][1]][i][2])*(L[S[k][1]][j][2]) -

> 5*(-L[S[k][1]][i][3])*(L[S[k][1]][j][3]) and S[k][3] =

> (L[S[k][1]][i][2])*(L[S[k][1]][j][3]) +

> (-L[S[k][1]][i][3])*(L[S[k][1]][j][2]),

> S[k],

> ‘if‘(S[k][2] = (-L[S[k][1]][i][2])*(L[S[k][1]][j][2]) -

> 5*(L[S[k][1]][i][3])*(L[S[k][1]][j][3]) and S[k][3] =

> (-L[S[k][1]][i][2])*(L[S[k][1]][j][3]) +

> (L[S[k][1]][i][3])*(L[S[k][1]][j][2]),

> S[k],

> ‘if‘(S[k][2] = (L[S[k][1]][i][2])*(-L[S[k][1]][j][2]) -

> 5*(-L[S[k][1]][i][3])*(-L[S[k][1]][j][3]) and S[k][3] =

> (L[S[k][1]][i][2])*(-L[S[k][1]][j][3]) +

> (L[S[k][1]][i][3])*(-L[S[k][1]][j][2]),

> S[k],

> ‘if‘(S[k][2] = (L[S[k][1]][i][2])*(L[S[k][1]][j][2]) -

> 5*(-L[S[k][1]][i][3])*(-L[S[k][1]][j][3]) and S[k][3] =

> (L[S[k][1]][i][2])*(-L[S[k][1]][j][3]) +

> (-L[S[k][1]][i][3])*(L[S[k][1]][j][2]),

> S[k],

> ‘if‘(S[k][2] = (-L[S[k][1]][i][2])*(L[S[k][1]][j][2]) -

> 5*(L[S[k][1]][i][3])*(-L[S[k][1]][j][3]) and S[k][3] =

> (-L[S[k][1]][i][2])*(-L[S[k][1]][j][3]) +
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> (L[S[k][1]][i][3])*(L[S[k][1]][j][2]),

> S[k],

> NULL))))))))))};od;od;od;

> R:= R minus {[0,0,0]}:

> R:= convert(R,list):

> R:= sort(R,prec);

Now that we have a list of all reducible elements, we can simply subtract it

from our list S of all elements. Notice that we must also subtract the elements 0

and 1 from our list, as they are neither reducible nor irreducible. Of course, all of

out calculations thus far have only looked at elements in the first quadrant of the

complex plane. We want the first half the complex plane. So, we will consider each

element a + b
√−5. If b 6= 0, we will add a− b

√−5 to our list.

> SS:={}:

> S:= convert(S,set):

> for i from 1 to nops(S) do

> SS:= SS union {‘if‘(S[i][3]<>0,

> [S[i][1],S[i][2],-S[i][3]], NULL)}: od:

> S:=S union SS:

> RR:={}:

> R:= convert(R,set):

> for i from 1 to nops(R)do

> RR:= RR union {‘if‘(R[i][3]<>0,

> [R[i][1],R[i][2],-R[i][3]], NULL)}: od:

> R:= R union RR:

> IR:= S minus R:

> IR:= IR minus {[0,0,0]}:

> IR:= IR minus {[1,1,0]}:

> IR:= convert(IR,list):

> IR:= sort(IR,prec);

> S:= convert(S,list):

> S:= sort(S,prec):

> R:= convert(R,list):

> R:= sort(R,prec):
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9 Appendix B

The following table describes all elements up to norm 100.

Norm Irreducibles Reducibles
4 2

5
√−5

6 1 +
√−5

9 3, 2 +
√−5

14 3 +
√−5

16 4

20 2
√−5

21 1 + 2
√−5, 4 +

√−5

24 2 + 2
√−5

25 5

29 3 + 2
√−5

30 5 +
√−5

36 6, 4 + 2
√−5

41 6 +
√−5

45 3
√−5, 5 + 2

√−5

46 1 + 3
√−5

49 7, 2 + 3
√−5

51 3 + 3
√−5

54 7 +
√−5

56 6 + 2
√−5

61 4 + 3
√−5

64 8

69 8 +
√−5, 7 + 2

√−5

70 5 + 3
√−5

80 4
√−5

81 9, 6 + 3
√−5, 1 + 4

√−5

84 8 + 2
√−5, 2 + 4

√−5

86 9 +
√−5

89 3 + 4
√−5

94 7 + 3
√−5

96 4 + 4
√−5

100 10
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10 Appendix C

The following is a list of all elements with more than one factorization up to norm

1,000. The elements are grouped by the number of factors per factorization.

Elements with two factors per factorization:

6 = (2)(3) = (1 +
√−5)(1−√−5)

9 = (3)(3) = (2 +
√−5)(2−√−5)

12 + 3
√−5 = (3)(4 +

√−5) = (2−√−5)(1 + 2
√−5)

3 + 6
√−5 = (3)(1 + 2

√−5) = (2 +
√−5)(4 +

√−5)

14 = (2)(7) = (3 +
√−5)(3−√−5)

4 + 6
√−5 = (2)(2 + 3

√−5) = (3 +
√−5)(3 +

√−5)

16 + 2
√−5 = (2)(8 +

√−5) = (1−√−5)(1 + 3
√−5)

7 + 7
√−5 = (7)(1 +

√−5) = (3 +
√−5)(4 +

√−5)

17 + 5
√−5 = (1 +

√−5)(7− 2
√−5) = (2−√−5)(1 + 3

√−5)

3 + 9
√−5 = (1 +

√−5)(8 +
√−5) = (3)(1 + 3

√−5)

21 = (3)(7) = (4−√−5)(4 +
√−5) = (1− 2

√−5)(1 + 2
√−5)

14 + 7
√−5 = (2 +

√−5)(7) = (4−√−5)(1 + 2
√−5)

4 + 10
√−5 = (2)(2 + 5

√−5) = (1 +
√−5)(9 +

√−5)

22 + 4
√−5 = (2)(11 + 2

√−5) = (1 +
√−5)(7− 3

√−5)

18 + 8
√−5 = (2)(9 + 4

√−5) = (3−√−5)(1 + 3
√−5)

21 + 7
√−5 = (3 +

√−5)(7) = (3−√−5)(2 + 3
√−5)
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27 + 3
√−5 = (1 +

√−5)(7− 4
√−5) = (1−√−5)(2 + 5

√−5) = (3)(9 +
√−5)

28 + 2
√−5 = (2)(14 +

√−5) = (1−√−5)(3 + 5
√−5)

29 +
√−5 = (1−√−5)(4 + 5

√−5) = (2 +
√−5)(7− 3

√−5)

21 + 9
√−5 = (1 +

√−5)(11− 2
√−5) = (3)(7 + 3

√−5)

19 + 11
√−5 = (3 +

√−5)(8 +
√−5) = (4−√−5)(1 + 3

√−5)

31+
√−5 = (1+

√−5)(6−5
√−5) = (3+

√−5)(7−2
√−5) = (1−2

√−5)(1+3
√−5)

26 + 8
√−5 = (2)(13 + 4

√−5) = (1 +
√−5)(11− 3

√−5)

Elements with 3 factors per factorization:

12 = (2)(2)(3) = (2)(1−√−5)(1 +
√−5)

6 + 6
√−5 = (2)(1−√−5)(1 +

√−5) = (1 +
√−5)(1−√−5)(1 +

√−5)

18 = (2)(3)(3) = (2)(2−√−5)(2 +
√−5) = (1−√−5)(1 +

√−5)(3)

12 + 6
√−5 = (2)(3)(2 +

√−5) = (1−√−5)(1 +
√−5)(2 +

√−5)

20 + 2
√−5 = (2)(

√−5)(1− 2
√−5) = (−√−5)(1 +

√−5)(3 +
√−5)

18 + 6
√−5 = (2)(3)(3 +

√−5) = (1−√−5)(1 +
√−5)(3 +

√−5)

15 + 9
√−5 = (−√−5)(1 +

√−5)(1 + 2
√−5) = (

√−5)(3)(3−√−5)

25 +
√−5 = (−√−5)(1 +

√−5)(4 +
√−5) = (

√−5)(2−√−5)(3−√−5)

18 + 9
√−5 = (3)(3)(3 +

√−5) = (2−√−5)(2 +
√−5)(2 +

√−5)

27 = (3)(3)(3) = (3)(2−√−5)(2 +
√−5)

6+12
√−5 = (2)(3)(1+2

√−5) = (2)(2+
√−5)(4+

√−5) = (1−√−5)(1+
√−5)(1+

2
√−5)

24+6
√−5 = (2)(3)(4+

√−5) = (2)(2−√−5)(1+
√−5) = (1−√−5)(1+

√−5)(4+
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√−5) = (1 +
√−5)(3)(3−√−5)

28 = (2)(2)(7) = (2)(3−√−5)(3 +
√−5)

8 + 12
√−5 = (2)(2)(2 + 3

√−5) = (2)(3 +
√−5)(3 +

√−5)

15 + 12
√−5 = (

√−5)(3)(41
√−5) = (

√−5)(2 +
√−5)(1− 2

√−5)

30 + 3
√−5 = (

√−5)(3)(1− 2
√−5) = (

√−5)(2−√−5)(4−√−5)

30 + 4
√−5 = (2)(

√−5) = (2− 3
√−5) = (

√−5)(3−√−5)(3 +
√−5)

Elements with 4 factors per factorization:

24 = (2)(2)(2)(3) = (2)(2)(1 +
√−5)(1−√−5)

12 + 12
√−5 = (2)(2)(3)(1 +

√−5) = (2)(1−√−5)(1 +
√−5)(1 +

√−5)

30 = (2)(3)(−√−5)(
√−5) = (−√−5)(

√−5)(1 +
√−5)(1−√−5)

20 + 10
√−5 = (2)(−√−5)(

√−5)(2 +
√−5) = (

√−5)(
√−5)(1−√−5)(1−√−5)
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