University of Nebraska - Lincoln

Digital Commons@University of Nebraska - Lincoln

Faculty Publications, Department of Physics and

Astronomy Research Papers in Physics and Astronomy

5-4-2005

Nondipole effects in the triply differential cross
section for double photoionization of He

Andrei Y. Istomin

University of Nebraska-Lincoln, aistomin2@unl.edu

N. L. Manakov

Voronezh State University, manakov@thpvsu.ru

A. V. Meremianin
Voronezh State University

Anthony F. Starace

University of Nebraska-Lincoln, astaracel @unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/physicsfacpub
& Part of the Physics Commons

Istomin, Andrei Y.; Manakov, N. L.; Meremianin, A. V; and Starace, Anthony F,, "Nondipole effects in the triply differential cross
section for double photoionization of He" (2005). Faculty Publications, Department of Physics and Astronomy. Paper 16.
http://digitalcommons.unl.edu/physicsfacpub/16

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at Digital Commons@University of Nebraska -
Lincoln. It has been accepted for inclusion in Faculty Publications, Department of Physics and Astronomy by an authorized administrator of
Digital Commons@University of Nebraska - Lincoln.


http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fphysicsfacpub%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/physicsfacpub?utm_source=digitalcommons.unl.edu%2Fphysicsfacpub%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/physicsfacpub?utm_source=digitalcommons.unl.edu%2Fphysicsfacpub%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/physicsresearch?utm_source=digitalcommons.unl.edu%2Fphysicsfacpub%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/physicsfacpub?utm_source=digitalcommons.unl.edu%2Fphysicsfacpub%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=digitalcommons.unl.edu%2Fphysicsfacpub%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/physicsfacpub/16?utm_source=digitalcommons.unl.edu%2Fphysicsfacpub%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages

PHYSICAL REVIEW A 71, 052702(2005

Nondipole effects in the triply differential cross section for double photoionization of He

Andrei Y. Istomin® N. L. Manakov? A. V. Meremianin? and Anthony F. Starate
1Department of Physics and Astronomy, The University of Nebraska, Lincoln, Nebraska 68588-0111, USA
%physics Department, Voronezh State University, Voronezh 394006, Russia
(Received 23 December 2004; published 4 May 2005

Lowest-order nondipole effects are studied systematically in double photoionizBiRihof the He atom.
Ab initio parametrizations of the quadrupole transition amplitude for DPI fron%ﬂaestate are presented in
terms of the exact two-electron radial matrix elements. Analytic expressions for these matrix elements within
lowest-order perturbation theory. OPT) in the interelectron interaction are also given. The corresponding
parametrizations for the dipole-quadrupole triply differential cross se€tiDCS) are presented for the case of
an elliptically polarized photon. A general analysis of retardation-induced asymmetries of the TDCS including
the circular dichroism effect at equal energy sharing is presented. Numerical LOPT estimates of nondipole
asymmetries in photoelectron angular distributions for the cases of linear and circular polarization and of the
circular dichroism effect at equal energy sharing are presented. We find that experimental observation of
nondipole effects at excess energies of the order of tens to hundreds of eV should be feasible in TDCS
measurements. Our numerical results exhibit a nondipole forward-backward asymmetry in the TDCS for DPI
of He at an excess energy of 450 eV that is in qualitative agreement with existing experimental data.

DOI: 10.1103/PhysRevA.71.052702 PACS nuntber32.80.Fb

[. INTRODUCTION Most experiments concern the He atom, in which DPI repre-
sents the prototype for three-body fragmentation of a Cou-
Two major themes in vacuum ultraviolétuv) and soft-  lomb system by a single photon. The photon energies em-
x-ray atomic photoionization studies in recent years are th@loyed typically range between 100 and 530 eV.
analysis of nondipole(or retardation effects in single- Measurements of the triply differential cross sections
electron photoionizatiofSP) and the analysis of electron (TDCS9 at these energies have been guided by theoretical
correlations in double photoionizatiofDPI), especially in  predictions using the EDA. Recent advances in experimental
the vuv range of photon energies. The SPI angular distributechniques allow the measurement of even very small
tions in the electric-dipole approximatiofEDA) involve  TDCSs of the order of10%-1073) b eV sr2 [12]. Despite
only a single polarization and angle-dependent parametefhe fact that DPI is essentially a many-body, correlation-
le-p|%, composed of the photon polarization vectote-€  induced process, a number of theoretical approathestly
=1) and the photoelectron momentymTherefore, retarda- using numerically intensive techniques to account for corre-
tion effects, which imply a dependence of the SPI cross sedations in the two-electron continuynallow one to obtain
tion on the photon wave vectok, by means of the scalar excellent agreement with absolute experimental data for the
product(k -p), do not affect the polarization dependence of TDCSs. The accuracy of such calculations is thus compa-
photoelectron angular distributions, and result only in a sparable to that for SPl. A number of questions have been ad-
tial asymmetry of the photoelectron angular distributionsdressed in studies of DPI within the EDA framework, such as
with respect to the direction ok (the forward-backward the photoelectron angular distributions for linearly and circu-
asymmetry, which originates from the interference betweenlarly polarized light for various excess energies and energy
dipole and nondipole SPI amplitudes. Although the first nonsharings(see, e.g., Refd10,11]), along with attempts to
dipole SPI measurements for Ar were in the x-ray redgibln  identify the dominant physical mechanisms in particular en-
recently the forward-backward asymmetry has been found tergy regimeg12-16.
be significant also in the vuv regidsee, e.g., results for Xe In contrast to SPI, existing information on nondipole ef-
at E,=200 eV [2-4] and for He atE, <160 eV [5]). As  fects in DPI is very sparse. To the best of our knowledge,
shown in Ref.[6], not only lowest-orderquadrupolé but  there are only a few works that have considered nondipole
also higher-order(octupole nondipole effects should be effects in DPI of He[17] and highly charged He-like ions
taken into account in order to explain experimental results 0f18,19. However, these studies are for photon energies in
neon valence photoemission at relatively low photon enerexcess of 1 keV, and at such high photon ener@ies there-
giesk, =1 keV. Besides the spatial asymmetry in the angufore high excess energiethe DPI process has not been in-
lar distributions, the theory predicts also new retardationvestigated by coincidence measurements. Also, these works
induced features in SPI for spin-resolved photoelectrorireat nondipole effects only in theoubly differential cross
measurementg7] (which have been recently observed ex-sections, which exhibit angular dependencies that are similar
perimentally[8]) and for the case of polarized atofi#s. to those for SPI, and thus the question of the importance of
The process of DPI has attracted much theoretical andondipole effects on the TDCS, the most informative observ-
experimental interest in view of its importance for analyzingable of the DPI process, is open. The lack of theoretical
electron correlationgFor recent reviews, see Refd0,11].) analyses of nondipole effects in the TDCSs may be explained
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by two circumstances. First, even for the case of dipole DPIfor retardation effects, and the CD factatp acquires a
an accurate account of electron correlations requires timeiondipole correction, which does not vanishpatp,.
consuming numerical approaches that have only been devel- Recently, we have reported the first predictions of nondi-
oped relatively recently. Second, existing experimental dat@ole effects in the TDCS for DPI, for both linearly and cir-
do not exhibit significant deviations from theoretical pl’ediC-Cu|ar|y p0|arized ||gh'|[33'34:,| Here we present a more de-
tions based on the EDA. However, nearly all publishediajled account of our analyses. First, we derive a general,
TDCS measurements were performed in fegpendicular  yodel-independent parametrization for the amplitude of DPI
plane geometryin which the photoelectron detection plane from 3 singlet's, state, taking into account lowest-order re-
is orthogonal to the direction of the photon beam. In lowesta gation corrections to the electron-photon interaction op-
order, retardation corrections stem from termé-r) inthe  grator in terms of the two-electron reduced matrix elements.
power series expansion of the vector potential. Therefore, aSecond, we derive the corresponding parametrizations for
for SPI, they enter the DPI amplitude and. the TDCS onlythe dipole-quadrupoléE1-E2 TDCS for the cases of lin-
through scalar product -p;) and (k -p), which obviously  early and circularly polarized light, as well as for the general
vanish for the perpendicular plane geometry. case of elliptic polarization. Then, we discuss the nondipole
In general, it may be expected that an account of retardasffects j.e., originating from interference of the E1 and E2
tion corrections to the dipole amplitude of DPI should resultamp|itude$ to be expected in the TDCS, such @sasym-
in more diverse asymmetries of the TDCS than those fofetry with respect to inversion of the direction of the wave
angular distributions in SPI. Indeed, for the case of DPlyector k: (ii) asymmetry with respect to reflection of the
along with the asymmetry of the TDCS with respect to in-photoelectron pair in the polarization plane, aiit) asym-
version of the direction of the photon wave veclofas in - metry with respect to inversion of the photon helicity, i.e.,
SP), nondipole corrections also modify the asymmetry oftne CD effect. In particular, we discuss the CD effect at equal
the TDCS with respect to inversion of the photon he||C|ty, energy Sharing_ Using lowest-order perturba’[ion theory
i.e., the circular diChrOisr‘(CD) effect. This effect, predicted (LOPT) to account for interelectron Corre'atiof%:L we es-
first theoretically in Ref[20] (and then observed experimen- timate the magnitudes of these effects for DPI of He at ex-
tally [21]), has attracted much attention, both theoretical angess energies ranging from tens to hundreds of eV. In an
experimental [10,22. Specifically, the photon-helicity- Appendix, we present our analytic results for the LOPT limit
dependent CD term in the TDCS originates from an interferof the exact two-electron reduced matrix elements of the

ence between real and imaginary parts of particular compaquadrupole operator that enter aaly initio parametrization
nents of the(generally non-HermitianDPI amplitude; the  of the DPI amplitude.

CD effect thus permits direct experimental measurement of

this otherwise elusive “cross-interference.” Up to now, all Il AB INITIO PARAMETRIZATIONS OF THE DPI
theoretical treatments of CD have employed the EDA TRANSITION AMPLITUDE AND TDCS

[10,20,22-29 and their predictions are generally in agree-

ment with existing experiment§28—-32. Although these A. Velocity and length gauge expressions for the lowest-order
measurements do not show any signatures of nondipole ef- retardation corrections

fects, this fact is expected because all of them have been | order to parametrize the DPI amplitude in a unified
performed in the perpendicular plane geometry, in which they .,y that is valid for both the velocity and length forms of the
lowest-order retardation effects vanish. As a phenomenologigjectron-photon interaction, we shall first present explicit
cal analysigbased only on rotational-invariance and Symme-analytic expressions for the leading retardation corrections to
try arguments shows[24], the existence of CD in DPI is the glectric-dipole electron-photon interaction in the velocity
possible since in this casé contrast to SBIwe have tWo  4nq |ength gauges. Our approach is nonrelativistic and starts
momentum vectorsp, andp,, and thus the dichroic factor, fom the standard form for the electron-photon interaction in
&(k-[p1x p2l) (whereg is the degree of circular polarization the Coulomb gauge for the four-potenti&t=(®=0,A)

of the photon beaim enters the TDCS multiplied by a scalar [35],

factor acp(p1,P2,cos6), where cog=(p;-p,). A distinct

feature of the CD effect within the EDA is that it vanishes __°®

at equal energy sharingacp=0 at p;=p,): for DPI from vy = mc(A(r't) P, @)

a 180 state, the EDA amplitude is described by a single ) i

scalar function, f(p;,p,,c0s6), so that acp=Im{f(p,,p,,  Wherep=-i%V, is the momentum operator, ared—|¢e, m,
cosé)f (py, py,cos6)}. [This form of acp follows from the and c are the electron charge, the electron mass, and the

invariance of the TDC%and thus of the total CD ternwith _spe_ed _Of light. Since we are intereste(_j in a one-photon photo-
respect to interchange of photoelectrons, i.e., the substitutio'ﬁn'_zat'on process, the vector potential has th‘f faxn, )
p1=P,.] This rule fails if one treats the electron-photon in- =e€ "™V wherew is the photon frequenck=wk/c is the
teraction beyond the EDA, since, if one introduces the dewave vector, ane [(e-€")=1] is the polarization vector. For
pendence of the TDCS upon the wave vector of the incidensimplicity, we take the amplitude of the potential to be equal
light (or, equivalently, upon its spatial inhomogengitthe  to unity.

symmetry of the problem is reduced. Therefore, the DPI The long-wave limit of matrix elements involving(r ,t)
amplitude involves[along with f(p;,p,,cos6) and f(p,, implies an expansion of the four-potentit in powers of

p;,cos6)] additional dynamical parameters which account(k-r). Below, we restrict our consideration to only the
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lowest-order retardation corrections to the EDA, i.e., to , e ., ) Oociot
terms of ordek, so that Vir g =-—(A(r,t)-p) +ed’(r,t) =V=e™, - (9)
V(I’ ,t) =~ V(V) eXF(_ |(,()t), (2) where

ew w ~ 1 -

e e ~ vVh=-i—|(e-n)+i—(e-r)(k-r)+—(k xe]-I]|.
V== Elep+itepk | @ ¢ [ igle ke n o lloxel)
, : . . (10
The first term inV") is the standard velocity form for the . )
electric-dipole interaction while the second term correspond$imilarly to Egs. (4) and (5), we rewrite the expression
to the velocity form for retardation corrections. In order to @bove in tensor form,
analyze matrix elements using angular momentum tech- VO =\ 4V 4V 11
niques(such as the Wigner-Eckart theorem, g{&6], it is d” Y Tm (19

convenient to represent the expressﬂerp)(lz ‘r) as a scalar ew
product of two irreducible tensors involving either photen Vi=- i?(e r),

andIZ) or electron(p andr) parameters. This transformation
follows from standard formulas for irreducible tensor prod-

2 R 2 .
ucts of several vectof86] and allows the operataV) to be Vé = e_wz(e_ Nk -r)= e_wer({k ® e, {f ® 1)),
written as 2c 2c
V) = Vg + Vg + Vi, (4) ew .-
o V! = —i——([k X €] -1). (12)
where 2mc?
o Note that {f®f}m=v2/3C,(f), where Cp(f)
Vg=——(e-p), = \4m/(21+1)Y|,(f) is the modified spherical harmonic
mc [36]
Because our treatment accounts for the leading correc-
__: 8w tions to the EDA, the lowest-order spin effects should also be
Vy=—i—({k e}, -{r , o ; e
a Imc’-({ ®ej2-{r @ pl) accounted for. This can be done either by substituting

p— (p+i[sXk]) (wheres is the electron spin operajomn
ew - Eq. (1) [35], or, in lowest order, by simply making the sub-
Vim=—i—([k Xe]-[r X p]). (5 stitutionl — (I+2) in the magnetic-dipole term®,=V;,) in
2mc
Egs.(5) and(12).
The termV,, involves the orbital angular momentum opera-

tor, 1=[r X p], and thus describes the orbital magnetic-dipole B. Parametrizations of the DPI amplitude with account of

dipole and quadrupole terms

interaction.

To obtain the length form counterpart of the operatof We consider DPI from the sing|é§, state|0) in the non-
in Eq. (4), we perform the following gauge transformation of relativistic domain of photon energies taking into account
the four-potentiald“=(0,e(1+ik -r)exp(-iwt)): lowest-order retardation corrections. For DPI from'

state, neither orbital nor spin-dependent parts of the magnetic
dipole interaction contribute to the transition amplitudee
Ref.[19] for detail9. Therefore, the magnetic-dipole opera-
o tor in Egs.(5) and(12) as well as the spin dependence of the
wheref(r,t) is given by two-electron wave functions are suppressed in our analysis
_ . o of the transition amplitudd to the final two-electron singlet
f(r)=-(e-N(L+ik-r/2e"". state,|p,p,), with asymptotic electron momenta and p,.

_}af(r,t)

A=A+ Virt, &=
ot

: (6)

We thus obtain The dipole-quadrupole TDCS for DPI is
© i N 13
() ==iZ(e DL +ik-n2e™ (@) ded0dn, 0 AR (13

where A=4m2ap,p,/ ® is a normalization factor, andv
, i it | it =1/137. Atomic units are used throughout the rest of this
A'(r,b) = E[e(k ‘1) —k(e-r)le’ = 5[['( X el Xrle'. paper. The amplituda involving E1 and E2 components has
® the unified form

The length form counterpart to Eq3) for the electron- A=At Aq=(ppal(e D)+ (k ® €},-Q)I0)  (14)
photon interaction operator to leading order in the retardatiofior both velocity and length gauges of the electron-photon
corrections is therefore interaction. In the velocity gaug®=D"=-i(V,+V,) and
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Qo= (2\,/%=aw({r1®V1}2m+{r2®Vz}zm)- In the length the operatorQ,, between the initialS, state,|0), and the
gauge,D=DV=jw(r,+r,) and QZmEQ%:_(l/z)awZ({rl D-wave component dp;p,) with photoelectron angular mo-
B 1tomH{I 2@ 1 2}om). Because the amplitudein Eq. (14) is ~ mental; andl=ly, 1;£2. _
a scalar(i.e., it is independent of magnetic quantum num-  1aKing symmetry requirements into account, E2) may
bers, a rotationally invariant parametrization may be givenP€ Simplified. Since the bipolar harmonics in this equation
in terms of the vectors of the problem and scalar dynamica® rank-2 irreducible tensors composed of the veapars
parameters dependent @, p,, and the mutual angl@, and P2, they may be re_:presented as a superposition of all
= 0 betweenp; andp,, i.e., cosd=(p1-p.). possible rank-2 irreducible tensors composedbpand .

The parametrization of the EDA amplitudg in terms of ~ 1nere are three such independent tensgig pitom {P2

scalar products of the vectoes p;, andp, is well known — ® P2lom @nd{P1® Pajom Thus phenomenologically the am-
[10,24], plitude Aq may be written as

Ag=Ta(€-py) + fa(e-py). (15 A={e® |2}2 -(91{P1 ® Pat2 + GolP2 ® P22

In this gquat|on,f1§f(pl,pz,cpsa) and f,=f(p,,p1,c0SH) +295{P1 ® Pato),
are defined by a single function,

o where we have introduced the generally complex parameters

f(p,p’,cos6) = >, (- DY > Dy.(p,p) 01,2 and gs, which depend orp;, p,, and 6; the factor 2 is

I=1 /=141 introduced for the sake of convenience. After expressing the
o scalar products of rank-2 tensors in this identity in terms of
X Pi"(cos6), (16)  the Cartesian scalar products of vectors of the prolezs,

where P"(x) is the nth derivative of the Legendre polyno- €-9- Sec. 3.2 of Ref36]) and taking into account the invari-

mial P,(x), Pl(”)(x)=(d”/dx”)P|(x). The energy-dependent co- ance of the.amplitude with respect to interchange of thg pho-
o A toelectrongi.e., p; = p,), we arrive at our final parametriza-
efficient D,/ (p,p’) is given by

tion of the DPI quadrupole transition amplitude,
(pp’; (I1")1D]0)

V2l + 12 + Hmax(l,1)’ Aq=gi(e- PPy k) + gale - P)(P; k)

where(pp’;(I1")1D||0) is the reduced matrix element of the +gd(e-Py)(Ps-K)+ (e PPy K1, (21
operatorD between théS0 state and th&-wave component
of the two-electron continuum statpp’), with photoelec- in terms of only two functions: gs=gs(p;, P2, COSH)
tron angular momenthand!|’=1+1. =0g4(p2,p1,C0s6) (which is symmetric in the argumenfy

In order to derive a model-independent parametrization oand p,) and the function g(p,p’,cosé), with g;
the quadrupole amplitud, (i.e., to establish its dependence =g(p;,p,,cos6) andg,=g(p,, p1,COSH).
on the photon parameteesandk and the angl® betweem; The explicit forms of the functiong(p,p’,cosf) and
and p,), we employ techniques similar to those that havegy(p,p’,cosé) in terms of the reduced matrix elements in-
been developed for parametrization of the electric dipoleroduced in Eq(20) may be established by using the reduc-
TDCS [24]. First, we use the well-known multipole expan- tion formulas for the rank-2 bipolar harmonics in H&0)
sion of the final statép;p,) in terms of bipolar harmonics that are derived in Ref24]. The final expressions fay and

Dy (p,p’) = (17)

P2y = 2 GEZ (P1.p2)Ipap2; (14l)Im), (18) < » °
Il gs(p.p’,c0s6) = 2 (= D™ 2 Qui(p.p')Pjyy,5(COSH)
where =t =122
A s A o +6 n
C2pr,po) = S Mt Coom (BDCm (B2) VeQu(p.p")
mym, (@) 2+3,0
. ~ X| Pizi(cosd) — ——P;”(coso) | |, (22
= {Cllml(pl) ® Clzmz(pZ)}Ima (19) 2
and ¢/™ denotes a Clebsch-Gordon coefficient. Using

Iym,l,m.
the Wibﬁér-Eckart theorei86], the polarization-angular de- , ” | = ,
pendence oA, may be given in terms of a sum of scalar 9(P,p’,c0S6) = 21 { > Qu(p.p)+6Q(p.p )}
products of two rank-2 tensors, 1=2 I'=1£2

Kk xP?(cos#),
Al %2 (k@ e}, C3'2(p1.p2) ?(cos6)

V9lyly where
X (p1p2; (1412)2]Q,]0), (20)

. _ 40 +1" = 2)!
where(p;p,; (131)2|Q,]0) is the reduced matrix element of Qu/(p.p) = m(pp’;(ll’)2||Q2||0>- (23)
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1. Symmetrized quadrupole amplitudesi®y g'?, and ¢* Ax

Another parametrization of the DPI quadrupole amplitude
Aqg, Which is similar to the one commonly used in the litera- P,
ture within the EDA framework, is the parametrization in
terms of symmetrized combinations pf and p,: p.=(p;
+p,)/2 and p_=(p;—P,)/2 [which are orthogonalp, -p_-
=0, and have the following modulip,=cog6/2) and p_
=sin(6/2)]. With these definitions, Eq$15) and (21) have :
the following form: I
|

Ag=19(e-p,) +fe-p.), (24)

|
_q© " © . Vi
Ay=g7(e-p)k-p,)+gZ(e-p)k-p-)
© ~ ~ FIG. 1. Geometry suitable for observation of retardation effects

+g”[(e-p)k-po)+(e-p)k-py], (25 in the TDCS for DPI by linearly polarized light. The vectarg p,,
where the symmetrized amplitudes &@=f,+f,, fW=f, € andklieinone plane.
~f, g9=g,+0,+2g, and g¥=g,~g,. For equal energy _
sharing,fW=gW=0, and the parametrization in terms of the quadrupole TDCS may be presented in termstwée real
symmetrized amplitudes becomes particularly convenient?arametersupon neglecting the small E2-E2 terms

The exact expressions for our symmetrized amplitudes in B A oA
terms of Legendre polynomials and reduced matrix elements o=0g+ Alay(py-K) + ax(p2 - k)], 27

follow immediately from those for the functions |\ here o4=A|AJ? is the dipole TDCS, and the two real

f(p,p’,cosh) andg(p,p’,cosb), g«p,p’,cosh) defined in . . .
Egs. (16) and (22). The amplituded™ andg™ have simple k-mdepende_nt parameters; and «, describe the dipole-
quadrupole interference,

forms,
® =2 RdAa[gl(% P1) +0s(e-p) 1},
fO=> (-)" > [Dy(p,p') - Dy (p',p)]P{M(cos),

=1 =11 =2 REAJ (€ - Po) + g€ - P} (28)
o As noted above, the quadrupole terms in EZy) do not
q=0-1"S [Q(p.p) —Q”,(p’,p)]PfZ)(cosa). contribute to the TDCS for the perpendicular plane geom-

etry. Thus, the dipole TDC8.e., o4) may be measured by

detecting photoelectrons in the plane perpendicular to the
(26) photon beam. The parameters and o, may be determined
[We note that the description of the dipole amplitutlg ~ from two measurements employing a nonorthogonal geom-
given above is very similar to its well-known parametriza- €try with different directions of the photon wave vector. As
tion in terms of the vectord,; +p, and the symmetrized “ger- Se€en from Eqs(27) and (28), the interference between the

ade” and “ungerade” amplitudes = (f;+f,)/2 [10,25,37; dipole and quadrupole TDCS contributions is strongest for
note thatf(@¥=2a, ] ’ the case oftoplanargeometry, i.e., when the vectos k,

The results in Eqs(15—(17) and (21)~(26) are general P andp; lie in one plane(see Fig. 1 In particular, the
and giveab initio parametrizations of the dipole and quad- difference between two TDCS measurements, induced by re-
rupole DPI amplitudes, independent of the dynamical modef@rdation corrections, is maximal when the second measure-
used for calculations of the reduced matrix eleméh® and ment is made with the direction of the photon beam inverted
(23). Thus, the measurements of nondipole effects in DPI of33l.
He allow one to probe electron correlations in thevave
part of the two-electron continuum std®p,) (while only

1=2 I'=1+2

2. Elliptic and circular polarizations

the P-wave part contributes to the EDA amplitudeg). For the most general case of DPI by elliptically polarized
) o light described by the complex polarization vectrthe
C. Model-independent parametrizations for the TDCS in Eq.(13) (neglecting the small terms|Aq|2) has a

dipole-quadrupole TDCS model-independent parametrization similar to that for dipole

We present here parametrizations for the TDCS define®PI [24],
by Egs.(13—(15) and(21) for the cases of linear, circular, 3 -2 - 1 P
and elliptic polarization, and discuss the nondipole effects to = A(C1e- P1|*+ Cole - pol* + Recs{(1 ~D(P1 - )

be expected in measurements. AL A N A A A
P = (k - py)(k - po)]+2I(& - P& P,))
1. Linear polarization

TSRO
For the case of DPI by linearly polarized light described +eIm cy(k - [py X Pa), (29)
by the real photon polarization vect@=e, the dipole- where, however, the coefficientsare nowk-dependent,
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¢, =|f,?+ 2 Refygy(k - py) + f1ga(k - o)1, ALa9 = 2 A Im[(f,05 + Fo00) (K - Py)
+ (fogs + F100) (K - Pk - [Py X o)),  (34)

which have different symmetry properties with respect to the
. o~ . .o~ inversion of the photon beafne., k ——k), and with respect
Ca= fafy + (f19s + Fo0) (K - Po) + (fo0s + f195) (k- Po). to reflection of the photoelectron pair in the polarization
(30) plane [i.e., (6,,6,) — (7= 6y,7—6,), where 0, , are the
) ) ) ) spherical angles of the vectops , in the coordinate system
The paramete in Eq. (29 is the degree of linear polariza- \yhosez axis is directed along the photon wave veckdr
tion of an elliptically polarized photon=e?=\1-¢% and the  within the EDA framework, the CD effect is described by
unit vectore is directed along the major axis of the polariza- the gipole terrm(cd,g’) [20,24], which vanishes at equal energy
tion ellipse. In dealing with the scalar products involving the sharing (because fop,=p, one hasf,;=f,). However, the

complex vector, the following relation is convenier4]: quadrupole termA(ggad'), produces a nonzero CD effect even

at equal energy sharing. Note that the imaginary pac;af
Eq. (33) changes sign upon making the substitutipps= p,,
as it should because of the invariance of the total CD term,
Acp, upon interchange of photoelectrons.

The dichroic term Inty(k-[p,Xp,]) in Egs. (29 and

C : 32) results also in an unusual feature of the TDCS, the dif-

de_pendence of theA dipole-quadrupole TDCS is thus deteilgerent symmetry of the TDCS with respect to two transfor-
mined by four real k-dependent parameters;, C;, ReCs,  mations:(i) k — -k (i.e., the inversion of the photon beam
and Imc;. These parameters may be determined from fougjirection and (ii) (6y,6,) — (m— 0., m7—8,) (i.e., the reflec-
measurements with different polarizations of the photonjon of the photoelectron pair in the polarization plane
beam, e.g., two experiments with linearly polarized photonsrpe nonequivalence of these two transformations, i.e., the
and two experiments with circularly polarized photons. Onc&,.t that o(=K, 0y, 60,8 # o(k, m— 0y, m—6,,), may be
the parameters; ha_ve peen dgtermmed, th? TDCS corre- o ifieg by simple inspection of Eq$29) and (32). Each
sponding to an arbitrarily polarized photon is given by Ed-of the terms in these equations, except for the term

(29). Thus, as for the EDA case, all information on the non- ~ . .
dipole TDCS for an elliptic polarization may be obtained 24 M Ca(k -[p1X P,]), transforms in the same way upon ei-

from measurements with linearly and circularly polarizedter of the two transformations. On the contrary, the term
light. We note that the TDCS parametrization in E29) is  2AImca(k-[p; X p,]) transforms differently: the scalar
independent of the dynamical model used to calculate thgroduct(k -[p, X p,]) changes its sign whek— —k, but is

parameters; 5, g », andgs invariant with respect td6,, 6,) — (7— 6,, m— 6,). From the
_ For circularly polarized photon=0,£=+1), Eq. (29 considerations above, the following relation follows:
simplifies[taking into account Eq(31)],

C=|f?+2 Re{fzg*z(Iz “Po) + fzSJ;(Iz P,

2le-a2=2le-a2+ (1 -1k x af?, (31)
where a is a real vector. Note also that E(R9) may be

rewritten also in terms of the Stokes parametgr§10]; in
particular, é=i(k-[exe])=-S;. The photon polarization

4 o(k,01,05,8) =a(—k,m— 01,1~ 05,— &), (35
o={ek X Pa]? + colk X P? which reflects the invariance of the TDCS upon spatial in-
version(taking into account tha§ is a pseudoscalar quantity

+Recs([k X Pyl - [k X po]) and shows that both transformatiotis and (i) are equiva-

L lent in the limit|—1 (linear polarization The difference

+2¢&Im cg(k - [Py X o))} (32)  between the TDCSs resulting from the transformati¢ins
and(ii) is

The TDCSs in Eqs(29) and(32) both contain a term that is
proportional to the degree of circular polarizati@irthis term — 5(—k 9, 6,,&) — (K, 7 = 0y, 7 — 05, &) = E(AGD — A(dP)y
is sensitive to the sign df, i.e., it is responsible for the CD

effect. This effect is usually characterized by the absolute (36)
CD parameterAcp=o(é=+1)-o(é=-1), which has the

following form: The retardation-induced part of this differenga'%-®” may

be observed most easily at equal energy sharing, when the
generally large dipole termgg’) in Eq. (36) vanishes. In this
case, the termAcp in Eqg. (33) changes its sign when
(61,6,) — (m—6,, 7= 6,) but is invariant with respect t&
——k. We note that besides the case of linear polarization,
the asymmetries of the TDCS resulting from the transforma-
Acp= A(Cdé)p) + A(cqgadr)’ t@ons(i_) and_(ii) bgcome equivalent al§o for geometrical con-
figurations in which the ternAcp vanishes, e.g., when the
. . vectorspy, P,, andk lie in one plangor whenk -(p;—p»)
AGP =2 A Im(f,f,)(k - [Py X P)), =0 for the case of equal energy shaiing

Acp=241m cy(k - [Py X Pol). (33)

The termA¢p involves both the E1-E1 and E1-E2 contribu-
tions,
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3. Parametrizations in terms of the symmetrized amplitudes

The expression for the TDCS in terms of symmetrized
amplitudes has a form identical to that in E¢&9) and(30)
[as well as to those in Eq$32)—(34)] provided the fol-
lowing substitutions are made{p;,P2,f1,f2,01,9,,9s
—{p,.p_,f9,fW g9 g9 gl Thus in general this pa-
rametrization does not simplify the analysisecause only
the term corresponding t@; -p,) in the second line of Eq.
(29) vanishes in the symmetrized parametrization, since

— ; ; FIG. 2. Geometries suitable for observation of retardation-
EI'pEJ)GCS_)i; Ogé::ivl;’;\:egaléedsoes lead to a simpler form of the induced light polarization effect$a) Geometry at which the equal

. . energy sharing CD is maximal. Electrons are detected inxthe
The TDC.S h_as_an especially simple form for baCk'to'baClﬁ)lane, at angles of & 2 with respect to the axis. The photon wave

electron emissiofii.e., p;=—p, or p,=0), vectork lies in theyzplane and makes an angle 45° with thaxis.

(b) Geometry for observation of retardation-induced asymmetries in

the TDCS. The first electron is ejected along thexis and the

second onegwhose angular distribution exhibits the asymmgtry

along (6, ¢,). (Concerning the angles,, and ¢, see Fig. 7.

o= A{fY2+2 R4fYVg9 Ik -pplle-pf>  (37)

If the wave vectork, photoelectron momentp; =—p,, and
the major axis of the polarization ellipse lie in the same
plane, the forward-backward asymmetty=of(e, k)—of(e,

—k), for this case may be analyzed as a function of the angle !l PERTURBATIVE ACCOUNT OF ELECTRON
@ between the wave vectérand the photoelectron ejection CORRELATIONS IN THE DPI QUADRUPOLE
axis directed along,=-p, [owing to Eq.(31)], TRANSITION AMPLITUDE

A=2A(1+ I)Re{f(“)g(_g)*}sinz 0 COS®y. (38) A. General equations for LOPT amplitudes

This asymmetry may be visible at energy sharings close to Wle use LOPTI'n. the _mterelectron'mtleracl:tloln to accfouhnt
equal. in which casé® vanishes: see the numerical results 07 €lectron correlations in our numerical calculations of the

in Ref.[33]. reduced matrix elements of the operatbraind Q,,, and the
For the case of equal energy sharing, the parametrizatiofP'"esponding TDCSgee Refs[14,16). The application of
of the TDCS for an elliptic polarization is this approach to DPI within the EDA was described in detail
in Ref.[16]; therefore, we provide here only a brief descrip-

o®9 = A{[|f 92+ 2 R @ @k - p.)]le-p.? tion :): tdhis approach to evaluating the quadrupole transition
A amplitude.
+Re[f9 g N (k -p)[2l(e-p.)(e-p.) In lowest order in 1v,,, the DPI quadrupole transition

. . amplitudeA, in Eq. (14) is given by
+U=-1(k -pk-pIlh+(&AE, (39

where A =AS|, _,: it has the following form in  A;=Qr(p1,P,) + Qe(P2P1) + Qa(P1.P2) + Qe(P2:Py),
terms of the symmetrized amplitudes: (42)

ALY =24 Im{f9" g9k -[p_x p.])(k -p.). (40
) ) where the term®r and Qg account for final-state correla-
Note that this form of the nondipole CD parameter far  jons (FSO and ground-state correlation&6S0O, respec-
=p, in terms of the vectors, is expected sinc&Sg should  tively; they are shown schematically in Fig. 3. The dipole
be invariant with respect to the substitutipa=p, (i.e.,  parts of the FSC and GSC terms are evaluated in [2é].

IO—H‘IO—)-_ _ _ (€9 The quadrupole term$Qr and Qg, have the following ex-
The “kinematical” maxima ofA-j’ may be deduced by pressiongcf. Egs.(7)—9) in Ref.[16]]:

supposing that the vectops andp, are directed along the
and x axes of a coordinate frame, so that thexis is di-

®
rected along the vector produfgb_ X p.]=[p; X p,]/2 [see \\\ \\(\D
Fig. 2(a) ]. In terms of6, and ¢, the spherical angles of the 15\ R N Dy
vectork, we obtain i i
1 1
~ ~ DA T Ay . | }
2(k -p)(k -[p- X p.D) = (|.< -Z)(k -ly)SIn(.ﬁ/Z)Sm g 1s Loy g D
= sin(26,)sin ¢, sir(6/2)cog 0/2). @FsC ©) GSC

41

) FIG. 3. Schematic diagrams for first-order perturbative contri-
The modulus of this expression is maximal f@f=+a/4  butions to the DPI amplitudéa) Final-state correlatior(p) ground-
and ¢ =+m/2 [see Fig. 2a)]. These angles correspond to state correlation. Two additional contributing diagrams with ex-
maxima of the equal energy sharing CD effect. changedp, andp, are not shown.
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Qr(P1P2) = V20 |US (NG (1,1 ) (K - 1) (e Vi) o),
(43

QalP1.P2) = V2 [(k - 1) (e V) Ge (r,r UG )0,
(44)

U, (1) =y lIr =1 [Peo),

where Ge, and Gg, are the one-particle Coulomb Green’s
functions (CGF9 with energy parametefs,::Epl+ Ep,—€1s
and&g=2€14— Ep,; the functionsey and z//é) are one-particle

(45)

Coulomb wave functions for a hydrogenlike ion that de-
scribe, respectively, the ground state and continuum state

normalized according t@/,| ,)=8(p-p’); the factory2 in
Egs. (43) and (45) accounts for symmetrization of the final

state. The two exchange amplitudes are obtained by inter-

changing the momentum vectqrg andp, in Egs.(43)—(45)
and usingfg=2€;5-E, .

PHYSICAL REVIEW A 71, 052702(2005

B. Evaluation of angular integrals

As a result of the partial wave expansions in Egs.
(46)—(48), the quadrupole amplitude3e ¢ in Egs.(43) and
(44) take the form of an infinite double sum over the electron
angular momentd; andl,, that characterize the correspond-
ing partial wave amplitudes. We consider here the evaluation
of the angular integrals in these partial wave amplitudes. The
angular integral overf for the (I,1’) partial wave amplitude
Qr in EQ. (43) has the form

|g,|’>=f PPy -F)P (P, - f)(|2 f)(e-T)df (51

=C")({k ® e}, - Ch (p1,P2)), (52)
where
’ 4’77 2
=g \/;on?/o- (53

The scalar product of the rank-2 tensors in E&) may be

The amplitudesQr and Qg are evaluated by using the evaluated using Eq¢C3) and (C5) in Ref. [24],
standard multipole expansions for the Coulomb continuum

functions ¢y, for the CGF, and for Irh, in Egs.(43)~(45),

[

-3/2
gy (1) = %2 1121 +1) x e PRy (PP -F),

P =0
(46)
Ge(r,r") = 2 g(E;r, )Y i) Yin(F'), (47)

I,m

1 o

ngrrl?_ﬂ(l’ -I"), (48)

where §(p)=argl’(I+1+in) is a Coulomb phase shifty
=Z/p, andr_=min(r,r’), r.=maxr,r’). Ry(r) is the radial
part of the Coulomb wave function,

Coi(2pn)'
_P'(_pr)e—lprq)(i n+1+1,2+22pr), (49

Rl = a1+ 11

where @ is a confluent hypergeometric function a},
=2p exp(wn/2)|T(1+1+in)|. The radial functior(49) is nor-
malized as foIIows;f°0°Rp|(r)Rp,,(r)rzdr:2775(p—p’). For the
radial part of the CGF, we use the integral representatio
[38],

, 2 (* du
gErNr) == —
Nrir'Jo 1-u

u—Zv—l/Z
X exp) — u—
v 1-u

}|2I+l
( MWrr'u )
>< 1

v(1-u)
where v=1/\-2E (v=i|y| for E>0) andl,(x) is a modified
Bessel function.

r+r’'l+u

(50)

({k ® ey - Ch (p1,P2) = (- D'CLAMN (B, Py k,6),
(54)
where
A (B, k) = VB{[(e-P)(k -P) + (e p)(K - p)IPR (%)
~[(e-p)(k -p") +(e-p")(k-P)]

X [%Pl(l)(x) + foz)(x)]}, (55)

AM=2(5 57 k€)= (e p)(k - p)P(x)
+(e-p)(k -p")P?(x)
~[(e-p)(k-p")+(e-p")

X (K - P)IPy o9,

G- (2021 - 4)!
Cs' = (2. +1)!

and wherex=cosé=(p-p’) andl.=maxl,l"). The evalua-
rt]ion of the angular integrals for thé,|) partial wave ampli-
tude Qg in Eq. (44) is slightly more involved. After integra-
tion overf’ in Eq. (44), the remaining angular integral over

f in that equation has the form

(56)

(57)

(017 =

& f PPy -F)(k -F)(e- V)P (Py-F)df, (58)

where I'=1, 1+£2. It is evaluated using the fact th&
=(alar)i +(1/r)Vq. The integral involvingf reduces to
Ig"'); the integral involvingVy, is evaluated by using the
Wigner-Eckart theorem for the matrix element of the direct
product of the spherical componentg(V,), [36]. The re-

sulting expression forl'" is
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1 ’ [? ! 1
TR Y (R0 R (NG Yo 59
G Foor r’ (59)
where
I = f P(py-F)(k -F)(e- V)P (p,-F)df
=Ci"({k ® e}, -Ch (p1,p). (60)

and whereC(J"") may be expressed in terms 6f""): CS"")
:[5,,,(3/2)+(2,|+2(I’+1)—d,|_2I']Cf"' ). Thus the angular in-
tegral overf in Eq. (44) becomes

=((k ® e}, Ch (p1,Po)

% " 2 N 81312 + §pao(l” +1) - 5,,,_2|’]
I .
ar r

(61)

Combining the above results, the partial wave expansions

for the amplituder g in Egs.(43) and(44) are

2( Dt Y Qi

1,=0 15=lq11£2

Qrc= 2)(p1 po) X Alr'2(p,, pz,k e,
(62)

where the functioA(!1'2(p,, .,k ,e) [cf. Egs.(55) and(56)]

determines the polarization and angular dependence of t

DPI amplitude, whiIeQﬂ}éZ)(pl,pz) is a dynamical factor
that determines its energy dependence,

Q? (p1.p2) = P11, Q0 (P, p2), (63)

where

(-1 aw
(2m)? pip;

[a@2_ -4
X (2|1+ 1) ﬁc 1,01,0° (64)

and Q('l'Z)(pl,pz) is a radial matrix element. As is shown in
Appendlx A, Q('l"“ (p1,p2) may be represented as a two-
dimensional mtegral of elementary functions.

gla, (P+4,(p2)]

i~

C. LOPT results for the DPI dynamical factors

The photon polarization and angular dependefde-
scribed by Egs(55), (56), and(62)] of the quadrupole part
of the DPI amplitude, givefwithin LOPT) by Egs.(43) and

PHYSICAL REVIEW A 71, 052702(2005

Qu1,(P1.P2) = Py [OF2(py, pp) + QL2 (py, py)
Q"2 (py,pp) + QY (P11,

where the formulas for the radial matrix elemelﬁl'z)
(p1,py) are given in Appendix A.

The LOPT analysis of dipole DPI in R€fL6] permits one
to obtain the LOPT limit of the reduced dipole matrix ele-
ments(pp’; (I1")1]|D||0) in the dynamical factor®, ;,(py, po)
in Eqg. (17). These expressions have the following form:

Dy,1,(P1.P2) = S,1|2[Dgl"2>(p1, p2) + DE2'Y(py, py)

(65)

+ Dgl"z)(pl