C3 origins of the C4 pathway regulatory enzyme, PPDK-RP

C. J. Chastain
Minnesota State University–Moorhead

Gautam Sarath
University of Nebraska - Lincoln, Gautam.sarath@ars.usda.gov

Raymond Chollet
University of Nebraska - Lincoln, rchollet1@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/biochemtrysarath
Part of the [Biochemistry, Biophysics, and Structural Biology Commons](http://digitalcommons.unl.edu/biochemtrysarath)

Chastain, C. J.; Sarath, Gautam; and Chollet, Raymond, "C3 origins of the C4 pathway regulatory enzyme, PPDK-RP" (2001).
http://digitalcommons.unl.edu/biochemtrysarath/17
Symposium 17. C₄

Paper S17-013:

C₃ origins of the C₄ pathway regulatory enzyme, PPDK-RP

C. J. Chastain,¹ G. Sarath,² and R. Chollet²

¹ Department of Biology, Minnesota State University–Moorhead, Moorhead, MN 56563, USA; email: chastain@mnstate.edu
² Department of Biochemistry, University of Nebraska–Lincoln, Lincoln, NE 68588-0664, USA.

Keywords: pyruvate, Pi dikinase (PPDK), pyruvate, Pi dikinase regulatory protein (RP), C₄ photosynthesis, C₃ photosynthesis, C₄ evolution

A current view of C₄ and CAM evolution holds that all of the constituent enzymes of the C₄ pathway preexisted in C₃ plants, albeit functioning in nonphotosynthetic capacities. Problematic in this view is the C₃ origin of presumably dedicated C₄ pathway regulatory enzymes, such as PPDK regulatory protein (RP). RP is an unusual, bifunctional Ser/Thr kinase/phosphatase that mediates light/dark regulation of C₄/CAM PPDK activity via reversible phosphorylation of an active-site Thr. Because of its unique substrate requirements and localization in the stroma of C₄ mesophyll cells, RP appears to be specific to C₄ PPDK regulation. However, in this presentation we show that an RP-like activity exists in chloroplasts of C₃ leaves. Specifically, immunoblot analysis of phospho- and dephospho-PPDK from illuminated and dark adapted C₃ leaves (rice, F. pringlei, V. faba, spinach) revealed that PPDK phosphorylation/dephosphorylation is regulated in a light/dark-dependent manner. Further, the kinetics of the reversible activation process are similar to C₄ plants, with light activation occurring rapidly (≤ 15 min) and dark deactivation more slowly (≥ 1 h). In vitro experiments with isolated intact spinach chloroplasts show the same light/dark modulation of PPDK phosphorylation state occurs, with light-induced dephosphorylation of phospho-PPDK being Pi dependent, inhibited by DCMU, but insensitive to MV. Hence, as with C₄ RP, adenylates and stromal pools of Pi likely regulate the opposing bifunctional activities of the C₃-like RP activity. Thus, evolution of RP into its C₄/CAM role may have been no more problematic than for other C₄/CAM pathway enzymes, as it apparently pre-exists in chloroplasts of C₃ plants.