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Nondipole effects in the triply differential cross section for double photoionization of He

Andrei Y. Istomin,1 N. L. Manakov,2 A. V. Meremianin,2 and Anthony F. Starace1

1Department of Physics and Astronomy, The University of Nebraska, Lincoln, Nebraska 68588-0111, USA
2Physics Department, Voronezh State University, Voronezh 394006, Russia

sReceived 23 December 2004; published 4 May 2005d

Lowest-order nondipole effects are studied systematically in double photoionizationsDPId of the He atom.
Ab initio parametrizations of the quadrupole transition amplitude for DPI from the1S0 state are presented in
terms of the exact two-electron radial matrix elements. Analytic expressions for these matrix elements within
lowest-order perturbation theorysLOPTd in the interelectron interaction are also given. The corresponding
parametrizations for the dipole-quadrupole triply differential cross sectionsTDCSd are presented for the case of
an elliptically polarized photon. A general analysis of retardation-induced asymmetries of the TDCS including
the circular dichroism effect at equal energy sharing is presented. Numerical LOPT estimates of nondipole
asymmetries in photoelectron angular distributions for the cases of linear and circular polarization and of the
circular dichroism effect at equal energy sharing are presented. We find that experimental observation of
nondipole effects at excess energies of the order of tens to hundreds of eV should be feasible in TDCS
measurements. Our numerical results exhibit a nondipole forward-backward asymmetry in the TDCS for DPI
of He at an excess energy of 450 eV that is in qualitative agreement with existing experimental data.

DOI: 10.1103/PhysRevA.71.052702 PACS numberssd: 32.80.Fb

I. INTRODUCTION

Two major themes in vacuum ultravioletsvuvd and soft-
x-ray atomic photoionization studies in recent years are the
analysis of nondipolesor retardationd effects in single-
electron photoionizationsSPId and the analysis of electron
correlations in double photoionizationsDPId, especially in
the vuv range of photon energies. The SPI angular distribu-
tions in the electric-dipole approximationsEDAd involve
only a single polarization and angle-dependent parameter,
ue·pu2, composed of the photon polarization vectore se·e*

=1d and the photoelectron momentump. Therefore, retarda-
tion effects, which imply a dependence of the SPI cross sec-
tion on the photon wave vector,k, by means of the scalar
productsk ·pd, do not affect the polarization dependence of
photoelectron angular distributions, and result only in a spa-
tial asymmetry of the photoelectron angular distributions
with respect to the direction ofk sthe forward-backward
asymmetryd, which originates from the interference between
dipole and nondipole SPI amplitudes. Although the first non-
dipole SPI measurements for Ar were in the x-ray regionf1g,
recently the forward-backward asymmetry has been found to
be significant also in the vuv regionssee, e.g., results for Xe
at Eg&200 eV f2–4g and for He atEg&160 eV f5gd. As
shown in Ref.f6g, not only lowest-ordersquadrupoled but
also higher-ordersoctupoled nondipole effects should be
taken into account in order to explain experimental results on
neon valence photoemission at relatively low photon ener-
giesEg&1 keV. Besides the spatial asymmetry in the angu-
lar distributions, the theory predicts also new retardation-
induced features in SPI for spin-resolved photoelectron
measurementsf7g swhich have been recently observed ex-
perimentallyf8gd and for the case of polarized atomsf9g.

The process of DPI has attracted much theoretical and
experimental interest in view of its importance for analyzing
electron correlations.sFor recent reviews, see Refs.f10,11g.d

Most experiments concern the He atom, in which DPI repre-
sents the prototype for three-body fragmentation of a Cou-
lomb system by a single photon. The photon energies em-
ployed typically range between 100 and 530 eV.
Measurements of the triply differential cross sections
sTDCSsd at these energies have been guided by theoretical
predictions using the EDA. Recent advances in experimental
techniques allow the measurement of even very small
TDCSs of the order ofs10−2–10−3d b eV−1 sr−2 f12g. Despite
the fact that DPI is essentially a many-body, correlation-
induced process, a number of theoretical approachessmostly
using numerically intensive techniques to account for corre-
lations in the two-electron continuumd allow one to obtain
excellent agreement with absolute experimental data for the
TDCSs. The accuracy of such calculations is thus compa-
rable to that for SPI. A number of questions have been ad-
dressed in studies of DPI within the EDA framework, such as
the photoelectron angular distributions for linearly and circu-
larly polarized light for various excess energies and energy
sharingsssee, e.g., Refs.f10,11gd, along with attempts to
identify the dominant physical mechanisms in particular en-
ergy regimesf12–16g.

In contrast to SPI, existing information on nondipole ef-
fects in DPI is very sparse. To the best of our knowledge,
there are only a few works that have considered nondipole
effects in DPI of Hef17g and highly charged He-like ions
f18,19g. However, these studies are for photon energies in
excess of 1 keV, and at such high photon energiessand there-
fore high excess energiesd the DPI process has not been in-
vestigated by coincidence measurements. Also, these works
treat nondipole effects only in thedoubly differential cross
sections, which exhibit angular dependencies that are similar
to those for SPI, and thus the question of the importance of
nondipole effects on the TDCS, the most informative observ-
able of the DPI process, is open. The lack of theoretical
analyses of nondipole effects in the TDCSs may be explained
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by two circumstances. First, even for the case of dipole DPI,
an accurate account of electron correlations requires time-
consuming numerical approaches that have only been devel-
oped relatively recently. Second, existing experimental data
do not exhibit significant deviations from theoretical predic-
tions based on the EDA. However, nearly all published
TDCS measurements were performed in theperpendicular
plane geometry, in which the photoelectron detection plane
is orthogonal to the direction of the photon beam. In lowest
order, retardation corrections stem from terms,sk ·r d in the
power series expansion of the vector potential. Therefore, as
for SPI, they enter the DPI amplitude and the TDCS only
through scalar productssk ·p1d and sk ·p2d, which obviously
vanish for the perpendicular plane geometry.

In general, it may be expected that an account of retarda-
tion corrections to the dipole amplitude of DPI should result
in more diverse asymmetries of the TDCS than those for
angular distributions in SPI. Indeed, for the case of DPI,
along with the asymmetry of the TDCS with respect to in-
version of the direction of the photon wave vectork sas in
SPId, nondipole corrections also modify the asymmetry of
the TDCS with respect to inversion of the photon helicity,
i.e., the circular dichroismsCDd effect. This effect, predicted
first theoretically in Ref.f20g sand then observed experimen-
tally f21gd, has attracted much attention, both theoretical and
experimental f10,22g. Specifically, the photon-helicity-
dependent CD term in the TDCS originates from an interfer-
ence between real and imaginary parts of particular compo-
nents of thesgenerally non-Hermitiand DPI amplitude; the
CD effect thus permits direct experimental measurement of
this otherwise elusive “cross-interference.” Up to now, all
theoretical treatments of CD have employed the EDA
f10,20,22–29g and their predictions are generally in agree-
ment with existing experimentsf28–32g. Although these
measurements do not show any signatures of nondipole ef-
fects, this fact is expected because all of them have been
performed in the perpendicular plane geometry, in which the
lowest-order retardation effects vanish. As a phenomenologi-
cal analysissbased only on rotational-invariance and symme-
try argumentsd shows f24g, the existence of CD in DPI is
possible since in this casesin contrast to SPId we have two
momentum vectors,p1 andp2, and thus the dichroic factor,

jsk̂ ·fp̂13 p̂2gd swherej is the degree of circular polarization
of the photon beamd, enters the TDCS multiplied by a scalar
factor aCDsp1,p2,cosud, where cosu;sp̂1·p̂2d. A distinct
feature of the CD effect within the EDA is that it vanishes
at equal energy sharingsaCD=0 at p1=p2d: for DPI from
a 1S0 state, the EDA amplitude is described by a single
scalar function, fsp1,p2,cosud, so that aCD=Imhfsp1,p2,
cosudf*sp2,p1,cosudj. fThis form of aCD follows from the
invariance of the TDCSsand thus of the total CD termd with
respect to interchange of photoelectrons, i.e., the substitution
p1�p2.g This rule fails if one treats the electron-photon in-
teraction beyond the EDA, since, if one introduces the de-
pendence of the TDCS upon the wave vector of the incident
light sor, equivalently, upon its spatial inhomogeneityd, the
symmetry of the problem is reduced. Therefore, the DPI
amplitude involvesfalong with fsp1,p2,cosud and fsp2,
p1,cosudg additional dynamical parameters which account

for retardation effects, and the CD factoraCD acquires a
nondipole correction, which does not vanish atp1=p2.

Recently, we have reported the first predictions of nondi-
pole effects in the TDCS for DPI, for both linearly and cir-
cularly polarized lightf33,34g. Here we present a more de-
tailed account of our analyses. First, we derive a general,
model-independent parametrization for the amplitude of DPI
from a singlet1S0 state, taking into account lowest-order re-
tardation corrections to the electron-photon interaction op-
erator in terms of the two-electron reduced matrix elements.
Second, we derive the corresponding parametrizations for
the dipole-quadrupolesE1-E2d TDCS for the cases of lin-
early and circularly polarized light, as well as for the general
case of elliptic polarization. Then, we discuss the nondipole
effectssi.e., originating from interference of the E1 and E2
amplitudesd to be expected in the TDCS, such assid asym-
metry with respect to inversion of the direction of the wave
vector k; sii d asymmetry with respect to reflection of the
photoelectron pair in the polarization plane, andsiii d asym-
metry with respect to inversion of the photon helicity, i.e.,
the CD effect. In particular, we discuss the CD effect at equal
energy sharing. Using lowest-order perturbation theory
sLOPTd to account for interelectron correlationsf16g, we es-
timate the magnitudes of these effects for DPI of He at ex-
cess energies ranging from tens to hundreds of eV. In an
Appendix, we present our analytic results for the LOPT limit
of the exact two-electron reduced matrix elements of the
quadrupole operator that enter ourab initio parametrization
of the DPI amplitude.

II. AB INITIO PARAMETRIZATIONS OF THE DPI
TRANSITION AMPLITUDE AND TDCS

A. Velocity and length gauge expressions for the lowest-order
retardation corrections

In order to parametrize the DPI amplitude in a unified
way that is valid for both the velocity and length forms of the
electron-photon interaction, we shall first present explicit
analytic expressions for the leading retardation corrections to
the electric-dipole electron-photon interaction in the velocity
and length gauges. Our approach is nonrelativistic and starts
from the standard form for the electron-photon interaction in
the Coulomb gauge for the four-potentialAm=sF=0,Ad
f35g,

Vsr ,td = −
e

mc
„Asr ,td ·p…, s1d

wherep=−i"=r is the momentum operator, ande=−ueu, m,
and c are the electron charge, the electron mass, and the
speed of light. Since we are interested in a one-photon photo-
ionization process, the vector potential has the formAsr ,td
=eeisk·r−vtd, wherev is the photon frequency,k =vk̂ /c is the
wave vector, ande fse·e*d=1g is the polarization vector. For
simplicity, we take the amplitude of the potential to be equal
to unity.

The long-wave limit of matrix elements involvingVsr ,td
implies an expansion of the four-potentialAm in powers of
sk ·r d. Below, we restrict our consideration to only the
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lowest-order retardation corrections to the EDA, i.e., to
terms of orderk, so that

Vsr ,td < VsVd exps− ivtd, s2d

VsVd = −
e

mc
Fse ·pd + i

v

c
se ·pdsk̂ · r dG . s3d

The first term inVsVd is the standard velocity form for the
electric-dipole interaction while the second term corresponds
to the velocity form for retardation corrections. In order to
analyze matrix elements using angular momentum tech-
niquesssuch as the Wigner-Eckart theorem, etc.d f36g, it is

convenient to represent the expressionse·pdsk̂ ·r d as a scalar
product of two irreducible tensors involving either photonse
and k̂d or electronsp andr d parameters. This transformation
follows from standard formulas for irreducible tensor prod-
ucts of several vectorsf36g and allows the operatorVsVd to be
written as

VsVd = Vd + Vq + Vm, s4d

where

Vd = −
e

mc
se ·pd,

Vq = − i
ev

mc2shk̂ ^ ej2 · hr ^ pj2d,

Vm = − i
ev

2mc2sfk̂ 3 eg · fr 3 pgd. s5d

The termVm involves the orbital angular momentum opera-
tor, l =fr 3pg, and thus describes the orbital magnetic-dipole
interaction.

To obtain the length form counterpart of the operatorVsVd

in Eq. s4d, we perform the following gauge transformation of
the four-potentialAm=(0,es1+ik ·r dexps−ivtd):

A8 = A + = fsr ,td, F8 = F −
1

c

] fsr ,td
]t

, s6d

where fsr ,td is given by

fsr ,td = − se · r ds1 + ik · r /2de−ivt.

We thus obtain

F8sr ,td = − i
v

c
se · r df1 + isk · r d/2ge−ivt, s7d

A8sr ,td =
i

2
fesk · r d − kse · r dge−ivt =

i

2
ffk 3 eg 3 r ge−ivt.

s8d

The length form counterpart to Eq.s3d for the electron-
photon interaction operator to leading order in the retardation
corrections is therefore

V8sr ,td = −
e

mc
„A8sr ,td ·p… + eF8sr ,td = VsLde−ivt, s9d

where

VsLd = − i
ev

c
Fse · r d + i

v

2c
se · r dsk̂ · r d +

1

2mc
sfk̂ 3 eg · ldG .

s10d

Similarly to Eqs. s4d and s5d, we rewrite the expression
above in tensor form,

VsLd = Vd8 + Vq8 + Vm8 , s11d

Vd8 = − i
ev

c
se · r d,

Vq8 =
ev2

2c2 se · r dsk̂ · r d =
ev2

2c2 r2shk̂ ^ ej2 · hr̂ ^ r̂ j2d,

Vm8 = − i
ev

2mc2sfk̂ 3 eg · ld. s12d

Note that hr̂ ^ r̂ j2m=Î2/3C2msr̂ d, where Clmsr̂ d
;Î4p / s2l +1dYlmsr̂ d is the modified spherical harmonic
f36g.

Because our treatment accounts for the leading correc-
tions to the EDA, the lowest-order spin effects should also be
accounted for. This can be done either by substituting
p→ sp+ ifs3kgd swheres is the electron spin operatord in
Eq. s1d f35g, or, in lowest order, by simply making the sub-
stitution l → sl +2sd in the magnetic-dipole termssVm=Vm8 d in
Eqs.s5d and s12d.

B. Parametrizations of the DPI amplitude with account of
dipole and quadrupole terms

We consider DPI from the singlet1S0 stateu0l in the non-
relativistic domain of photon energies taking into account
lowest-order retardation corrections. For DPI from a1S0
state, neither orbital nor spin-dependent parts of the magnetic
dipole interaction contribute to the transition amplitudessee
Ref. f19g for detailsd. Therefore, the magnetic-dipole opera-
tor in Eqs.s5d ands12d as well as the spin dependence of the
two-electron wave functions are suppressed in our analysis
of the transition amplitudeA to the final two-electron singlet
state,up1p2l, with asymptotic electron momentap1 and p2.
The dipole-quadrupole TDCS for DPI is

d3s

de1dV1dV2
; s = AuAu2, s13d

where A=4p2ap1p2/v is a normalization factor, anda
=1/137. Atomic units are used throughout the rest of this
paper. The amplitudeA involving E1 and E2 components has
the unified form

A = Ad + Aq = kp1p2use ·Dd + shk̂ ^ ej2 ·Q2du0l s14d

for both velocity and length gauges of the electron-photon
interaction. In the velocity gauge,D;DsVd=−is=1+=2d and
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Q2m;Q2m
sVd=avshr 1 ^ =1j2m+hr 2 ^ =2j2md. In the length

gauge,D;DsLd= ivsr 1+r 2d and Q2m;Q2m
sLd=−s1/2dav2shr 1

^ r 1j2m+hr 2 ^ r 2j2md. Because the amplitudeA in Eq. s14d is
a scalarsi.e., it is independent of magnetic quantum num-
bersd, a rotationally invariant parametrization may be given
in terms of the vectors of the problem and scalar dynamical
parameters dependent onp1, p2, and the mutual angleu12
;u betweenp1 andp2, i.e., cosu=sp̂1·p̂2d.

The parametrization of the EDA amplitudeAd in terms of
scalar products of the vectorse, p̂1, and p̂2 is well known
f10,24g,

Ad = f1se · p̂1d + f2se · p̂2d. s15d

In this equation,f1; fsp1,p2,cosud and f2; fsp2,p1,cosud
are defined by a single function,

fsp,p8,cosud = o
l=1

`

s− 1dl+1F o
l8=l±1

Dll8sp,p8dG
3 Pl

s1dscosud, s16d

wherePl
sndsxd is the nth derivative of the Legendre polyno-

mial Plsxd, Pl
sndsxd=sdn/dxndPlsxd. The energy-dependent co-

efficient Dll8sp,p8d is given by

Dll8sp,p8d =
kpp8;sll 8d1iDi0l

Îs2l + 1ds2l8 + 1dmaxsl,l8d
, s17d

wherekpp8 ; sll 8d1iDi0l is the reduced matrix element of the
operatorD between the1S0 state and theP-wave component
of the two-electron continuum stateupp8l, with photoelec-
tron angular momental and l8= l ±1.

In order to derive a model-independent parametrization of
the quadrupole amplitudeAq si.e., to establish its dependence
on the photon parameterse andk and the angleu betweenp1
and p2d, we employ techniques similar to those that have
been developed for parametrization of the electric dipole
TDCS f24g. First, we use the well-known multipole expan-
sion of the final stateup1p2l in terms of bipolar harmonics

CLM
ll8 sp̂ ,p̂8d,

up1p2l = o
l1l2lm

Clm
l1l2*sp̂1,p̂2dup1p2;sl1l2dlml, s18d

where

Clm
l1l2sp̂1,p̂2d = o

m1,m2

Cl1m1l2m2

lm Cl1m1
sp̂1dCl2m2

sp̂2d

= hCl1m1
sp̂1d ^ Cl2m2

sp̂2djlm, s19d

and Cl1m1l2m2

lm denotes a Clebsch-Gordon coefficient. Using
the Wigner-Eckart theoremf36g, the polarization-angular de-
pendence ofAq may be given in terms of a sum of scalar
products of two rank-2 tensors,

Aq =
1
Î5

o
l1l2

„hk̂ ^ ej2 ·C2
l1l2sp̂1,p̂2d…

3 kp1p2;sl1l2d2iQ2i0l, s20d

wherekp1p2; sl1l2d2iQ2i0l is the reduced matrix element of

the operatorQ2m between the initial1S0 state,u0l, and the
D-wave component ofup1p2l with photoelectron angular mo-
mental1 and l2= l1, l1±2.

Taking symmetry requirements into account, Eq.s20d may
be simplified. Since the bipolar harmonics in this equation
are rank-2 irreducible tensors composed of the vectorsp̂1
and p̂2, they may be represented as a superposition of all
possible rank-2 irreducible tensors composed ofp̂1 and p̂2.
There are three such independent tensors:hp̂1 ^ p̂1j2m, hp̂2

^ p̂2j2m, and hp̂1 ^ p̂2j2m. Thus phenomenologically the am-
plitude Aq may be written as

Aq = he ^ k̂j2 · sg1hp̂1 ^ p̂1j2 + g2hp̂2 ^ p̂2j2

+ 2gshp̂1 ^ p̂2j2d,

where we have introduced the generally complex parameters
g1,2 and gs, which depend onp1, p2, and u; the factor 2 is
introduced for the sake of convenience. After expressing the
scalar products of rank-2 tensors in this identity in terms of
the Cartesian scalar products of vectors of the problemssee,
e.g., Sec. 3.2 of Ref.f36gd and taking into account the invari-
ance of the amplitude with respect to interchange of the pho-
toelectronssi.e., p1�p2d, we arrive at our final parametriza-
tion of the DPI quadrupole transition amplitude,

Aq = g1se · p̂1dsp̂1 · k̂d + g2se · p̂2dsp̂2 · k̂d

+ gsfse · p̂1dsp̂2 · k̂d + se · p̂2dsp̂1 · k̂dg, s21d

in terms of only two functions: gs;gssp1,p2,cosud
=gssp2,p1,cosud swhich is symmetric in the argumentsp1

and p2d and the function gsp,p8 ,cosud, with g1

;gsp1,p2,cosud andg2;gsp2,p1,cosud.
The explicit forms of the functionsgsp,p8 ,cosud and

gssp,p8 ,cosud in terms of the reduced matrix elements in-
troduced in Eq.s20d may be established by using the reduc-
tion formulas for the rank-2 bipolar harmonics in Eq.s20d
that are derived in Ref.f24g. The final expressions forg and
gs are f33g

gssp,p8,cosud = o
l=1

`

s− 1dl+1F o
l8=l±2

Qll8sp,p8dPsl+l8d/2
s2d scosud

+ Î6Qllsp,p8d

3SPl+1
s2d scosud −

2l + 3

2
Pl

s1dscosudDG , s22d

gsp,p8,cosud = o
l=2

`

s− 1dlF o
l8=l±2

Qll8sp,p8d + Î6Qllsp,p8dG
3Pl

s2dscosud,

where

Qll8sp,p8d =Î4sl + l8 − 2d!
sl + l8 + 3d!

kpp8;sll 8d2iQ2i0l. s23d
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1. Symmetrized quadrupole amplitudes: g+
„g…, g−

„g…, and g„u…

Another parametrization of the DPI quadrupole amplitude
Aq, which is similar to the one commonly used in the litera-
ture within the EDA framework, is the parametrization in
terms of symmetrized combinations ofp̂1 and p̂2: p+=sp̂1

+ p̂2d /2 and p−=sp̂1− p̂2d /2 fwhich are orthogonal,p+·p−

=0, and have the following moduli:p+=cossu /2d and p−

=sinsu /2dg. With these definitions, Eqs.s15d and s21d have
the following form:

Ad = f sgdse ·p+d + f sudse ·p−d, s24d

Aq = g+
sgdse ·p+dsk̂ ·p+d + g−

sgdse ·p−dsk̂ ·p−d

+ gsudfse ·p+dsk̂ ·p−d + se ·p−dsk̂ ·p+dg, s25d

where the symmetrized amplitudes aref sgd= f1+ f2, f sud= f1

− f2, g±
sgd=g1+g2±2gs, and gsud=g1−g2. For equal energy

sharing,f sud=gsud=0, and the parametrization in terms of the
symmetrized amplitudes becomes particularly convenient.
The exact expressions for our symmetrized amplitudes in
terms of Legendre polynomials and reduced matrix elements
follow immediately from those for the functions
fsp,p8 ,cosud and gsp,p8 ,cosud, gssp,p8 ,cosud defined in
Eqs.s16d and s22d. The amplitudesf sud andgsud have simple
forms,

f sud = o
l=1

`

s− 1dl+1 o
l8=l±1

fDll8sp,p8d − Dll8sp8,pdgPl
s1dscosud,

gsud = o
l=2

`

s− 1dl o
l8=l±2

fQll8sp,p8d − Qll8sp8,pdgPl
s2dscosud.

s26d

fWe note that the description of the dipole amplitudeAd
given above is very similar to its well-known parametriza-
tion in terms of the vectorsp̂1± p̂2 and the symmetrized “ger-
ade” and “ungerade” amplitudesag,u=sf1± f2d /2 f10,25,37g;
note thatf sg,ud=2ag,u.g

The results in Eqs.s15d–s17d and s21d–s26d are general
and giveab initio parametrizations of the dipole and quad-
rupole DPI amplitudes, independent of the dynamical model
used for calculations of the reduced matrix elementss17d and
s23d. Thus, the measurements of nondipole effects in DPI of
He allow one to probe electron correlations in theD-wave
part of the two-electron continuum stateup1p2l swhile only
the P-wave part contributes to the EDA amplitudeAdd.

C. Model-independent parametrizations for the
dipole-quadrupole TDCS

We present here parametrizations for the TDCS defined
by Eqs.s13d–s15d and s21d for the cases of linear, circular,
and elliptic polarization, and discuss the nondipole effects to
be expected in measurements.

1. Linear polarization

For the case of DPI by linearly polarized light described
by the real photon polarization vectore; ê, the dipole-

quadrupole TDCS may be presented in terms ofthree real
parameterssupon neglecting the small E2-E2 termsd,

s = sd + Afa1sp̂1 · k̂d + a2sp̂2 · k̂dg, s27d

where sd=AuAdu2 is the dipole TDCS, and the two real,

k̂-independent parametersa1 and a2 describe the dipole-
quadrupole interference,

a1 = 2 RehAd
*fg1sê · p̂1d + gssê · p̂2dgj,

a2 = 2 RehAd
*fg2sê · p̂2d + gssê · p̂1dgj. s28d

As noted above, the quadrupole terms in Eq.s27d do not
contribute to the TDCS for the perpendicular plane geom-
etry. Thus, the dipole TDCSsi.e., sdd may be measured by
detecting photoelectrons in the plane perpendicular to the
photon beam. The parametersa1 anda2 may be determined
from two measurements employing a nonorthogonal geom-
etry with different directions of the photon wave vector. As
seen from Eqs.s27d and s28d, the interference between the
dipole and quadrupole TDCS contributions is strongest for
the case ofcoplanar geometry, i.e., when the vectorsê, k,
p1, and p2 lie in one planessee Fig. 1d. In particular, the
difference between two TDCS measurements, induced by re-
tardation corrections, is maximal when the second measure-
ment is made with the direction of the photon beam inverted
f33g.

2. Elliptic and circular polarizations

For the most general case of DPI by elliptically polarized
light described by the complex polarization vectore, the
TDCS in Eq.s13d sneglecting the small terms,uAqu2d has a
model-independent parametrization similar to that for dipole
DPI f24g,

s = A„c1ue · p̂1u2 + c2ue · p̂2u2 + Rec3hs1 − ldfsp̂1 · p̂2d

− sk̂ · p̂1dsk̂ · p̂2dg + 2lsê · p̂1dsê · p̂2dj

+ j Im c3sk̂ · fp̂1 3 p̂2gd…, s29d

where, however, the coefficientsci are nowk-dependent,

FIG. 1. Geometry suitable for observation of retardation effects
in the TDCS for DPI by linearly polarized light. The vectorsp1, p2,
e, andk lie in one plane.
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c1 = uf1u2 + 2 Reff1g1
*sk̂ · p̂1d + f1gs

*sk̂ · p̂2dg,

c2 = uf2u2 + 2 Reff2g2
*sk̂ · p̂2d + f2gs

*sk̂ · p̂1dg,

c3 = f1f2
* + sf1gs

* + f2
*g1dsk̂ · p̂1d + sf2

*gs + f1g2
*dsk̂ · p̂2d.

s30d

The parameterl in Eq. s29d is the degree of linear polariza-
tion of an elliptically polarized photon,l =e2=Î1−j2, and the
unit vectorê is directed along the major axis of the polariza-
tion ellipse. In dealing with the scalar products involving the
complex vectore, the following relation is convenientf24g:

2ue ·au2 = 2l uê ·au2 + s1 − ldfk̂ 3 ag2, s31d

where a is a real vector. Note also that Eq.s29d may be
rewritten also in terms of the Stokes parametersSj f10g; in

particular, j; isk̂ ·fe3e*gd=−S3. The photon polarization
dependence of the dipole-quadrupole TDCS is thus deter-

mined by four real k̂-dependent parameters:c1, c2, Rec3,
and Imc3. These parameters may be determined from four
measurements with different polarizations of the photon
beam, e.g., two experiments with linearly polarized photons
and two experiments with circularly polarized photons. Once
the parametersci have been determined, the TDCS corre-
sponding to an arbitrarily polarized photon is given by Eq.
s29d. Thus, as for the EDA case, all information on the non-
dipole TDCS for an elliptic polarization may be obtained
from measurements with linearly and circularly polarized
light. We note that the TDCS parametrization in Eq.s29d is
independent of the dynamical model used to calculate the
parametersf1,2, g1,2, andgs.

For circularly polarized photonssl =0,j= ±1d, Eq. s29d
simplifies ftaking into account Eq.s31dg,

s =
A
2

hc1fk̂ 3 p̂1g2 + c2fk̂ 3 p̂2g2

+ Rec3sfk̂ 3 p̂1g · fk̂ 3 p̂2gd

+ 2j Im c3sk̂ · fp̂1 3 p̂2gdj. s32d

The TDCSs in Eqs.s29d ands32d both contain a term that is
proportional to the degree of circular polarizationj; this term
is sensitive to the sign ofj, i.e., it is responsible for the CD
effect. This effect is usually characterized by the absolute
CD parameter,DCD;ssj= +1d−ssj=−1d, which has the
following form:

DCD = 2A Im c3sk̂ · fp̂1 3 p̂2gd. s33d

The termDCD involves both the E1-E1 and E1-E2 contribu-
tions,

DCD = DCD
sdipd + DCD

squadrd,

DCD
sdipd = 2A Imsf1f2

*dsk̂ · fp̂1 3 p̂2gd,

DCD
squadrd = 2A Imfsf1gs

* + f2
*g1dsk̂ · p̂1d

+ sf2
*gs + f1g2

*dsk̂ · p̂2dgsk̂ · fp̂1 3 p̂2gd, s34d

which have different symmetry properties with respect to the
inversion of the photon beamsi.e.,k →−kd, and with respect
to reflection of the photoelectron pair in the polarization
plane fi.e., su1,u2d→ sp−u1,p−u2d, where u1,2 are the
spherical angles of the vectorsp̂1,2 in the coordinate system
whosez axis is directed along the photon wave vectorkg.
Within the EDA framework, the CD effect is described by
the dipole termDCD

sdipd f20,24g, which vanishes at equal energy
sharing sbecause forp1=p2 one hasf1= f2d. However, the
quadrupole term,DCD

squadrd, produces a nonzero CD effect even
at equal energy sharing. Note that the imaginary part ofc3 in
Eq. s33d changes sign upon making the substitutionsp1�p2,
as it should because of the invariance of the total CD term,
DCD, upon interchange of photoelectrons.

The dichroic term Imc3sk̂ ·fp̂13 p̂2gd in Eqs. s29d and
s32d results also in an unusual feature of the TDCS, the dif-
ferent symmetry of the TDCS with respect to two transfor-
mations:sid k →−k si.e., the inversion of the photon beam
directiond and sii d su1,u2d→ sp−u1,p−u2d si.e., the reflec-
tion of the photoelectron pair in the polarization planed.
The nonequivalence of these two transformations, i.e., the
fact that ss−k ,u1,u2,jdÞssk ,p−u1,p−u2,jd, may be
verified by simple inspection of Eqs.s29d and s32d. Each
of the terms in these equations, except for the term

2A Im c3sk̂ ·fp̂13 p̂2gd, transforms in the same way upon ei-
ther of the two transformations. On the contrary, the term

2A Im c3sk̂ ·fp̂13 p̂2gd transforms differently: the scalar

product sk̂ ·fp̂13 p̂2gd changes its sign whenk →−k, but is
invariant with respect tosu1,u2d→ sp−u1,p−u2d. From the
considerations above, the following relation follows:

ssk,u1,u2,jd = ss− k,p − u1,p − u2,− jd, s35d

which reflects the invariance of the TDCS upon spatial in-
versionstaking into account thatj is a pseudoscalar quantityd
and shows that both transformationssid and sii d are equiva-
lent in the limit l →1 slinear polarizationd. The difference
between the TDCSs resulting from the transformationssid
and sii d is

ss− k,u1,u2,jd − ssk,p − u1,p − u2,jd = jsDCD
squadrd − DCD

sdipdd.

s36d

The retardation-induced part of this difference,jDCD
squadrd, may

be observed most easily at equal energy sharing, when the
generally large dipole termDCD

sdipd in Eq. s36d vanishes. In this
case, the termDCD in Eq. s33d changes its sign when
su1,u2d→ sp−u1,p−u2d but is invariant with respect tok
→−k. We note that besides the case of linear polarization,
the asymmetries of the TDCS resulting from the transforma-
tions sid andsii d become equivalent also for geometrical con-
figurations in which the termDCD vanishes, e.g., when the
vectorsp̂1, p̂2, andk lie in one planefor whenk ·sp1−p2d
=0 for the case of equal energy sharingg.
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3. Parametrizations in terms of the symmetrized amplitudes

The expression for the TDCS in terms of symmetrized
amplitudes has a form identical to that in Eqs.s29d ands30d
fas well as to those in Eqs.s32d–s34dg provided the fol-
lowing substitutions are made:hp̂1,p̂2, f1, f2,g1,g2,gsj
→ hp+,p−, f sgd , f sud ,g+

sgd ,g−
sgd ,gsudj. Thus in general this pa-

rametrization does not simplify the analysisfbecause only
the term corresponding tosp1·p2d in the second line of Eq.
s29d vanishes in the symmetrized parametrization, since
sp+·p−d=0g, however it does lead to a simpler form of the
TDCS in particular cases.

The TDCS has an especially simple form for back-to-back
electron emissionsi.e., p2=−p1 or p+=0d,

s = Ahuf sudu2 + 2 Reff sudg−
sgd*gsk̂ ·p1djue ·p1u2. s37d

If the wave vectork, photoelectron momentap1=−p2, and
the major axis of the polarization ellipse lie in the same
plane, the forward-backward asymmetry,D=sse,kd−sse,
−kd, for this case may be analyzed as a function of the angle
wk between the wave vectork and the photoelectron ejection
axis directed alongp1=−p2 fowing to Eq.s31dg,

D = 2As1 + ldRehf sudg−
sgd*jsin2 wk coswk . s38d

This asymmetry may be visible at energy sharings close to
equal, in which casef sud vanishes; see the numerical results
in Ref. f33g.

For the case of equal energy sharing, the parametrization
of the TDCS for an elliptic polarization is

sseqd = Ahfuf sgdu2 + 2 Rehf sgd*g+
sgdjsk̂ ·p+dgue ·p+u2

+ Rehf sgd*g−
sgdjsk̂ ·p−df2lsê ·p+dsê ·p−d

+ sl − 1dsk̂ ·p+dsk̂ ·p−dgj + sj/2dDCD
seqd, s39d

where DCD
seqdu;DCD

squadrdup1=p2
; it has the following form in

terms of the symmetrized amplitudes:

DCD
seqd = 2A Imhf sgd*g−

sgdjsk̂ · fp− 3 p+gdsk̂ ·p−d. s40d

Note that this form of the nondipole CD parameter forp1

=p2 in terms of the vectorsp± is expected sinceDCD
seqd should

be invariant with respect to the substitutionp1�p2 si.e.,
p−→−p−d.

The “kinematical” maxima ofDCD
seqd may be deduced by

supposing that the vectorsp− andp+ are directed along thez
and x axes of a coordinate frame, so that they axis is di-
rected along the vector productfp−3p+g=fp̂13 p̂2g /2 fsee
Fig. 2sad g. In terms ofuk andfk, the spherical angles of the

vector k̂, we obtain

2sk̂ ·p−dsk̂ · fp− 3 p+gd = sk̂ · ẑdsk̂ · ŷdsinsu/2dsinu

= sins2ukdsinfk sin2su/2dcossu/2d.

s41d

The modulus of this expression is maximal foruk = ±p /4
and fk = ±p /2 fsee Fig. 2sadg. These angles correspond to
maxima of the equal energy sharing CD effect.

III. PERTURBATIVE ACCOUNT OF ELECTRON
CORRELATIONS IN THE DPI QUADRUPOLE

TRANSITION AMPLITUDE

A. General equations for LOPT amplitudes

We use LOPT in the interelectron interaction to account
for electron correlations in our numerical calculations of the
reduced matrix elements of the operatorsD andQ2m and the
corresponding TDCSsssee Refs.f14,16gd. The application of
this approach to DPI within the EDA was described in detail
in Ref. f16g; therefore, we provide here only a brief descrip-
tion of this approach to evaluating the quadrupole transition
amplitude.

In lowest order in 1/r12, the DPI quadrupole transition
amplitudeAq in Eq. s14d is given by

Aq = QFsp1,p2d + QFsp2,p1d + QGsp1,p2d + QGsp2,p1d,

s42d

where the termsQF and QG account for final-state correla-
tions sFSCd and ground-state correlationssGSCd, respec-
tively; they are shown schematically in Fig. 3. The dipole
parts of the FSC and GSC terms are evaluated in Ref.f16g.
The quadrupole terms,QF and QG, have the following ex-
pressionsfcf. Eqs.s7d–s9d in Ref. f16gg:

FIG. 2. Geometries suitable for observation of retardation-
induced light polarization effects.sad Geometry at which the equal
energy sharing CD is maximal. Electrons are detected in thexz
plane, at angles of ±u /2 with respect to thex axis. The photon wave
vectork lies in theyzplane and makes an angle 45° with thez axis.
sbd Geometry for observation of retardation-induced asymmetries in
the TDCS. The first electron is ejected along thex axis and the
second oneswhose angular distribution exhibits the asymmetryd
along su2,f2d. sConcerning the angleswxz andwyz, see Fig. 7.d

FIG. 3. Schematic diagrams for first-order perturbative contri-
butions to the DPI amplitude.sad Final-state correlation;sbd ground-
state correlation. Two additional contributing diagrams with ex-
changedp1 andp2 are not shown.
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QFsp1,p2d = Î2kcp1

s−duUp2

s−dsr dGEF
sr ,r 8dsk · r 8dse · =r8duw0l,

s43d

QGsp1,p2d = Î2kcp1

s−dusk · r dse · =rdGEG
sr ,r 8dUp2

s−dsr 8duw0l,

s44d

Up2

s−dsr d = kcp2

s−duur − r 8u−1uw0l, s45d

where GEF
and GEG

are the one-particle Coulomb Green’s
functions sCGFsd with energy parametersEF=Ep1

+Ep2
−e1s

andEG=2e1s−Ep2
; the functionsw0 andcp

s−d are one-particle
Coulomb wave functions for a hydrogenlike ion that de-
scribe, respectively, the ground state and continuum state
normalized according tokcp ucp8l=dsp−p8d; the factorÎ2 in
Eqs. s43d and s45d accounts for symmetrization of the final
state. The two exchange amplitudes are obtained by inter-
changing the momentum vectorsp1 andp2 in Eqs.s43d–s45d
and usingEG=2e1s−Ep1

.
The amplitudesQF and QG are evaluated by using the

standard multipole expansions for the Coulomb continuum
functionscp, for the CGF, and for 1/r12 in Eqs.s43d–s45d,

cp
s−dsr d =

s2pd−3/2

2p
o
l=0

`

i ls2l + 1d 3 e−idlspdRplsrdPlsp̂ · r̂ d,

s46d

GEsr ,r 8d = o
l,m

glsE;r,r8dYlmsr̂ dYlm
* sr̂ 8d, s47d

1

ur − r 8u
= o

l=0

`
r,

l

r.
l+1Plsr̂ · r̂ 8d, s48d

where dlspd=argGsl +1+ihd is a Coulomb phase shift,h
=Z/p, andr,=minsr ,r8d, r.=maxsr ,r8d. Rplsrd is the radial
part of the Coulomb wave function,

Rplsrd =
Cpls2prdl

s2l + 1d!
e−iprFsih + l + 1,2l + 2,2iprd, s49d

where F is a confluent hypergeometric function andCpl
=2p expsph /2duGsl +1+ihdu. The radial functions49d is nor-
malized as follows:e0

`RplsrdRp8lsrdr2dr=2pdsp−p8d. For the
radial part of the CGF, we use the integral representation
f38g,

glsE;r,r8d =
2

Îrr 8
E

0

1 du

1 − u
u−Zn−1/2

3 expH−
r + r8

n

1 + u

1 − u
JI2l+1

3S 4Îrr 8u

ns1 − ud
D , s50d

wheren=1/Î−2E sn= i unu for E.0d and Insxd is a modified
Bessel function.

B. Evaluation of angular integrals

As a result of the partial wave expansions in Eqs.
s46d–s48d, the quadrupole amplitudesQF,G in Eqs. s43d and
s44d take the form of an infinite double sum over the electron
angular momenta,l1 andl2, that characterize the correspond-
ing partial wave amplitudes. We consider here the evaluation
of the angular integrals in these partial wave amplitudes. The
angular integral overr̂ for the sl , l8d partial wave amplitude
QF in Eq. s43d has the form

IF
sl,l8d =E Plsp̂1 · r̂ dPl8sp̂2 · r̂ dsk̂ · r̂ dse · r̂ ddr̂ s51d

=CI
sl,l8d

„hk̂ ^ ej2 ·C2
ll8sp̂1,p̂2d…, s52d

where

CI
sl,l8d =

4p

5
Î2

3
Cl0l80

20 . s53d

The scalar product of the rank-2 tensors in Eq.s52d may be
evaluated using Eqs.sC3d and sC5d in Ref. f24g,

„hk̂ ^ ej2 ·C2
ll8sp̂1,p̂2d… = s− 1dlCS

sl,l8dAsl,l8dsp̂1,p̂2,k̂,ed,

s54d

where

Asl,ldsp̂,p̂8,k̂,ed = Î6hfse · p̂dsk̂ · p̂d + se · p̂8dsk̂ · p̂8dgPl
s2dsxd

− fse · p̂dsk̂ · p̂8d + se · p̂8dsk̂ · p̂dg

3 f 1
2Pl

s1dsxd + xPl
s2dsxdgj , s55d

Asl,l8=l±2dsp̂,p̂8,k̂,ed = se · p̂dsk̂ · p̂dPl
s2dsxd

+ se · p̂8dsk̂ · p̂8dPl8
s2dsxd

− fse · p̂dsk̂ · p̂8d + se · p̂8d

3sk̂ · p̂dgPsl+l8d/2
s2d sxd, s56d

CS
sl,l8d =Î20s2l. − 4d!

s2l. + 1d!
, s57d

and wherex=cosu=sp̂ ·p̂8d and l.=maxsl , l8d. The evalua-
tion of the angular integrals for thesl , ld partial wave ampli-
tudeQG in Eq. s44d is slightly more involved. After integra-
tion over r̂ 8 in Eq. s44d, the remaining angular integral over
r̂ in that equation has the form

IG
sl,l8d =E Plsp̂1 · r̂ dsk̂ · r̂ dse · = dPl8sp̂2 · r̂ ddr̂ , s58d

where l8= l, l ±2. It is evaluated using the fact that=
=s] /]rdr̂ +s1/rd=V. The integral involving r̂ reduces to

IF
sl,l8d; the integral involving=V is evaluated by using the

Wigner-Eckart theorem for the matrix element of the direct
product of the spherical componentsrms=Vdn f36g. The re-

sulting expression forIG
sl,l8d is
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IG
sl,l8d = IF

sl,l8d ]

]r
+ Jsl,l8d1

r
, s59d

where

Jsl,l8d =E Plsp̂1 · r̂ dsk̂ · r̂ dse · =VdPl8sp̂2 · r̂ ddr̂

= CJ
sl,l8d

„hk̂ ^ ej2 ·C2
ll8sp̂1,p̂2d…, s60d

and whereCJ
sl,l8d may be expressed in terms ofCI

sl,l8d: CJ
sl,l8d

=fdl8ls3/2d+dl8l+2sl8+1d−dl8l−2l8gCI
sl,l8d. Thus the angular in-

tegral overr̂ in Eq. s44d becomes

IG
sl,l8d = „hk̂ ^ ej2 ·C2

ll8sp̂1,p̂2d…

3 CI
sl,l8dF ]

]r
+

dl8ls3/2d + dl8l+2sl8 + 1d − dl8l−2l8

r
G .

s61d

Combining the above results, the partial wave expansions
for the amplitudesQF,G in Eqs.s43d and s44d are

QF,G = o
l1=0

`

s− 1dl1 o
l2=l1,l1±2

QF,G
sl1,l2dsp1,p2d 3 Asl1,l2dsp̂1,p̂2,k̂,ed,

s62d

where the functionAsl1,l2dsp̂1,p̂2, k̂ ,ed fcf. Eqs.s55d ands56dg
determines the polarization and angular dependence of the
DPI amplitude, whileQF,G

sl1,l2dsp1,p2d is a dynamical factor
that determines its energy dependence,

QF,G
sl1,l2dsp1,p2d = Pl1l2

QF,G
sl1,l2dsp1,p2d, s63d

where

Pl1l2
=

s− 1dl.

s2pd2

av

p1p2
eifdl1

sp1d+dl2
sp2dg

3 s2l1 + 1dÎ 4s2l. − 4d!
15s2l. + 1d!

Cl10l20
20 , s64d

andQF,G
sl1,l2dsp1,p2d is a radial matrix element. As is shown in

Appendix A, QF,G
sl1,l2dsp1,p2d may be represented as a two-

dimensional integral of elementary functions.

C. LOPT results for the DPI dynamical factors

The photon polarization and angular dependencefde-
scribed by Eqs.s55d, s56d, and s62dg of the quadrupole part
of the DPI amplitude, givenswithin LOPTd by Eqs.s43d and
s44dg, have the same form as the exact parametrization in
Eqs.s21d ands22d. Moreover, the equations above allow one
to obtain the explicit expressions for the LOPT limit of the
exact dynamical factorsQl1l2

sp1,p2d in Eqs. s22d and s23d,
which involve the two-electron reduced matrix element
kpp8 ; sll 8d2iQ2i0l,

Ql1l2
sp1,p2d = Pl1l2

fQF
sl1,l2dsp1,p2d + QF

sl2,l1dsp2,p1d

+ QG
sl1,l2dsp1,p2d + QG

sl2,l1dsp2,l2dg, s65d

where the formulas for the radial matrix elementsQF,G
sl1,l2d

sp1,p2d are given in Appendix A.
The LOPT analysis of dipole DPI in Ref.f16g permits one

to obtain the LOPT limit of the reduced dipole matrix ele-
mentskpp8 ; sll 8d1iDi0l in the dynamical factorsDl1l2

sp1,p2d
in Eq. s17d. These expressions have the following form:

Dl1l2
sp1,p2d = Sl1l2

fDF
sl1,l2dsp1,p2d + DF

sl2,l1dsp2,p1d

+ DG
sl1,l2dsp1,p2d + DG

sl2,l1dsp2,p1dg, s66d

where

Sl1l2
=

Î2

8p2s2l2 + 1dp1p2
eifdl1

sp1d+dl2
sp2dg. s67d

The quantitiesDF,G
sl1,l2dsp1,p2d are the radial matrix elements

of the electric-dipole operator,

DF
sl1,l2dsp1,p2d ; 4Zs

4RF
sl1,l2dsp1,p2d,

DG
sl1,l2dsp1,p2d ; 4Zs

3RG
sl1,l2dsp1,p2d, s68d

where the explicit expressions forRF,G
sl1,l2dsp1,p2d in terms of

two-dimensional integrals of elementary functionsfsimilar to
those forQF,G

sl1,l2dsp1,p2d in Appendix Ag are given by Eqs.
sA14d, sA25d, and sA28d in Ref. f16g along with their nu-
merical LOPT values for several excess energies and energy
sharings.

The dynamical factors above represent the lowest-order
terms in the expansion of the exact DPI transition amplitude
in 1/Z; they may thus beZ-scaledssee Refs.f16,17gd in
order to treat DPI of He-like ions. Moreover, a similar scal-
ing may be useful for estimating the DPI cross sections for
the K-shells of heavy atoms, using the effective nuclear
chargeZef f=ÎuE0u f19g. As shown in Ref.f19g, such esti-
mates for K-shell DPI are in reasonable agreement with ex-
perimental measurements of the ratios++/s+ for a number of
atoms.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section we present our theoretical results, which
include both dipole and quadrupole contributions to the tran-
sition amplitude, and compare them both to our EDA predic-
tions and to experimental data, when available. As discussed
in Sec. II C, there are two manifestations of nondipole cor-
rections: sid two kinds of forward-backward asymmetry of
the TDCS with respect to the propagation direction of the
photon beam, andsii d the dependence of the TDCS upon the
sign of the degree of circular polarizationsthe CD effectd for
equal energy sharing, which does not exist in the EDA.
Analyses of these two kinds of nondipole effects are pre-
sented below for three representative excess energies, i.e.,
20, 100, and 450 eV.sSome results for 80 and 239 eV may
be found in Refs.f33,34g.d
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Our treatment of electron correlations at these three rep-
resentative excess energies is described in Sec. III abovesas
well as in Refs.f14,16gd. In brief, for excess energies of 20
and 100 eV, electron correlations are accounted for explicitly
only in the final state, i.e., only the FS amplitudeQF in Eq.
s43d is taken into account. Closer to the double ionization
threshold, i.e., at the excess energy of 20 eV, it appears that
the use of a single basis-set calculated for an effective
“screening” chargeZs=Z=27/16f14g provides the most ac-
curate agreement with both experiment and other calcula-
tions. Further away from the threshold, i.e., at 100 eV, we
use the screening chargeZs=27/16 only to describe approxi-
mately the He ground statefi.e., substitutingZ→Zs only in
the hydrogenlike ground stateuw0l in Eq. s43dg and take into
account final-state correlations within the Coulomb basis set
with Z=2 f16g. For an excess energy of 450 eV, electron
correlations in both initial and final statesfi.e., both FS and
GS amplitudesQF andQG in Eqs.s43d ands44dg need to be
taken into account, using a single Coulomb basis set evalu-
ated forZ=2, thus providing gauge-independent predictions
for TDCSs.

As the major goal of the present work is to examine the
manifestation and importance of lowest-order nondipole ef-
fects, for consistency we compare our dipole-quadrupole re-
sults with our own EDA resultssand with experimental data,
when availabled. Note that our EDA results have already
been compared with the EDA results of more sophisticated
calculations elsewheref14,16g.

A. Nondipole asymmetries in the TDCS

In this subsection we present our numerical results for the
two kinds of nondipole forward-backward asymmetry of the
dipole-quadrupole TDCSs that are discussed in Sec. II C 2.
For linear polarization, these two kinds of asymmetry, i.e.,
with respect to ejection of one of the electrons in the forward
or backward directions, and with respect to inversion of the
photon beam direction, are equivalent. For circular polariza-
tion, these asymmetries are in general qualitatively different
and stem from different terms in the TDCS, even in the re-
gime of equal energy sharing, which would not be the case
within the EDA treatment.

1. Excess energy of 20 eV

The TDCSs for DPI of a He atom have been studied in
great detail at an excess energy of 20 eV, both experimentally
and theoretically. Absolute experimental TDCS data exist for
both linearf39g and circularf32g polarization. In Fig. 4, our
TDCS results for linear polarization at 20 eV excess energy
are presented for three energy sharings and three values of
the ejection angleu1. Because in the regime of not very
asymmetric energy sharing, considered here, our model gen-
erally predicts unphysical maxima in the TDCS for small
mutual ejection anglessowing to our lowest-order account of
FS correlationsd, our predictions are given only in the angu-
lar ranges where we expect them to be accurate. In the plots
for u1=90°, the geometrical zeros atu1=u2=90° allow us to

FIG. 4. Present results for the
TDCS for DPI of He at an excess
energy of 20 eV for the case of
linear polarization and coplanar
geometry. Energy sharings and
ejection angles are as indicated.
Full curves, dipole-quadrupole re-
sults; dashed curves, dipole-
quadrupole results for the opposite
direction of the photon beam; dot-
ted curves, EDA results.sNote
that 1.0 b=1.0310−24 cm2.d
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obtain accurate predictions even for small mutual ejection
angles; thus for this case we present them over the full an-
gular range.

From Fig. 4, one sees that the difference between results
that account for the lowest-order retardation corrections and
the EDA results is largest in absolute magnitude where the
TDCSs have maxima. This occurs for the cases when one
electron is ejected either atu1=0° or u1=90°. On the con-
trary, for u1=45° sand, in general, for 15&u1&75°; data not
shownd the nondipole contributions are less important. The
nondipole modifications of the angular distributions appear
to depend greatly upon a number of parameters, such as the
ejection angle of one of the electrons,u1. For u1=0°, the
modification of the TDCS follows the intuitive expectation,
i.e., the whole angular distribution is shifted in the “forward”
direction fFigs. 4sad, 4sdd, and 4sgdg. For u1=90°, however,
the magnitude of the TDCS is increased by nondipole cor-
rections in the region of the two TDCS maxima, which both
lie in the “backward” half-planefFigs. 4scd, 4sfd, and 4sidg.

Our predictions for DPI by circularly polarized lightsfor
the casej= +1d are shown in Fig. 5 for the cases of equal
and unequal energy sharings. The electron having energyE1
is ejected along thex axis. The first nondipole feature of the
TDCS, which appears for both equal and unequal energy
sharings, is the forward-backward asymmetrysi.e., with re-
spect to inversion of the photon beam propagation directiond,
which is similar to that for the case of linear polarization.
The second nondipole feature is the nonzero CD effect for
the case of equal energy sharing. In the case when the second
electron is detected in thexz plane fFigs. 5sad and 5scdg,
neither the dipole nor the nondipole CD terms in Eq.s39d
contribute, and the TDCS exhibits the following property:
the TDCS in the angular range 180°,u2,360° equals the

TDCS in the angular range 0°,u2,180° for a photon beam
propagating in the opposite direction, i.e., the outcomes of
these two measurements are equivalent.sSuch a symmetry is
also present in the case of linear polarization.d If, however,
the second electron is detected in theyzplanefFigs. 5sbd and
5sddg, the nondipole CD term in Eq.s39d contributesswhile
the dipole CD term remains zerod, and the two measurements
described above give nonequivalent results. For unequal en-
ergy sharing, the symmetry described above holds for the
case when the second electron is detected in thexz plane,
because neither dipole nor nondipole CD terms contribute,
owing to geometry; when the second electron is detected in
the yz plane, both dipole and nondipole CD terms do con-
tribute, and the dipole CD term significantly alters the shape
of the TDCS, making the nondipole asymmetry described
above not as obvious.

2. Excess energy of 100 eV

The excess energy of 100 eV represents an intermediate
regime of DPI for which, however, no experimental data or
theoretical predictions for the TDCS appear in the literature.
In Fig. 6, we present our theoretical predictions for the
dipole-quadrupole TDCS by linearly polarized light for sev-
eral energy sharings. For the same reason as discussed in the
previous subsection with regard to Fig. 4, i.e., due to the
inaccuracy of our predictions for small mutual ejection
angles when the energy sharing is not extremely asymmetric,
we present our predictions in plotssad, sbd, sdd, andsed only
in the angular ranges for which we expect them to be accu-
rate. In plotsscd andsfd, as discussed above, our predictions
should be accurate over the full angular range. They should
also be accurate over the full angular range forE1=99 eV
sextremely asymmetric energy sharingd.

FIG. 5. Present TDCS results
for DPI of He at an excess energy
of 20 eV for circular polarization
and for the geometry shown in
Fig. 2sbd. Full curves, dipole-
quadrupole results; dashed curves,
dipole-quadrupole results for the
opposite direction of the photon
beam; dotted curves, correspond-
ing EDA results.sNote that 1.0 b
=1.0310−24 cm2.d
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For equal energy sharing, Fig. 6 shows that the nondipole
asymmetry is largest foru1=0°. For the intermediate regime
of energy sharing, i.e.,E1=75 eV andE2=25 eV, the asym-
metry is largest foru1=0° andu1=90°. For the limiting case
of extremely asymmetric energy sharing,E1=99 eV andE2
=1 eV, we find the largest nondipole asymmetry atu1=90°.
The nondipole modifications of the angular distributions for
particular values ofu1 are similar to those predicted for the
excess energy of 20 eV, i.e., the TDCS is shifted in the for-
ward direction, etc.

Our TDCS predictions at this excess energy for DPI by
circularly polarized light are shown in Fig. 7. The geometri-
cal arrangement is shown in Fig. 2sbd, i.e., the electron hav-
ing energyE1 is always detected along thex axis. sThis
geometry is identical to that employed in Fig. 5.d For the
case of equal energy sharing, the nondipole asymmetries are
large for detection of the second electron in either thexz
plane or theyzplane. For the caseE1=75 eV, the asymmetry
is largest for detection of the second electron in thexzplane.
For extremely asymmetric energy sharing, shown in Figs.
7scd and 7sfd, the asymmetry is vanishingly small.

3. Excess energy of 450 eV

The excess energy of 450 eV is the highest one for which
there exist experimental measurements of the TDCSf12g.
The analysis of DPI cross sections at this excess energy is of
great interest as GS electron correlationsswhich include the

shake-off processd begin to play an important role in DPI and
to interfere with FS correlationsswhich include the knock-
out processd f12g.

In Fig. 8, we present our predictions for the DPI TDCS
for the same two energy sharings and for the same electron
ejection angle,u1=0°, for which experimental measurements
f12g and our previous EDA calculationsf16g have been car-
ried out. Our present results include both FS and GS corre-
lations in both the electric-dipole and electric-quadrupole
transition amplitudes. A single basis set ofZ=2 Coulomb
functions is used; therefore, the results shown are gauge-
invariant. Despite the discrepancies of our predictions with
the experimental data at relatively small mutual ejection
angles 0°&u12&90° fsee, e.g., Fig. 8sbdg, for which a non-
perturbative treatment is necessary, our account of the
lowest-order nondipole correction allows us to provide fur-
ther insight into the experimental resultsf12g.

In both our theoretical calculations and the experimental
measurementsf12g, the coplanar geometry is used, as shown
in Fig. 8sad. Our calculations assume that the photon wave
vector k is directed downward; the experimental measure-
mentsf12g, which did not search for nondipole effects, do
not specify whether the vectork is directed upward or down-
ward f40g. Our full curves show the TDCS with account of
dipole-quadrupole terms, while our dashed curves show our
prior EDA resultsf16g.

As seen in Fig. 8, when the slower electron is ejected
along the photon polarization vectorê, our dipole-

FIG. 6. Present results for the
DPI TDCS at an excess energy of
100 eV for linear polarization and
coplanar geometry for three en-
ergy sharings and ejection angles.
Full curves: dipole-quadrupole re-
sults; dashed curves: dipole-
quadrupole results for the inverted
direction of the photon beam; dot-
ted curves: the EDA results.sNote
that 1.0 b=1.0310−24 cm2.d
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quadrupole predictions for the angular distribution of the
faster electron exhibit a noticeable forward-backward asym-
metry, i.e., they are shifted along the direction of the vector
k, as expected intuitively. A similar asymmetry may be no-
ticed also in the experimental data of Ref.f12g shown in Fig.
8. This is in contrast to the EDA predictions given in Refs.
f12,16,41g. When the faster electron is ejected along the pho-
ton polarization direction, our numerical results show that
the nondipole shift of the angular distribution of the slower
electron is rather small; consequently, results for this case are
not shown.

The form of the quadrupole radial matrix elements
fshown in Eqs.sA1d andsA10d in Appendix Ag is very simi-
lar to that of the dipole radial matrix elements in Eqs.sA2d
and sA17d in Ref. f16g. Therefore, despite the considerable
discrepancy seen in Fig. 8sbd between our EDA prediction
for the TDCS and the experimental data, we expect that the
relative magnitudes of the nondipole asymmetries should not
be affected significantly by the choice of theoretical model
used to account for electron correlations. Indeed, we find
reasonable agreement between the experimental dataf12g
and our LOPT predictions in Fig. 8sbd for the ratio of the
difference of the TDCSs in the forward and backward half-

planes to the TDCS in the forward half-plane, i.e.,

R=
ss2p − u2d − ssu2d

ss2p − u2d
, s69d

for several values of the angleu2 ssee Table Id. Given that the
asymmetries in our results and those seen in the experimental
datascf. Fig. 8 and Table Id are in qualitative agreementsfor
our choice of the vectork direction in Fig. 8d and are of
comparable magnitude, we believe that it is reasonable to
consider the experimental results in Ref.f12g a first-time
observation of the signatures of nondipole effects in the
TDCS for the DPI process, although future experiments and
more elaborate calculations would be desirable to confirm
this hypothesis.

B. Circular dichroism at equal energy sharing

In this subsection, we conclude our analysis of nondipole
effects in DPI of He by presenting results for one of its most
interesting manifestations: the nonzero CD effect at equal
energy sharing. As discussed in Sec. II C 2, this effect origi-
nates from the nonzero imaginary part of the coefficientc3 in
Eq. s32d. Our results for the equal-energy-sharing TDCSs for

FIG. 7. Present TDCS results
at an excess energy of 100 eV for
circular polarizationsj= +1d. En-
ergy sharings and ejection angles
are as indicated. Full curves:
dipole-quadrupole results; dashed
curves: dipole-quadrupole results
for the inverted photon beam di-
rection; dotted curves: EDA
results. sNote that 1.0 b=1.0
310−24 cm2.d
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DPI by circularly polarized photons withj= +1 andj=−1
are presented in Fig. 9. The geometry is as shown in Fig.
2sad, i.e., both electrons are detected in the plane which
makes an angle of 45° with both the light propagation direc-

tion, k̂, and with the polarization plane. The TDCSs at the

excess energies of 20 and 100 eV were calculated with ac-
count of FS correlations only, while at 450 eV both FS and
GS correlations were included.

Figure 9sad shows that at an excess energy of 20 eV, the
effect is so small that no difference is observed between the
TDCSs forj= +1 andj=−1, as expected within the EDA.
For the excess energies of 100 eV and especially 450 eV,
however, there are clear discrepancies between the TDCSs
calculated forj= +1 andj=−1, thus indicating the nonzero
equal-energy-sharing CD effect. One sees, however, that in
Fig. 9scd the TDCS curves exhibit an unusual behavior in the
vicinity of u12=180° that is different from Figs. 9sad and
9sbd. This difference in the behavior is due to the fact that in
Figs. 9sad and 9sbd only FS correlations are taken into ac-
count, while in Fig. 9scd both FS and GS correlations are
included.

Treatment of electron correlations for the equal-energy-
sharing regime in Fig. 9scd is particularly difficult by means
of approximate methods, such as the LOPT employed here.
On one hand, since the photoelectron energies are high, the
final-state wave function exhibits rapid oscillations and GS
correlations must generally be included, despite the fact that
one of the GSC amplitude components, describing shake-off,
should not give a substantial contribution. On the other hand,
the excess energy is shared equally between photoelectrons
and, as has been shown previously for the case of low photon
energiesf14,16g, this is realized primarily via the knock-out
mechanism. The regime of symmetric energy sharing for

TABLE I. Experimental and theoretical ratio of the difference of
the TDCSs forE1=30 eV,E2=420 eV in the forward and backward
half-planes to the TDCS in the forward half-planefcf. Fig. 8sbdg as
defined in Eq.s69d for four ejection anglesu2. Rexp, experimental
value scalculated using data from Ref.f12g; Rth, theoretical value
sLOPTd.

u2

sradiand Rexp Rth

0.174 0.049 0.051

0.516 0.117 0.143

0.868 0.181 0.212

1.216 0.398 0.229

FIG. 8. Comparison of the present TDCS results for an excess
energy of 450 eV for linear polarization and for coplanar geometry
with the normalized experimental data of Ref.f12g. The direction of

the photon wave vectork̂ and polarizationê is as shown insad; the
electron having momentump1 sand energyE1d is ejected alonge.
Full curves: dipole-quadrupole results; dashed curves: EDA results.
Note that both the experimental data and our nondipole results ex-
hibit a noticeable forward-backward asymmetry as compared to our
EDA results: the angular distributions of the fast electron are shifted
along the direction of the vectork, especially in the angular ranges
0°,u2,90° and 270°,u2,360°; cf. Table I. sNote that 1.0 b
=1.0310−24 cm2.d

FIG. 9. Present results exhibiting the equal-energy-sharing CD effect, i.e., the sensitivity of the dipole-quadrupole equal-energy-sharing
TDCS to the sign of the degree of circular polarization,j, for three excess energies. The geometry is as shown in Fig. 2sad. Full curves:
j= +1; dashed curves:j=−1. sNote that 1.0 b=1.0310−24 cm2.d
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high excess energy has not been analyzed in detail, either by
us or by others. We therefore do not expect Fig. 9scd to
provide more than qualitative agreement with future experi-
ments. We note also that upon neglecting the GSC diagram
in Fig. 9scd, the result for the TDCSs for an excess energy of
450 eV becomes very similar to that in Fig. 9sbd, with the
relative magnitude of the difference between the full and
dashed curves at the TDCS maxima of the order of 5%.

V. SUMMARY

In the present work, we have performed a systematic
analysis of lowest-order retardation effects in the fully dif-
ferential cross section for DPI of He. We have presented
model-independent parametrizations for the DPI quadrupole
transition amplitude and for the dipole-quadrupole TDCSs
for linear, circular, and elliptic polarizations. These param-
etrizations may be useful for analyzing data in future experi-
ments.

In our theoretical analyses, we have considered three rep-
resentative values of the excess energies, 20, 100, and 450
eV. We have found that observation of lowest-order nondi-
pole effects in the TDCS is feasible for a number of geo-
metrical arrangements depending on the photon polarization
and the excess energy sharing. Our predictions for the TDCS
forward-backward asymmetries indicate that they may be ob-
served at excess energies as low as 20 eV. Our predictions
for the TDCS at the excess energy of 450 eV reveal a no-
ticeable forward-backward asymmetry which is in qualitative
agreement with existing experimental measurements at this
excess energy. Finally, we have presented our predictions for
the equal-energy-sharing CD effect at the same three excess
energies. Although small, this effect may still be observable
in the near future, as experimental techniques are being con-
tinuously improved. The present work, together with Refs.
f17–19,33,34g, thus clarifies another aspect of the fundamen-
tal process of complete fragmentation of an interacting three-
body Coulomb system by one photon, i.e., the effect of the
spatial inhomogeneity of the light wave on this breakup pro-
cess.

The manifestations of nondipole effects in the cross sec-
tions integrated over the ejection angles of one or both elec-
trons sdouble or single differential cross sections, respec-
tivelyd are certainly of fundamental and practical interest. We
note here that it is possible to derive the simpleab initio
parametrizations for these cross sections in terms of the re-
duced two-electron matrix elements of the operatorsD and
Q2. These parametrizations together with numerical LOPT
results will be presented elsewhere.
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APPENDIX A: QUADRUPOLE RADIAL MATRIX
ELEMENTS

1. Evaluation of the FSC quadrupole matrix elements

Quadrupole radial matrix elements describing FSC have
the form

QF
sl1,l2dsp1,p2d =E

0

`

dr r2Rp1l1
srdup2l2

srd

3 E
0

`

dr8r83g2sE;r,r8dsd/dr8dR1ssr8d,

sA1d

whereR1ssrd is a hydrogenic ground-state orbital correspond-
ing to the effectivesscreenedd chargeZs,

R1ssrd = 2ÎZs
3e−Zsr . sA2d

The functionup2l2
srd in Eq. sA1d is defined by the following

integral:

up2l2
srd =E

0

`

dr9 r92Rp2l2
sr9d

r,
l2

r.
l2+1R1ssr9d, sA3d

which was evaluated in Ref.f16g,

uplsrd = CplE
0

1

dx xl+ihs1 − xdl−ihxplsr,xd, sA4d

whereCpl andxplsr ,xd are given by

Cpl =
s2pdl+1eph/2

uGsl + 1 + ihdu
, sA5d

xplsr,xd =E
0

`

dr9r9l+2e−tr9 r,
l

r.
l+1

=
s2l + 2d!
tst2rdl+1H1 − e−tr o

k=0

2l+1 S1 −
dk,2l+1

2l + 2
D strdk

k! J ,

sA6d

and where t=Zs+ ips1−2xd, r,=minsr ,r9d, and r.

=maxsr ,r9d. With the definitions given above, the integrals
over r and r8 in Eq. sA1d are evaluated in the same way as
are similar integrals for the dipole radial matrix elements in
Ref. f16g. The expression forQF

sl1,l2d has the following form:
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QF
sl1,l2d =

28nZs
4s2p1dl1

s1 + Zsnd6

s2l2 + 2d!
s2l1 + 1d!

3 Cp1l1
Cp2l2E

0

1

du
u2−Zn

s1 + gud6

3 E
0

1

dx
xl2+ih2s1 − xdl2−ih2

t2l2+3 HJl1−l2+4,2l1+2
l1+1+ih1,2ip1sld

− o
k=0

2l2+1S1 −
dk,2l2+1

2l2 + 2
D tk

k!
Jl1−l2+k+4,2l1+2

l1+1+ih1,2ip1 sl + tdJ ,

sA7d

where

l = ip1 +
1

n

1 − gu

1 + gu
,

g = s1 − Zsnd/s1 + Zsnd, sA8d

and wheren;nF=1/Î−2sEp1
+Ep2

−e1sd= i unFu. The function
Jk,m

k,bssd in Eq. sA7d is

Jkm
kbssd =E

0

`

dt tk−1e−stFsk;m;btd =
sk − 1d!

sk 2F1Sk,k;m;
b

s
D ,

sA9d

where the hypergeometric function2F1 reduces to elemen-
tary functions for positive integer values ofk and m sas in
our cased.

2. Evaluation of the GSC quadrupole matrix elements

The radial matrix elements entering the GSC quadrupole
transition amplitude are given by

QG
sl1,l2dsp1,p2d =E

0

`

dr r3Rp1l1
srdQ̂sl1,l2dIp2l2

srd,

sA10d

whereQ̂sl1, l2d is the differential operator,

Q̂sl1,l2d =
d

dr
+

dl1l2
s3/2d + dl1l2−2sl2 + 1d − dl1l2+2l2

r
.

The functionIp2l2
srd is defined as followsf16g:

Ip2l2
srd =E

0

`

dr8r82gl2
sE;r,r8dup2l2

sr8dR1ssr8d

= 22l2+5nsl2 + 1dZs
3Cp2l2

3 E
0

1

du ul2−ZnE
0

1

dx
xl2+ih2s1 − xdl2−ih2

t2l2+3 Fp2l2
srd,

Fp2l2
srd = r l2Fe−l18r Fs2l2;2l2 + 2;t1rd

a2fns1 − udg2l2

− e−l28r o
k=−1

2l2

bk
sl2dFsk;2l2 + 2;t2rd

fns1 − udgk G , sA11d

where

a = s1 + Zsnds1 + gud, j =
n

1 + Zsn
,

b1 =
4u

s1 + Zsnds1 + gud
,

b2 =
4u

s1 + Zsndf1 + gu + jts1 − udg
,

l18 =
1

n

1 − gu

1 + gu
, l28 =

1

n

1 − gu + jts1 + ud
1 + gu + jts1 − ud

,

t1 = −
1

n

b1

1 − u
, t2 = −

1

n

b2

1 − u
,

bk
sl2d = S1 −

dk,−1

2l2 + 2
D s2l2 + 1 −kdt2l2−k

fa + nts1 − udg2l2+2−k . sA12d

The function Fsa;c;xd;1F1sa;c;xd is a confluent hyper-
geometric function having one upper parameter,a, and one
lower parameter,c f42g. The parametersg and n are g=s1
−Zsnd / s1+Zsnd andn;nG=1/Î−2s2e1s−Ep2

d. Note that be-
cause the parametern here is a positive real number, the
radial matrix elementsQG

sl1l2dsp1,p2d are real despite the ap-
pearance of complex quantities in their definition.

With the above definitions, the integrals overr in Eq.
sA10d may be reduced to the following integral of two con-
fluent hypergeometric functions having the same value of the
sintegerd lower parameterm:

E
0

`

dre−srrm−1+nFsk;m;2ip1rdFSk;m;
− br

ns1 − udD
= fns1 − udgkKkb

kmnssd. sA13d

For the simplest case ofn=0, one hasKkb
km0ssd;Lkb

kmssd,
where

Lkb
kmssd ;

sm− 1d!sk−m

fsns1 − ud + bgkS s

s − 2ip1
Dk

3 2F1sk,k;m;zd,

z=
− 2ip1b

ss − 2ip1dfsns1 − ud + bg
. sA14d

For integerk andm, the hypergeometric function2F1 in the
above equation reduces to elementary functions. The result
for Kkb

kmnssd at integern.0 can be obtained by differentia-
tion,
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Kkb
kmnssd = s− 1dn dn

dsnLkb
kmssd. sA15d

In order to apply the formulassA14d and sA15d, it is
necessary to transform the confluent hypergeometric func-
tionsFsa;c;xd in Eq. sA10d fcf. Eqs.s49d andsA11dg so that
they have the same value of the lower parameterc, while
keeping the power ofr in the integrand of Eq.sA10d equal to

sc−1d. The action of the differential operatorQ̂sl1, l2d in Eq.
sA10d can be shifted fromIp2l2

srd to Rp1l1
srd by an integration

by parts. Because differentiation of the functionF increases
the values of both of its parameters by 1, it is convenient to

haveQ̂sl1, l2d act on the functionFsa;c;xd that has thelower
value of the parameterc. In other words, for angular mo-
mentasl1= l +2,l2= ld it is convenient to use Eq.sA10d di-
rectly, while for angular momentasl1= l , l2= l +2d it is more

convenient to shift the action ofQ̂sl1, l2d to Rp1l1
srd. For this

latter case, Eq.sA10d is replaced by

QG
sl1,l2dsp1,p2d =E

0

`

dr r3Ip2l2
srdQ̂8sl1,l2dRp1l1

srd,

sA16d

where

Q̂8sl1,l2d = −
]

]r
+

dl1l2−2l1 − dl1l2+2sl1 + 1d − dl1l2
s3/2d

r
.

The case ofl1= l2= l can be treated either way.

a. Casel1= l +2, l2= l

For this case, we obtain

Q̂sl + 2,ldFp2lsrd

=
r le−l18r

a2fns1 − udg2lFt1
c0

c2
Fsc1;c3;t1rd − l18Fsc0;c2;t1rdG

− r le−l28r o
k=−1

2l

bk
sld

t2
k

c2
Fsk + 1;c3;t2rd − l28Fsk;c2;t2rd

fns1 − udgk ,

sA17d

where we have introduced the notationsak; ih1+ l +k
and ck;2l +k. The function Rp1l+2srd
=Ap1l+2r

l+2e−ip1rFsa3;c6;2ip1rd fwhere Ap1l ;fs2p1dl / s2l
+1d!gCp1lg may be rewritten in terms of functionsF having
their lower parameters equal to eitherc3 or c2 by using the
formulas

Fsc + 3d =
fcg2

x3 fF − 3Fsa − 1d + 3Fsa − 2d − Fsa − 3dg,

Fsc + 4d =
fcg3

x4 fF − 4Fsa − 1d + 6Fsa − 2d

− 4Fsa − 3d + Fsa − 4dg, sA18d

where we have used the abbreviated notationsF
;Fsa;c;xd, Fsa±nd;Fsa±n;c;xd, and Fsc±nd
;Fsa;c±n;xd; also fagn;asa+1d…sa+nd. Equations
sA18d are obtained using the known relationf42g

xFsc + 1d = cF − cFsa − 1d. sA19d

Using Eq.sA13d with n=0, one obtains the final result

QG
sl+2,ldsp1,p2d = 22l+5nsl + 1dZs

3Ap1l+2Cp2lE
0

1

du ul−ZnE
0

1

dx
xl+ih2s1 − xdl−ih2

t2l+3

1

s2ip1d3Hg1fLc1,b1

a3,c3sl1d − 3Lc1,b1

a2,c3sl1d + 3Lc1,b1

a1,c3sl1d

− Lc1,b1

a0,c3sl1dg − g2fLc0,b1

a3,c2sl1d − 4Lc0,b1

a2,c2sl1d + 6Lc0,b1

a1,c2sl1d − 4Lc0,b1

a0,c2sl1d + Lc0,b1

a−1,c2sl1dg

− o
k=−1

2l

bk
sldhg3kfLk+1,b2

a3,c3 sl2d − 3Lk+1,b2

a2,c3 sl2d + 3Lk+1,b2

a1,c3 sl2d − Lk+1,b2

a0,c3 sl2dg − g2fLk,b2

a3,c2sl2d − 4Lk,b2

a2,c2sl2d

+ 6k,b2

a1,c2sl2d − 4Lk,b2

a0,c2sl2d + Lk,b2

a−1,c2sl2dgjJ , sA20d

where

g1 = − fc3g2
c0

c2

b1

a2, g2 =
fc2g3

2ip1

l18

a2 , g3 = −
fc3g2

c2
b2, g4 =

fc2g3

2ip1
l28, l1 = l18 + ip1, l2 = l28 + ip1. sA21d
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b. Casel1= l2= l

Using Eq.sA19d, one obtains

Q̂8sl,ldRp1lsrd = sih1 − 1/2dRp1lsrd/r + ip1Rp1lsrd

− a1Ap1lr
l−1e−ip1rFsa2;c2;2ip1rd.

sA22d

The integral overr in Eq. sA16d may be rewritten as
follows:

QG
sl,ld = Sih1 −

1

2
DSsld + ip1E

0

`

dr r3Ip2lsrdRp1lsrd

− a1Ap1lE
0

`

dr rl+2Ip2lsrde−ip1rFsa2;c2;2ip1rd,

sA23d

where

Ssld =E
0

`

dr8r82up2lsr8dR1ssr8d

3 E
0

`

dr r2Rp1lsrdglsEG;r,r8d

= sEp1
− EGd−1E

0

`

dr8r82Rp1lsrdup2lsr8dR1ssr8d.

sA24d

Equation sA24d is obtained by using the known relation
kRplsrduglsE ; r ,r8d=sEp−Ed−1kRplsr8du. The expression forSsld

in Eq. sA24d was obtained in Appendix A 2 of Ref.f16g.
The final result forQG

sl,ldsp1,p2d is

QG
sl,ld = Sih1 −

1

2
DSsld + 22l+5nsl + 1dZs

3Ap1lCp2l

3 E
0

1

du ul−ZnE
0

1

dx
xl+ih2s1 − xdl−ih2

t2l+3

3 H ip1

a2 K2l,b1

a1,c2,2sl1d −
a1

a2K2l,b1

a2,c2,1sl1d

− o
k=−1

2l

bk
sldfip1Kk,b2

a1,c2,2sl2d − a1Kk,b2

a2,c2,1sl2dgJ ,

sA25d

wherel1,2 are defined in Eq.sA21d. The results forKk,b
k,m,nssd

for n=1, 2 are expressed in terms ofLk,b
k,mssd using Eqs.

sA14d and sA15d,

Kk,b
k,m,1ssd = − fvLk,b

k,mssd + wLk+1,b
k+1,m+1ssdg,

Kk,b
k,m,2ssd = v8Lk,b

k,mssd + w8Lk+1,b
k+1,m+1ssd − vKk,b

k,m,1ssd

− wKk+1,b
k+1,m+1,1ssd, sA26d

where

v =
k − m+ k

s
−

kns1 − ud
sns1 − u̇d + b

−
k

s − 2ip1
,

w = z8fsns1 − ud + bg
kkss − 2ip1d

m2s
,

v8 =
k

ss − 2ip1d2 −
k − m+ k

s2 +
kn2s1 − ud2

fsns1 − ud + bg2 ,

w8 =
kkss − 2ip1d

m2s
Ffsns1 − ud + bg

3 Sz9 +
2ip1z8

sss − 2ip1dD + z8ns1 − udG ,

z8 = 2ip1b
2ns1 − udss − ip1d + b

fsns1 − ud + bg2ss − 2ip1d2 ,

z9 = −
4ip1b

ss − 2ip1dfsns1 − ud + bgF 1

ss − 2ip1d2

+
ns1 − ud

ss − 2ip1dfsns1 − ud + bg
+

n2s1 − ud2

fsns1 − ud + bg2G ,

sA27d

and the primes in Eqs.sA26d and sA27d denote differentia-
tion with respect tos.

c. Casel1= l, l2= l +2

For this case, we obtain first the result

Q̂8sl,l + 2dRp1lsrd

= ip1Ap1lr
le−ip1r

3FFsa1;c2;2ip1rd + 2
a1

c2
Fsa2;c3;2ip1rdG .

sA28d

Because the second parameter in the functionsF in Eq.
sA11d is equal toc6=2l +6, the value of the second param-
eter in the functionsF in Eq. sA28d must be raised to be-
come equal toc6 by using the formulas

Fsc − 3d =
1

fc − 3g2
hfag2Fsa + 3d − 3fag1sa − c + 3d

3 Fsa + 2d + 3afa − c + 2g1Fsa + 1d

− fa − c + 1g2Fj,

Fsc − 4d =
1

fc − 4g3
hfag3Fsa + 4d − 4fag2sa − c + 4d

3 Fsa + 3d + 6fag1fa − c + 3g1Fsa + 2d

− 4afa − c + 2g2Fsa + 1d + fa − c + 1g3Fj,

sA29d
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which are obtained by repeated application of the relation
f42g

sc − 1dFsc − 1d = aFsa + 1d − sa − c + 1dF. sA30d

This yields

Q̂8sl,l + 2dRp1lsrd = ip1Ap1
lr le−ip1r

3
1

fc2g3
h− fa1g3Fsa5;c6;2ip1rd

+ 2fa1g2sa1 − c2dFsa4;c6;2ip1rd

− 2a1fa1 − c4g2Fsa2;c6;2ip1rd

+ fa1 − c5g3Fsa1;c6;2ip1rdj. sA31d

The final result forQG
sl,l+2d can then be written immediately

by using Eq.sA13d for n=0,

QG
sl,l+2d = i

22l+9

fc2g3
p1nsl + 3dZs

3Ap1
lCp2l+2

3 E
0

1

du ul+2−ZnE
0

1

dx
xl+2+ih2s1 − xdl+2−ih2

t2l+7

3 H 1

a2fd5Lc4,b1

a5,c6sl1d + d4Lc4,b1

a4,c6sl1d + d2Lc4,b1

a2,c6sl1d

+ d1Lc4,b1

a1,c6sl1dg − o
k=−1

2l+4

bk
sl+2dfd5Lk,b2

a5,c6sl2d

+ d4Lk,b2

a4,c6sl2d + d2Lk,b2

a2,c6sl2d + d1Lk,b2

a1,c6sl2dgJ ,

sA32d

whered5=−fa1g3, d4=2fa1g2sa1−c2d, d2=−2a1fa1−c4g2, and
d1=fa1−c5g3. To summarize, for all pairs of angular mo-
menta, the evaluation of the quadrupole radial matrix ele-
ments reduces to the numerical calculation of two-
dimensional integrals of elementary functions.
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