University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Jay Reddy Publications Veterinary and Biomedical Sciences, Department of 1-1-2006 # OR.107. TIM-1 Plays a Crucial Role in the Expansion of Autopathogneic T-Cells and Regulation of Autoimmunity [abstract only] Sheng Xioa Harvard Medical School Nader Najafian Harvard Medical School Jay Reddy University of Nebraska - Lincoln, jayreddy@unl.edu Monica Albin Harvard Medical School Chen Zhu Harvard Medical School ### See next page for additional authors Follow this and additional works at: http://digitalcommons.unl.edu/vbsjayreddy Part of the <u>Biological Phenomena</u>, <u>Cell Phenomena</u>, and <u>Immunity Commons</u>, <u>Medical Biochemistry Commons</u>, <u>Medical Immunology Commons</u>, <u>Medical Microbiology Commons</u>, and the <u>Medical Molecular Biology Commons</u> Xioa, Sheng; Najafian, Nader; Reddy, Jay; Albin, Monica; Zhu, Chen; Anderson, Ana; Zhang, Zheng; Gutierrez, Cristina; Sobel, Raymond; Umetsu, Dale; Yagita, Hideo; Akiba, Hisaya; Sayegh, Mohamed; DeKruyff, Rosemarie; and Kuchroo, Vijay K., "OR.107. TIM-1 Plays a Crucial Role in the Expansion of Autopathogneic T-Cells and Regulation of Autoimmunity [abstract only]" (2006). *Jay Reddy Publications*. Paper 16. http://digitalcommons.unl.edu/vbsjayreddy/16 This Article is brought to you for free and open access by the Veterinary and Biomedical Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Jay Reddy Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. | Authors
Sheng Xioa, Nader Najafian, Jay Reddy, Monica Albin, Chen Zhu, Ana Anderson, Zheng Zhang, Cri
Gutierrez, Raymond Sobel, Dale Umetsu, Hideo Yagita, Hisaya Akiba, Mohamed Sayegh, Rosemari
DeKruyff, and Vijay K. Kuchroo | istina
e | |---|-------------| # FOCIS 2006 Abstract Supplement — 6th Annual Meeting, San Francisco, California, USA, June 1-5, 2006 ## Federation of Clinical Immunology Societies Abstracts Thematic Symposium 3202: Controlling Inflammatory Reactions Sunday, June 4 OR.107. TIM-1 Plays a Crucial Role in the Expansion of Autopathogneic T-Cells and Regulation of Autoimmunity Sheng Xiao,¹ Nader Najafian,² Jay Reddy,^{1,6} Monica Albin,² Chen Zhu,¹ Ana Anderson,¹ Zheng Zhang,¹ Cristina Gutierrez,¹ Raymond Sobel,³ Dale Umetsu,⁴ Hideo Yagita,⁵ Hisaya Akiba,⁵ Mohamed Sayegh,² Rosemarie DeKruyff,⁴ Samia Khoury,¹ Vijay Kuchroo¹ ¹Center for Neurologic Diseases, Brigham and Womens Hospital, Harvard Medical School, Boston, Massachusetts ²Transplantation Research Center, Brigham and Womens Hospital and Childrens Hospital Boston, Harvard Medical School, Boston, Massachusetts ³Department of Pathology, Stanford University School of Medicine, Stanford, Cailfornia ⁴Division of Immunology, Childrens Hospital, Harvard Medical School, Boston, Massachusetts ⁵Department of Molecular Immunology, Tokyo Medical and Dental University, Tokyo, Japan ⁶Affiliation 2009-: University of Nebraska-Lincoln, Lincoln, Nebraska, USA T-cell immunoglobulin and mucin (TIM) family Members are differentially expressed on Th1 and Th2 cells. Polymorphisms of TIM-1 have been associated with susceptibility to asthma; however, its role in regulating autoimmunity has not been studied. Here, we have used an agonistic anti-TIM-1 antibody (Ab, Clone 3B3) which has previously been shown to costimulate T-cell activation and expansion, to analyze the role of TIM-1 in the development and regulation of experimental autoimmune encephalomyelitis (EAE). Treatment with 3B3 dramatically enhances the severity of EAE as well as the frequency of encephalitogenic CD4+ T-cells and the production of IFN-g and IL-17 by these cells. Furthermore, administration of 3B3 breaks self-tolerance and induces EAE in the disease resistant B10.S strain. We have utilized another anti-TIM-1 Ab (RMT1-10) that does not costimulate T-cell activation in vitro. In contrast to 3B3, treatment with RMT1-10 inhibits the development of EAE and reduces the frequency of encephalitogenic CD4+ T-cells with a commensurate decrease in the production of IFN-g and IL-17. Treatment with RMT1-10 causes CD4+ T-cells to produce more IL-4 and IL-10. We provide evidence that both 3B3 and RMT1-10 bind to the same epitope in the Ig domain of TIM-1, but the binding affinity of 3B3 is much higher than that of RMT1-10. These data suggest that TIM-1 engagement with the agonistic Ab, along with TcR ligation, costimulates T-cell expansion with pro-inflammatory IFN-g and IL-17 production resulting in the breakdown of self-tolerance and development of autoimmunity, whereas blocking anti-TIM-1 Ab causes a decrease in the autopathogenic Th1/ ThIL-17 responses. This study demonstrates that TIM-1 is a key cell surface molecule that regulates effector T-cell response and depending on hopw the molecule is engaged, autoimmune responses can be either enhanced or inhibited in vivo.