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 This thesis is about the investigation of the geometrically nonlinear responses and 

bulging factors of cracked laminated composite cylindrical shell structures subjected to 

internal pressure. Hybrid strain based three-node flat triangular shell elements, developed 

by To and Wang were used. 

 Effects of dynamic responses of various numbers of layers and their angle 

arrangements of cracked cylindrical shell structures clamped at both ends are analyzed 

and studied. Bulging factors based on the concept of equivalent Young’s modulus of 

elasticity are found and compared with single and multiple layer composite cylindrical 

shell structures.  

 Finally, bulging factors for similar laminated composite cylindrical shells with 

free-free boundary conditions are also presented in this thesis.  



 
 
 

iii 
 

Acknowledgements 

 I would like to take this opportunity to present my deep thanks to my advisor Dr. 

C.W. Solomon To, for his expertise, encouragement, continuous guidance and valuable 

time to time advice. This research would be impossible without his important guidance.  

 I would like to express my gratitude to Dr. K. P. Rajurkar from department of 

Industrial and Management Systems Engineering and Dr. W. M. Szydlowski from 

Department of Mechanical Engineering for being in my committee and reviewing my 

thesis.  

 I am thankful to Dr. To for letting me use the Fortran computer code developed 

by him and Dr. Bin Wang. The latter code was previously developed by Dr. Meilan Liu 

and Dr. To for analysis of isotropic shell structures.  

 I am also grateful to Jiming Fu for assistance in providing various input files, 

running of the Fortran computer code above, and continuous consultation via the internet. 

 My thanks also are for faculty and staff members of Mechanical Engineering 

Department at University of Nebraska Lincoln. Without support and encouragement of 

my friends, it would be tough to go through. 

 I would also like to be thankful to my brothers and friends. 

 Last but not least, I specially would like to be thankful to my father and mother, 

who gave me such a wonderful life and way to success.  



 
 
 

iv 
 

Table of Contents 

 

Abstract…………………………………………………………………………………….i 

Acknowledgment………………………………………………………………………….ii 

Table of content………………………………………………………………………..…iii 

List of figures………………………………………………………………………….….iv 

Chapter 1 Introduction…………………………………………………………………… 1 

1.1. Background…………………………………………………………………………1 

1.2. Geometrically nonlinear analysis of laminated composite shell structures ……..1 

1.3. Cracked shell structures and bulging factor………………………………………...3 

1.4. Motivations and objectives of present investigation………………………………..4 

1.5. Organization of thesis………………………………………………………………5 

Chapter 2 Theoretical Development………………………………………………………7  

   2.1. Introduction………………………………………………………………………....7 

   2.2. Composite Material…………………………………………………………………7 

         2.2.1. Advantages of composite material……………………………………………8 

         2.2.2. Applications of composite material………………………………………......8 

        2.2.3. Different types of composite material…………………………………………9  



 
 
 
v 

 

   2.3. Hybrid strain based three-node flat triangular shell elements…………………….10 

        2.3.1. Incremental variational principle…………………………………………….11 

         2.3.2. Hybrid strain formulation…………………………………………………...13 

         2.3.3. Nonlinear stiffness matrix…………………………………………………...14 

        2.3.4. Element mass matrix and loading vector……………………………...……..18 

   2.4. Bulging factors for isotropic shells……………………………………………….18 

   2.5. Bulging factors for laminated composite shell structure………………………….21 

Chapter 3 Nonlinear dynamics responses of cylindrical shell structures without and with 

crack…………………………………………………………………………………...…23 

  3.1. Cylindrical shell…………………………………………………………………....23 

  3.2. Laminated cylindrical shell structures by finite element approach………………..24 

  3.3. Finite element models of laminated cylindrical panel without crack and under   

internal pressure………………………………………………………………….26 

         3.3.1. Two layers laminated composite cylindrical panel………….…………..….26 

         3.3.2. Four layers laminated composite cylindrical panel…………..……………..29 

 3.3.3. Eight layers laminated composite cylindrical panel…………………….......30 

         3.3.4. Comparison of various ply angles arrangements for tow layer case………..32 



 
 
 

vi 
 

        3.3.5. Comparison of various ply angles arrangements for tow layer case …….….34 

  3.4. Finite element models of cracked laminated composite cylindrical panels under 

internal pressure……………………………………………………………...…..35 

       3.4.1 One layer cracked laminated composite cylindrical panel…………................36 

       3.4.2 Two layers cracked laminated composite cylindrical panel…………………..37 

       3.4.3 Four layers cracked laminated composite cylindrical panel………………….40   

Chapter 4 Bulging factors for shell structures with crack………………………………..44 

  4.1. Introduction………………………………………………………………………..44   

  4.2. Central deflection and bulging factors for single layer shell structure………….…45 

        4.2.1 Central deflection for single layer shell structure………………………….…46 

        4.1.2 Bulging factor for single layer shell structure………………………………..47 

  4.3. Central deflection and bulging factors for two layers cylindrical shell structure….48 

       4.3.1. Central deflection……………………………………………………………49 

        4.3.2. Bulging factor for two layers shell structure……………………………........51 

  4.4. Central deflections and bulging factors for four layers shell structure…………….52 

        4.4.1 Central deflection………………………………………………………..........53 

       4.4.2 Bulging factor for four layers shell structure………………………………….54 



 
 
 

vii 
 

   4.5. Comparison of bulging factors for shells with different numbers of layers…….56 

   4.6. Bulging factors for cracked laminated composite shell structure with free-free    

boundary conditions……………………………………………………………..57 

        4.6.1. Single layer shell structure with free-free boundary conditions…………….57 

       4.6.2. Two layers shell structure with free-free boundary conditions………………58 

       4.6.3. Four layers shell structure with free-free boundary conditions……………..59 

        4.6.4. Comparison of shell structure with free-free boundary conditions…………61 

Chapter 5 Concluding remarks and recommendations for future work…………………62 

    5.1. Introduction……………………………………………...………………………..62 

    5.1. Summary and concluding remarks………………………………………………..62 

    5.2. Recommendations for future work……………………………………………….65 

References……………………………………………………………………………..…66 

 

 

  

  

 



 
 
 

viii 
 

 

 List of Figures 

Figure 2.1 Laminated composite materials………………………………………………10 

Figure 2.2 Flat triangular laminated composite shell element…………………………...15 

Figure 3.1 Cylindrical shell……………………………………………………………..23 

Figure 3.2 Laminated cylindrical shell structure with finite element representation……25 

Figure 3.3 Response of two layers cylindrical shell……………………………………..28 

Figure 3.4 Response of four layers cylindrical shell…………………………………….30 

Figure 3.5 Response of eight layers cylindrical shell…………………………………....31 

Figure 3.6 Responses of two layers with an angle constant…………………………….32 

Figure 3.7 Responses of two layers with different ply angles…………………………..33 

Figure 3.8 Responses of four layers with different ply angles………………………….34 

Figure 3.9 Response of the single layer cylindrical shell with crack……………………36 

Figure 3.10 Response of two layers cylindrical shell with crack………………………..38 

Figure 3.11 Responses of two layers cylindrical shell with crack (Different angles)…...39 

Figure 3.12 Responses of two layer cylindrical shell with crack (Different angles)…….40 

Figure 3.13 Response of four layers cylindrical shell with crack ply arrangement……..41 



 
 
 

ix 
 

Figure 3.14 Responses of four layers cylindrical shell with crack………………………42 

Figure 3.15 Responses of four layers cylindrical shell with crack……………………...43 

Figure 4.1 Central deflections for single layer shell……………………………………..46 

Figure 4.2 Bulging factor for single layer shell………………………………………….48 

Figure 4.3 Central deflections for two layers shell……………………………………...50 

Figure 4.4 Central deflections for two layer shell with different ply angles…………….50 

Figure 4.5 Bulging factors for two layers shell………………………………………….51 

Figure 4.6 Comparison of bulging factors for two layers shell with different ply angles.52 

Figure 4.7 Central deflections for four layers shell……………………………………..53 

Figure 4.8 Central deflections for four layers shell with different ply angles…………..54 

Figure 4.9 Bulging factors for four layers shell………………………………………….55 

Figure 4.10 Bulging factors for four layers shell with different ply angles……………..55 

Figure 4.11 Comparison of bulging factors for different number of layers………….......56 

Figure 4.12 Single layer shell with free-free boundary conditions………………………58 

Figure 4.13 Comparison of bulging factors for two layers with free-free boundary 

conditions………………………………………………………………………………..59 



 
 
 
x 

 

Figure 4.14 Bulging factors for four layers with free-free boundary conditions……...60 

Figure 4.15 Bulging factors for different layers with free-free boundary conditions...61



 
 
 

1 
 

Chapter 1   Introduction  

 

1.1   Background 

Aircraft fuselage body undergoes pressurization and depressurization while it takes off 

and lands respectively. This cyclic variation in pressurization can cause stresses 

development over skin of fuselage of aircraft which may lead to crack existence. Crack 

developed is external crack and existence of crack may lead to catastrophic accident.  

This chapter begins with a literature survey of existing work available and 

presentation of objectives of the present investigation. The final section is concerned with 

the organization of this thesis. 

 

1.2   Geometrically Nonlinear Analysis of Laminated Composite Shell Structures  

As composite materials offer tremendous advantages and the percentage of composite 

materials applied in aircrafts increases. Many studies have been performed. The 

development of reliable composite materials is one of the most important researches in 

the field of aircraft design and production. In this section shell structures without crack 

and undergoing large deformation modeled by the finite elements are reviewed. 

Shear-flexible quadrilateral shell finite elements of 8 and 12-nodes developed by 

Noor and Mathers [1.1] were used for analyzing geometrically nonlinear behavior of 
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laminated shells.  Triangular finite elements that have 6 nodes each [1.2] were developed 

and used for shear deformation of laminated shells. Reddy, Chang and Chao [1.3] also 

analyzed large and geometrically nonlinear deformation of shell structures with a doubly-

curved shear-deformable shell element. Similar work were reported by Saigal, Kapania 

and Yang[1.4], Naidu and Sinha [1.5],  and Rothert and Dehmel [1.6]. 

 Lin, Farfad and Beaulieu [1.7] used a shell element for nonlinear analysis of 

composite bridges, in which small elasto-plastc strains and updated Lagrangian 

formulations were used for large displacement and rotation of the structures.  Flat shell 

element based on free-formulation finite element concept was developed and 

geometrically nonlinear composite shell was analyzed for validation of the accuracy of 

new element by Madenci and Barut [1.8].  Zhu [1.9] analyzed sandwich and composite 

shells with the use of a curved triangular shell element. The latter can be used for linear 

and nonlinear in-plane shear behavior.  

 In the later part of 1990’s, To and Wang [1.10] developed several hybrid strain or 

mixed formulation-based flat triangular composite shell finite elements to predict 

geometrically nonlinear responses of large deformed laminated composite plate and shell 

structures under transient excitations. The elements applied the incremental form of 

Hellinger-Reissner variational principle and updated Lagrangian description have 

advantageous features such as simplicity, elimination of shear locking, accuracy, 

efficiency, and capability of dealing with large deformation of finite strain and finite 

rotation. Two of these elements are rank sufficient and able to provide correctly the six 

rigid body modes. 
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1.3            Cracked Shell Structures and Bulging Factor   

In parallel to the studies of laminated composite shell structures without crack, cracked 

shells were investigated by Folias [1.11-1.12] in 1965. He developed coupled singular 

integral equations for stress intensity factor λ for longitudinal cracks in pressurized 

shallow cylindrical shell. Later, Copley and Sanders [1.13] using linear thin shell theory 

obtained solutions for cylindrical shell with crack and internal pressure. They also 

investigated elastic behavior of a cracked cylindrical shell with the use of shallow shell 

theory and mentioned that their approach is sufficient for short cracks. Erdogan and 

Kibler [1.14] solved the integral equations and presented stress intensity factor λ values 

evaluated in the range of 0 to 8.  

 A popular measure and design parameter of isotropic cracked shell structures is 

the so-called bulging factor which has various definitions. Generally, the bulging factor is 

defined as the ratio of the stress intensity factor in a shell with a crack to the stress 

intensity factor in a flat plate of the same material, thickness, crack length and in-plane 

remote stress acting perpendicular to the crack line [1.15]. Cheryl, Young and Starnes 

[1.15] computed and compared bulging factors. 

Ansell [1.16] reported that bulging factors involved with geometrically nonlinear 

deformation. Jeong and Tong [1.17], and Bakuckas et. al. [1.18] developed empirical 

equations for the bulging factor. Rose et. al. [1.19] discovered curvature induced 

coupling between the membrane making the local region around the crack to deform out 

of plane. They also showed that the bulging factor depends upon parameters, such as 
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shell geometry, loading condition. Rhaman et. al. [1.20] examined the effect of crack 

length, applied pressure and stiffening elements on bulging factors. They concluded that 

for longer cracks bulging factors vary nonlinearly with the presence of internal pressure. 

Ayari et al. [1.21] had found out that by applying layer of plyisocyanurate (PIR) 

on inner side of the shell structure near the crack the bulging factor can be reduced by 

45% depending upon shell configuration, foam thickness and internal pressure. They also 

concluded that bulging factor increases with increase in crack length but can be reduced 

efficiently with the application of foam layer. 

 Recently, Fu [1.22] has evaluated central deflections for multilayer cracked 

laminated composite shell structures under internal dynamic pressure. By applying the 

flat triangular shell finite elements developed by To and Wang [1.10], a relatively 

comprehensive examination was performed on the influences of crack types and crack 

lengths. He also investigated the bulging factors for single layer cylindrical shell 

structures with various boundary conditions.  

  

1.4     Motivations and Objectives of Present Investigation 

Due to the increased use of laminated composite shells in aerospace and ship building 

industries, a significant amount of efforts has been directed at the development of 

laminated composite shell finite elements over the years. Bulging factor is a measure 

established for cracked isotropic shell structures undergoing geometrically nonlinear 
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deformation. However, no measure similar to the bulging factor has been established for 

cracked laminated composite shell structures. 

 Therefore, the objectives of this research are (1) to investigate the dynamic 

responses of cracked multi-layer laminated composite cylindrical shell structures under 

internal pressure by applying the flat triangular laminated composite shell finite elements 

developed by To and Wang [1.10], and (2) to study and establish a measure similar to the 

bulging factor for cracked multi-layer laminated composite shell structures. To limit the 

scope of the present investigation only cylindrical laminated composite shell structures 

represented by the triangular finite elements will be considered.  

 

1.5    Organization of Thesis  

This thesis consists of 5 chapters and contents of the chapters are as mentioned below. 

Chapter 1 gives an overview about the literature for previous work done and 

motivations as well as objectives for the research. 

 Chapter 2 deals with the development of the expression for bulging factor and 

information about the composite materials. A brief introduction to the hybrid strain or 

mixed formulation-based laminated composite triangular shell finite elements is also 

provided in this chapter.  
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 Chapter 3 is concerned with finite element representation of the shell structures 

and it includes central deflections of multi-layer laminated composite shell structures 

with and without cracks. 

Chapter 4 deals with the central deflections and bulging factors of cracked 

laminated composite cylindrical shell structures under different internal pressure. 

Finally, Chapter 5 includes a summary, conclusion and recommendations for 

future research. 
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Chapter 2    Theoretical Development 

 

2.1    Introduction  

Aircrafts always carry high loads and are subjected to loading and unloading of 

passengers/goods, flight, landing and corrosion over period of time.  Thus, fatigue cracks  

may develop. Presence of cracks can be dangerous over long span of time, as they may 

lead to dangerous accidents.  Strengths of cracked areas are significantly weakened by 

stress cycles. Additionally the cracks can propagate under low and high cycles of stresses 

induced in the aforementioned loading environments.  

 To-date, a great percentage of aircraft bodies is made of composite materials for 

various reasons to be discussed in the following section. The mixed or hybrid formulation 

of the flat triangular shell finite elements to be applied in the present investigation is 

outlined in Section 2.3 while the empirical expressions for bulging factors of isotropic 

shell structures are briefly introduced in Section 2.4. An expression for bulging factor of 

laminated composite shell structures is presented in Section 2.5.  

 

2.2    Composite Materials 

A composite material is a combination of two or more distinct materials with a 

recognizable interface within them. For structural applications, the definition can be 



 
 
 

8 
 

revised to include those materials that consist of a reinforcing phase such as fibers or 

particles supported by a binder or matrix phase. 

 

2.2.1    Advantages of composite materials 

The main advantage of most composite materials is their light weight. A quick 

way to illustrate this advantage is in the strength to weight ratio. Different materials have 

different strengths. For a given design, the materials used must be strong enough to 

withstand the load that is to be applied. Usually this increases the bulk and weight of the 

parts. Another option is to change material to one that has high enough strength to begin 

with. The advantages of composite materials compared with metals in the aircraft 

construction are: longer lifecycle due to higher material fatigue resistance, corrosion 

resistance, easier maintenance, higher resistance to fire, easier material processing, 

possibility of designing more complex shapes, and lower specific weight of the material. 

 

2.2.2    Applications of composite materials 

Owing to the advantages of composite materials as mentioned in the last sub-

section, demand is increasing with their usability. Use of composite materials in 

industries such as aviation, submarine, energy, automobile, bridge, military armors, and 

medical devices and so on has been common.  

In particular, application of composite materials in aviation industries has been 

increased steadily. It is known that military aircraft has 75% of composite material while 



 
 
 

9 
 

and civilian has 60% [2.1]. The most commonly employed composite materials are 

carbon/epoxy, and graphite/titanium for aircraft wings and fuselages.  

 

2.2.3    Different types of composite materials 

Aside from natural composite materials, many man-made composite materials 

consist of two basic kinds. Weaker phase of material is called matrix which is reinforced 

by other strong and stiffer material. A layer between both of them is called the interphase 

layer. Classification of different types of composite materials is given in [2.2] (1) 

particulate which consists of particles of various shapes and sizes in a disperse manner; 

examples of particulate composite materials are concrete, glass; (2) discontinuous or 

short fiber composites which contain short fibers as reinforcing material and can be 

oriented in one direction or multi-directions; and (3) continuous fiber composites which 

are reinforced with long fibers such that they are more stiff and efficient. Continuous 

fiber composite materials can be mainly woven as multi-directional, such as cross-ply, 

angle-ply or unidirectional. Laminated composite consists of thin layers of different 

materials bonded together, like in bimetals and plywood. Figure 2.1 includes typical 

laminated composite materials [2.3-2.4]. 
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Figure 2.1   Laminated composite materials: (a) Unidirectional reinforcement, 

and (b) woven fabric reinforcement [2.3-2.4]. 

 

 

2.3 Mixed Formulation Based Three-node Flat Triangular Laminated 

Composite Shell Elements for Geometrically Nonlinear Dynamic Analysis 

To and Wang [2.5, 2.6] have developed several flat triangular laminated composite shell 

elements based on the hybrid strain or mixed formulation for geometrically nonlinear 

dynamic analysis. Each of these elements has three nodes and every node has six degree 

of freedoms (dof). The latter include three translational and three rotational dof. These 

elements have several advantages such as being capable of dealing with large 
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deformation of finite strain and finite rotation, including the drilling dof (ddof), 

elimination of shear locking and ability to represent correctly the rigid body modes. The 

updated Lagrangian formulation and the incremental Hellinger-Reissner variational 

principle were employed to develop this element. 

 Because of their exclusive use in the present investigation and in order to provide 

a basic understanding of the steps involved in the formulation and derivation of element 

matrices an outlined is presented in the following sub-sections.  

 

2.3.1    Incremental variational principle 

The incremental variational principle employed is the Hellinger-Reissner 

functional given by [2.6] , 

ுோߨ                                            ൌ   ቂሺ݁ఌሻT݁ܥ௨ െ  ଵ

ଶ
ሺ݁ఌሻT݁ܥఌቃ dV െ W                                               (2.1) 

where,  ݁ఌ
  is independently assumed strain field , ݁௨ strain due to displacement; C is the 

elastic matrix; W is work done by external force, and the superscript ࢿ and u indicate that 

the quantities are from independently assumed strain field and displacement field, 

respectively.  

For geometrically nonlinear analysis with incremental formulation and updated 

Lagrangian description, the static and kinematic variables in current equilibrium 

configuration at time  t  are known quantities. The objective at this stage is to determine 
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their unknown values in the subsequent equilibrium configuration at time t + ∆t. It can be 

shown that the incremental form of the Hellinger-Reissner functional is [2.6] 

ுோߨ߂                          ൌ ,ݑ߂ ுோሺߨ߂ ∆݁ఌሻ ൌ  ሺ ܫଵ  ଶ ܫ  ሻ ܸ݀ െ ∆ܹ ,                                  (2.2) 

where ܫଵ ൌ ሺ݁ఌሻ்ܥሺ݁߂௨ሻ  ሺ∆݁ఌሻ்ܥ ሺ∆݁௨ሻ,   

ଶܫ ൌ  െ ଵ

ଶ
ሺ∆݁ఌሻ்ܥሺ∆݁ఌሻ െ ሺ∆݁ఌሻ்ܥሺ݁ఌെ݁௨ሻ ,                                                           

in which ∆u is the vector of incremental displacement; ∆݁ఌ is the vector of independently 

assumed incremental updated Green strains; ∆݁௨
 is the vector of incremental updated 

Green “geometric” strains or incremental Washizu strains; ݁ఌ is the Almansi strain vector 

at time t which is accumulated from assumed incremental strains; ݁௨ is the vector if 

Almansi strains at time t (due to displacement), and ∆W is the work-equivalent term 

corresponding to prescribed body forces and surface traction in configuration ܥ௧ା∆୲. The 

second term on the right-hand side (RHS) of the integrand I2 is the so-called 

compatibility-mismatch can be disregarded per reported by To and Wang [2.6]. Thus, 

equation (2.2) can be reduced to  

ுோߨ߂                                                           ൌ   ଷdܸܫ െ ∆ܹ                                                                   (2.3) 

where  ܫଷ ൌ െ ଵ

ଶ
ሺ∆݁ఌሻ்ܥሺ∆݁ఌሻ  ሺ∆݁ఌሻ்ܥሺ∆ߝ௨ሻ  ௨ሻߝ∆ሺ்ߪ  ௨ߟ∆்ߪ 

்ߪ  , ൌ ሺ݁ఌሻTܥ  

is the Cauchy (true) stress vector for the current configuration, and ∆ߝ௨ and ∆ߟ௨
 are the 

linear and nonlinear parts of the incremental Washizu strain vector, respectively. 
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2.3.2    Hybrid strain formulation 

Equation (2.3) can be used to derive the element stiffness matrices for a hybrid 

strain based element. The strain field and displacement field assumed are 

                                                            ∆݁ఌ ൌ             (2.4)                                                       , ߙ∆ܲ

ݑ∆                                                              ൌ  (2.5)                                                         ݍ∆߶

where, P is strain distribution matrix, ߶ is the displacement shape function matrix, ∆ߙ is 

the vector of incremental strain parameters and ∆ݍ is the incremental nodal displacement 

vector.  

Substituting equations (2.4) and (2.5) into (2.3) and after some algebraic 

manipulations, one can show that 

ܪ                                ൌ   ܲܥ்ܲ
 ݀ ܸ,      ܩ ൌ   ܤܥ்ܲ

 ݀ ܸ, 

                                  ݇ே ൌ   ேܤ
் ேܤܲ

 ݀ ܸ,    ܨଵ ൌ   ܤ
ߪ்

݀ ܸ,                        (2.6)                         

                                                      ݇ ൌ   ்ܩ ܩଵିܪ
݀ ܸ, 

                                       ሺ݇  ݇ேሻ∆ݍ ൌ ݐሺܨ  ሻݐ∆ െ ܨଵ                                              (2.7)    

 where F is the external nodal force vector in the neighbor configuration associated with 

the ∆W term in equation (2.3), ܤ  and ܤே  are the linear and nonlinear strain-

displacement matrices, while ߪ is the matrix containing the Cauchy stress components at 
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the current configuration, ݇  is the element “linear” matrix, ݇ே   is the “nonlinear” or 

initial stress stiffness matrix and F1 is the pseudo-force vector. 

 

2.3.3    Nonlinear stiffness matrix 

The derivation of the nonlinear element stiffness matrix involved various 

important steps and can be found in [2.6]. The crucial component in the derivation is the 

incremental displacements of an arbitrary point within the element. To proceed, one 

requires the consideration of an arbitrary point within an element in the local co-ordinate 

system as shown in Figure 2.2. This arbitrary point in the local co-ordinates is defined as 

                                            ൝ 
ݎ
௧ݏ

௧ݐ

௧

 ൡ ൌ ∑  ଷߦ
ୀଵ ቐ

ݎ
௧

ݏ
௧

0
ቑ  ∑ ࢚ࣀ  ߦ ܸ

௧ ଷ
ୀଵ                                (2.8) 

where  ߦ  is the natural or area co-ordinates, ܸ
௧ denotes the director of node i at time t , 

and  ࢚ࣀ  is the co-ordinate along the director direction and satisfies 

െ݄௧

2
  ௧ߞ     

݄௧

2
 

with  ݄௧ representing the total thickness of the laminated composite shell at time t. 
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Figure 2.2   Flat triangular laminated composite shell element [2.6]. 

 

The incremental displacements of an arbitrary point within the element are 

therefore given as  

                                 ቐ 
ݑ∆
௧ݒ∆

௧ݓ∆

௧

 ቑ ൌ  ∑  ߦ
ଷ
ୀଵ ቐ

ݑ∆
௧

ݒ∆
௧

ݓ∆
௧
ቑ  ∑ ࢚ࣀ   ߦ

ଷ
ୀଵ ሺ߂ ܸ

௧ሻ                      (2.9) 

Where, the first term on the RHS of equation (2.9) are the nodal incremental 

displacements of the element at the mid-surface of the element.  
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 By employing the so-called exponential mapping, quadratic polynomials for the 

translational dof, incorporating the drilling dof (ddof), and after some lengthy algebraic 

manipulation, one can show that equation (2.9) reduces to 

                                 ቐ 
ݑ∆
௧ݒ∆

௧ݓ∆

௧

 ቑ ൌ ∑  ߦ
ଷ
ୀଵ ቐ

ݑ∆
௧

ݒ∆
௧

ݓ∆
௧
ቑ    ሻ                                            ሺ2.10ሻߠሺ߂ 

  where  

 �ሺߠሻ ൌ  ࢚ࣀ    ൦ߦ

ሺଵଵሻ߉
௧ ሺଵଶሻ߉

௧

ሺଶଵሻ߉
௧ ሺଶଶሻ߉

௧

ሺଷଵሻ߉
௧ ሺଷଶሻ߉

௧

൪ ቊ
 ߠ∆

௧

௦ߠ∆
௧ ቋ

ଷ

ୀଵ

  
0 0 పഥ
0 0 పഥݍ

െపഥ െݍపഥ 0
൩

ଷ

ୀଵ

ቐ
 ߠ∆

௧

௦ߠ∆
௧

௧ߠ∆
௧

ቑ   

and the remaining symbols have been defined in [2.6]. In the latter, equation (2.10) was 

used for the derivation of the incremental form of element linear stiffness matrix but it is 

not included here for brevity.  

  Apart from the derivation of the incremental form of element linear stiffness 

matrix the associated assumed incremental strain field is important. The assumed 

incremental strain field is in close analogy to the assumed strain field in linear analysis. It 

is defined as [2.6]  

                                            ∆݁ఌ ൌ ൜
ߝ∆

ఌ

ఌߛ∆ ൠ  ቄ∆߯ఌ ࣀ 

0
ቅ                                               (2.11)       

where  

ߝ ∆                          
ఌ ൌ  ܲ ∆ߙ,     ∆߯ఌ ൌ  ܲ Δߙ ,       Δߛఌ ൌ  ௦ܲ Δߙ௦ ,  (2.12)                         
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                                            Δߙ ൌ  ሼΔߙଵ Δߙଶ Δߙଷሽ் ,                         

(2.13a) 

            Δߙ ൌ  ሼΔߙସ Δߙହ Δߙሽ் ,    Δߙ௦ ൌ  ሼΔߙ Δ଼ߙ Δߙଽሽ்,                 (2.13b,c) 

in which the subscripts m, b and s denote the membrane, bending and transverse shear 

components of  P  in equation (2.4). 

After some lengthy algebraic manipulations and applying the definitions  

ܪ ൌ  ܲ
′ܣ் ܲ݀ܽ ,   ܪ௦ ൌ  ௦ܲ

ܥ்
்

 ܲ݀ܽ , 

௦ܪ ൌ  ܲ
்

 ܥ ௦ܲ݀ܽ ,   ܪ௦௦ ൌ  ௦ܲ
′ܧ் ௦ܲ݀ܽ , 

ܪ ൌ  ܲ
′ܤ் ܲ݀ܽ ,   ܪ௦ ൌ  ܲ

ܥ்
்

 ௦ܲ݀ܽ , 

ܪ ൌ  ܲ
′ܤ் ܲ݀ܽ ,   ܪ௦ ൌ  ௦ܲ

ܥ்
்

 ܲ݀ܽ , 

ܪ                                                         ൌ  ܲ
′ܦ் ܲ݀ܽ                                           (2.14)   

and the matrix  H  in equation (2.6) becomes 

ܪ                                                      ൌ 
ܪ ܪ ௦ܪ
ܪ ܪ ௦ܪ
௦ܪ ௦ܪ ௦௦ܪ

൩

ଽൈଽ

 .                                      (2.15) 

Similarly, matrix G in equation (2.6) can be found to be [2.6] 

ܩ                                                         ൌ 
ܩ ܩ ௦ܩ
ܩ ܩ ௦ܩ
௦ܩ ௦ܩ ௦௦ܩ

൩

ଽൈଵ଼

                                     (2.16) 
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Therefore, with the component element stiffness matrix for the ddof  ݇ௗௗ included, and 

application of equation (2.7),  the element stiffness matrix can simply be expressed as 

                                                         k = ݇  ݇ௗௗ  ݇ே.                                            (2.17)    

It should be noted that the orders of the matrices on the RHS of equation (2.17) 

are understood to be identical to that on the left-hand side (LHS) of equation (2.17).  

 

2.3.4    Element mass matrix and loading vector 

The derivation and definition of consistent element mass matrix and loading 

vector have been presented in [2.6] and they are not included in the present outline for 

brevity. However, on complement to equation (2.17), symbolically, the element 

consistent matrix is given by 

                                        ݉ ൌ ݉௧  ݉  ݉ௗ                                              (2.18) 

in which  ݉௧ and  ݉    are the translational and rotational components of the consistent 

element mass matrix, respectively. Matrix   ݉ௗ  on the RHS of equation (2.18) is the part 

associated with the ddof. 

 

2.4    Bulging Factors for Isotropic Shells 

As mentioned in Chapter 1 one popular measure and design parameter of isotropic 

cracked shell structures is the so-called bulging factor which is defined as the ratio of the 
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stress intensity factor in a shell with a crack to the stress intensity factor in a flat plate of 

the same material, thickness, crack length and in-plane remote stress acting perpendicular 

to the crack line [2.7].  

For a flat plate, the stress intensity factor is defined as [2.7] 

ܭ                                                 ൌ  ሺܹሻ                   (2.19)݂ ܽߨ√ ߪ

where ߪ is the hoop stress, ܽ  is the half of crack length, and ݂ሺܹሻ is a function to 

account for finite width effects. The hoop stress ߪ  for longitudinal cracks of shell 

structure is given as [2.7] 

ߪ                                                            ൌ  ோ


                                                             (2.20) 

where  p  is the pressure inside the shell structure, R is radius of shell and h is thickness 

of the shell.  

However, it has been pointed out by Ansell [2.8] that bulging involves with 

geometrically nonlinear deflection. Thus, the intensity factor is not a function of applied 

load. Therefore, a better approach is to include the effect of the intensity  

௦ܭ                                                                     ൌ ටாఊ


                                                  (2.21) 

where  ߛ is the strain-energy release rate,  E  is the Young’s modulus. 

 By making use of equations (2.19) and (2.21), the bulging factor is then expressed 

in [2.7] 
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ߚ                                                                   ൌ  ೞ


 .                                                    (2.22) 

 Folias [2.9] presented the first analytical expression for the stress intensity factor 

in shells, which is only valid for small value of the shell parameter  ߣ for isotropic shells. 

The shell parameter was given as 

ߣ                                                       ൌ  

 √ோ
ሾ12ሺ1 െ             ଶሻሿଵ/ସ                                    (2.23)ݒ

where ݒ is Poisson’s ratio, and the remaining symbols have already been defined in the 

foregoing.  

 The expression ߣ for larger values was provided by Erdogan and Kibler [2.10] 

using linear elastic fracture mechanics. 

Chen and Schijve [2.11] presented another expression for the bulging factor as 

ߚ                                ൌ ඨ1  ቀ ହ

ଷగ
ቁ ቀா

ோమ
ቁ ൬

.ଷଵ

ඥଵାଵ଼ఞ
൰ tanh ൬ 0.06 ቀோ


ቁ ට



ா
  ൰                   (2.24) 

in which the ratio of the remote axial stress to the remote hoop stress, ߯ ൌ ߪ/ߪ   is 

present. It is worth writting that equation (2.24) is in good agreement with the results 

presented by Riks and Ansell [2.12].  

 Jeong and Tong [2.13] presented yet another expression for the bulging factor, 

ߚ                                           ൌ ට1  0.671 ቂ ቀ ா

ఙ
ቁ ቀ

ோ
ቁ ቃ

ଶ/ଷ
                                     (2.25) 
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which was based on residual strength tests of curved panels with value of a/R ranged 

from 0.06 to 0.10.  

Bakuckas et al. [2.14] established an equation for the bulging factor using results 

from a parametric nonlinear geometrical finite element study as 

ߚ                                               ൌ 1  0.775 ቀ ா

ఙ
ቁ

ଵ/ଷ
ቀ

ோ
ቁ

ହ/
 .                                       (2.26)      

In this equation the ratio of a/R was between 0.017 and 0.18, and hoop stress level ranged 

from 3.43 ×107  Pa (5.0 ksi) to 1.37 ×108  Pa (20.0 ksi). 

 

2.5    Bulging Factors for Laminated Composite Shell Structures 

Bulging factor equations developed so far, are useful for cracked isotropic shell 

structures. However, bulging factor equation for cracked laminated composite shell 

structures subjected to internal pressure is currently not available in the open literature.  

Consequently, To [2.15] suggested to an expression for such a bulging factor applied to 

cracked laminated composite shell structures. It is based on applying the bulging factor 

equation for isotropic shell structure in which now the Young’s modulus of elasticity of 

the isotropic shell is replaced by the equivalent Young’s modulus of elasticity of the 

laminated composite shell structure.  

Specifically, it is known that the first natural frequency fn of the isotropic shell 

structure is proportional to the square root of the Young’s modulus of  
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                                                           fn  = (2.27)                                                       ܧ√ ߛ 

Where,  ߛ  is the proportionality constant and E is Young’s modulus of the material of the 

isotropic shell structure.  

Similarly, the first natural frequency of the multi-layer laminated composite shell 

structure,  ݂
 is proportional to the square root of the equivalent Young’s modulus,  ܧ

such that [2.15] 

ܧ                                                    ൌ ቀ



ቁ

ଶ
 (2.28)                                              . ܧ

In other words, by determining the first natural frequencies of the cracked 

isotropic shell structure and the cracked multi-layer laminated composite shell structure 

one can obtain the equivalent Young’s modulus of the laminated composite shell 

structure since the Young’s modulus of the isotropic shell is given. The equivalent 

Young’s modulus obtained by applying equation (2.28) can then be substituted into either 

equation (2.24) or (2.25) or (2.26) for the computation of the bulging factor of cracked 

laminated composite shell structure. 
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Chapter 3   Nonlinear Dynamic Responses of Cylindrical Shell 

Structures Without and With Crack 

 

3.1    Cylindrical Shell 

 

   Figure 3.1  Cylindrical shell [3.1]. 
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Cylindrical shell geometry shown in Figure 3.1 is studied and analyzed for the series of   

computational experiments. The shell structure presented in Figure 3.1 is one eighth 

segment of the whole cylindrical shell structure which was considered by Fu [3.1]. This 

chapter presents about dynamic responses of shell structures without and with crack. The 

shell shown in Figure 3.1 has a radius R, an axial length, La, a circumferential length, Lc, 

a wall thickness, h, and a crack length, 2a. The crack orientation is either longitudinal 

(parallel to the global Y-axis) or circumferential (parallel to the global X-axis). The shell 

is under internal pressure of  p, which induces the internal stress ࣌h, and axial stress, ࣌a. 

 

3.2    Laminated Cylindrical Shell Structure by Finite Element Approach 

Hybrid laminated composite triangular shell elements (HLCTS) were used to analyze 

laminated composite shell structures by To and Wang [3.2] and resulted in finding out 

characteristics of HLCTS which are reflecting in dynamic responses of laminated 

composite structures. Every of the HLCTS having three nodes and each nodes has six 

degrees of freedom (dof) [3.1]. The latter include three translational and three rotational 

dof. The HLCTS are simple, capable of dealing with large deformation of finite strain 

and finite rotation.They include the so-called drilling degree of freedom (ddof), and are 

free of shear locking. 
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Figure 3.2  Laminated cylindrical shell structure with finite element representation [3.1]. 

 

Response of cylindrical composite shell structure was analysed with the use of typical 

model by using the finite element model as shown in Figure 3.2. Crack is present along 

the edge of AD in Figure 3.2. Area, where crack is present, is modified and refined with 

fine mesh to get more accurate result. Nodes of upper layer and nodes of lower layer have 

one to one correspondence within each other, which means, a similar mesh pattern is on 

both sides of the cylindrical laminated composite shell. 
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3.3  Finite Element Models of Laminated Cylindrical Panels without Crack and 

under Internal Pressure  

First part of this section discusses about two layers composite shell structure for 

validating results previously derived. Secondly, this section talks about the multilayer 

cylindrical shell structure displacement. And next, cylindrical panel deflection with the 

different ply angles and how they vary with the different ply angles with comparison. 

 

3.3.1    Two layers laminated composite cylindrical panel  

In order to provide the foundation of the present investigation, in this section, previous 

results provided by To and Wang are validated [3.2] and discussion by Fu [3.1] in his 

dissertation are reproduced for the two layers cylindrical panel.  

The specifications of the cylindrical panel are as mentioned below: 

Cylindrical radius, R= 2.54 m, 

arc length, Lc = 0.508m, 

length, La= 0.508m, and 

total thickness, h= 0.00127m. 

Graphite-epoxy material was used for the cylindrical laminated composite shell structure 

and material properties are as mentioned below: 
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E1  = 1.3790 × 1011 N/m2  (2.0×107 psi), 

E2= 9.8599 × 109 N/m2 (1.43×106 psi), 

G12= G13= G23= 5.2402 × 109 N/m2 (0.76×106 psi), 

Poisson’s ratio= 0.3, and 

density ρ = 1562.2 kg/m3 (5.644× 10-2 lb/in3). 

Since, cylindrical panel is studied here, only one eighth of whole cylindrical panel 

is applied due to geometrical symmetry. The boundary conditions imposed on the whole 

shell structure are clamped on all sides of the panel. Thus, applied boundary conditions to 

the one eighth panel are: V=Θx= Θy= Θz= 0.0, at CD, U =Θx= Θy= Θz=0.0 at AD due to 

the symmetry boundary conditions imposed side AB and BC have a clamped boundary 

condition. Shear correction factors and step applied internal pressure to cylindrical panels 

are k4= k5=(5/6)1/2  and p = 6895.0 N/m2 (1.0 psi).   
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Figure 3.3  Response of the two layer cylindrical shell: 

-, Present result; ., Ref. [3.1]. 

 

Figure 3.3 shows the transient response of the cylindrical shell structure along Z direction 

with ply angle [0/90] at point D shown in Figure 3.2.  In Figure 3.3, results are 

reproduced which confirms the those obtained by To and Wang [3.2]. Trapezoidal 

integration scheme is applied with the  time step  0.05 ms.  
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It is observed that the present results are identical to those of To and Wang [3.2] 

which agree very well with those obtained by Wu and Yang [3.3]. This confirmation 

check was used as a basis for continuous research with the FEM model and mesh. 

 

3.3.2    Four layers laminated composite cylindrical panel  

As shown earlier results in Figure 3.3, same trapezoidal integration scheme with 

HLCTSqd elements were used for evaluating transient response of four layer panel 

without crack. Geometrical specifications and boundary conditions were kept the same as 

the two layer laminated cylindrical panel.  The ply angles within four layers are restricted 

to [0/45]sym for results shown in Fig 3.4. 

Figure 3.4 shows the transient response of four layer cylindrical composite shell structure 

and these results are similar to those obtained by To and Wang [3.2], which shows central 

deflection with the presence of internal pressure. 
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Figure 3.4  Response of the four layer cylindrical shell. 

 

3.3.3    Eight layers laminated composite cylindrical panel  

Figure 3.5 shows the transient response of central deflection of eight layer composite 

shell structure with the clamped boundary conditions on all sides with the similar 

physical dimensions of cylindrical shell and material properties as used for the two and 

four layer studies presented in the foregoing. The ply angles for the eight layers were 

maintained [0/45/45/0]sym. 
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Figure 3.5  Response of the eight layer cylindrical shell 
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3.3.4    Comparison of various ply angles arrangements for two layer case  

Transient response of two layer composite shell varies as ply angle varies, which is seen 

in the Figure 3.6. In this case, all parameters are kept identical to those considered 

previously but only ply angles are varied. Angle for first layer is kept at 30 degree for all 

the cases and ply angle between two layers are varied. 

 

 

Figure 3.6  Responses of two layers with first angle constant: 

- - , [30/0]; … , [30/45]; -, [30/60]; - . - .. , [30/90]. 
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Figure 3.6 shows keeping one layer angle constant and varying another angle of ply, 

however Figure 3.7 shows the displacement with varying both ply angles between two 

layers. It can be easily determined that response of cylindrical shell displacement varies 

with ply angles within laminas. As shown in Fig 3.7, the case of ply angle (30,90) has 

maximum displacement of 1.75 mm whereas that for ply angle (30,45) shows 2.5mm. 

 

 

Figure 3.7  Responses of two layers with different ply angles: 

- -, [15/60]; - . - ., [30/90]; . . , [45/15]; - , [90/30]. 
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3.3.5     Comparison of various  ply angles arrangements for four layer case 

Keeping all boundary conditions and geometrical parameters identical to those studied in 

the foregoing, the four layer laminated composite shell structure was tested under 

presence of internal pressure and its displacements were recorded as shown in Figure 3.8.  

Significant changes in displacement can be seen with changing ply angles. It can be 

noticed that maximum displacement for the case with [0/30]sym  is 1.75mm, whereas 

2.25mm is for  that with  [30/60]sym condition.  

 

Figure 3.8  Responses of four layers with different ply angles: 

- , [0/30]sym ; .. , [30/60]sym; - -  , [45/90]sym. 
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3.4    Finite Element Models of Cracked Laminated Composite Cylindrical Panels 

under Internal Pressure  

This section is concerned with the studied of the central deflection of the crack behavior 

with the presence of internal pressure. Discussion is made first for single layer and then 

multilayer cases for better understanding. Geometrical parameters are as mentioned 

below: 

radius of cylindrical shell = 1.98m, 

skin thickness = 1 mm, 

composite material used = carbon/epoxy (AS4/3501-6), 

E=1.47×1011 N/m2 (2.13 ×107psi), 

Poission’s ratio υ12 = 0.27,  and density ρ = 1600.0kg/m3 (5.8×10-2 lb/in3). 

The cylindrical shell considered, is the same as that used for the results without 

crack presented above.  

It may be appropriate to note that in the numerical experiments computed results 

based on the time step size of  ∆t = 0.01 ms were found to be very close to those with ∆t 

= 0.005 ms.  Hence, in order to save computational time, all computational experiments 

were conducted ∆t = 0.01 ms. 
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3.4.1    One layer cracked laminated composite cylindrical panel  

In order to study the multilayer laminated composite shell structures, the one layer model 

for every case is considered first so as to provide a basis of reference to the multilayer 

results. This single layer case has been studied by Fu [3.1]. 

 

Figure 3.9  Response of the one layer cylindrical shell with crack. 
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Crack is present in longitudinal direction to the cylindrical shell, where ratio of two times 

crack length to the whole length of cylinder (2a/La) and ratio of crack width to crack 

length, b/a considered to be 0.375 and 0.1 respectively. It is noted that the computed 

results are identical to those presented in [3.1]. For this case, the first natural frequency 

was found to be 2227 rad/s which is identical to that found by Fu [3.1]. 

 

3.4.2   Two layers cracked laminated composite cylindrical panel  

Geometrical shape and boundary conditions are kept constant as those mentioned in Sub-

section 3.4.1. However, internal pressure used is limited to 101,325 Pa (14.7 psi) and 

material used for cylindrical shell was Carbon/Epoxy (AS4/3501-6). Thus, the material 

properties are: 

E1=1.47×1011 N/m2 (2.13 ×107psi), 

E2=10.3×109 N/m2 (1.50 ×106psi), 

G12= G13= G23=7.0×109 N/m2 (1. 0 ×106psi), 

Poission’s ratio υ12 = 0.27, and 

density ρ = 1600.0kg/m3 (5.8×10-2 lb/in3). 

Figure 3.10 shows the central deflection of the two layer cracked shell structure 

with ply angle between the composite materials being 0 and 45o.  
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Figure 3.10  Response of the two layer cylindrical shell with crack. 

 

Figures 3.11 and 3.12 shows result for the central deflection of the cracked shell structure 

with different ply angle arrangements and under internal pressure. Clearly, with different 

ply angles the central deflections are very much different. In Figure 3.11 it seems that the 

larger the difference of the angle between the plies the more stiff the structure becomes 

since the central deflection is reduced. Specifically, in Figure 3.11 the [0/90] case is the 

most stiff one. 
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Figure 3.11  Responses of two layer cylindrical shell with crack: 

- . - .,[0/30]; - , [0/45]; - -, [0/60]; … ,[0/90]. 
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Figure 3.12  Responses of two layer cylindrical shell with crack: 

-, [0/60]; - - , [30/45]; . . , [60/30]; - . - . , [90/60]. 

 

 

3.4.3    Four layer cracked laminated composite cylindrical panel  

This is the case with ply arrangement as [45/60]sym. All boundary conditions, geometric 

parameters and loading conditions are similar to those in the previous section. It can be 

noticed that total thickness of the shell structure is kept constant irrespective of the layers. 

The material properties are:  
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E1 = 1.47×1011 N/m2 (2.13 ×107psi), 

E2 = 10.3×109 N/m2 (1.50 ×106psi), 

G12 = G13 = G23 = 7.0×109 N/m2 (1. 0 ×106psi), 

Poission’s ratio υ12 = 0.27, and 

density ρ = 1600.0kg/m3 (5.8×10-2 lb/in3). 

The crack length to axial length ratio is 2a/La = 0.375 and ply angle arrangement 

considered is [45/60]sym.  

 

Figure 3.13  Response of four layer cylindrical shell with crack ply arrangement [45/60]. 
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Figure 3.14  Responses of four layer cylindrical shell with crack: 

-, [0/30]sym; - - , [0/45]sym; . . , [0/60]sym; - . - . , [0/90]sym . 

 

Figure 3.13 shows results for the four layer laminated composite shell structure with ply 

angle arrangement of [45/60]sym . Keeping geometrical parameters and other properties 

constant, but only changing ply angles within layers, results of various ply angle 

arrangements were plotted against time in Figures 3.14 and 3.15. 
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Figure 3.15  Responses of four layer cylindrical shell with crack: 

- , [0/45]sym; . ., [30/60]sym; - . - .  , [45/30]sym; - -  , [90/60]sym . 
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Chapter 4   Bulging Factors for Shell Structures with Crack 

  

4.1     Introduction 

Bulging factors for cracked isotropic shell structures introduced in Chapter 2 where an 

approach for the determination of bulging factors for cracked laminated composite shell 

structures proposed by To [4.1] was also presented. To limit the scope of the 

investigation, in this chapter, only central deflections and bulging factors for laminated 

composite cylindrical shell structures are presented and discussed. Behaviors of cracked 

shell structures with respect to different internal pressures as well as different ply angles 

are shown. Internal pressure is varied and limited to the theoretical limit for atmosphere 

of 0.1013565 MPa (14.7 psi). 

The computed results presented in this chapter, are concerned with the cylindrical 

shell structure representing Airbus A-320 [4.2] of radius 1.98m, length 8.00 m, and 

thickness 1.00 mm. This is the same shell structure investigated in [4.3]. The composite 

material used for the study was Carbon/Epoxy (AS4/3501-6). Two sets of boundary 

conditions are included in this chapter. The first set is identical to that mentioned in the 

last chapter and the finite element mesh adopted is that presented in Figure 3.2. That is,  

V = Θx = Θz = 0.0 at CD, U = Θy =  Θz= 0.0 at AD, W = Θx = Θy= 0.0 at BC, and AB is 

fixed. The second set is that of free-free boundary conditions.  The results for the first set 

of boundary conditions are included in Sections 4.2 through 4.5 while those for the 
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second set are presented in Section 4.6. The same time step size employed in Chapter 3, 

∆t = 0.01ms was employed in this chapter. 

For completeness and direct comparison the next section deals with studies of an 

isotropic cracked cylindrical shell structure of the same geometrical dimensions given 

above.   With reference to Figure 3.2, the longitudinal crack is along AD and located at 

the refined element region. Thus, the central deflection referred to in this chapter and and 

in Chapter 3 is at point D. That is, the central deflection is in the Z direction at point D 

which is at the mid-point of the crack. 

  

4.2     Central Deflection and Bulging Factors for Single Layer Shell Structure 

The single layer cylindrical shell structure studied in this section is that considered in 

[4.3]. Material properties of Carbon–epoxy (AS4/3501-6) for this shell structure are: 

E1 = 1.47 × 1011 N/m 2 (2.13 × 107  psi), 

Poisson’s ratio  0.27=12ߥ, and 

density ρ = 1600.0 kg/m3  ( 5.8 × 10 
- 2 lb/in3 ). 
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4.2.1    Central deflection for single layer cracked shell structure 

The specific ratio of half crack length to radius of the shell structure considered in this 

sub-section is a/R = 0.1875. The computed results of the central deflection with internal 

pressures are presented in Figure 4.1 which is identical to that presented by Fu in [4.3]. It 

may be appropriate to note that all the deflections presented are those of the largest peak 

values at corresponding internal pressures.  The first natural frequency for this case is 

410.5 rad/s. It is seen that the central deflection increases with increasing internal 

pressure which is logical in the sense that as the internal pressure is increased the central 

point D of the crack becomes less stiff and therefore the deflection increases.  

 

Figure 4.1  Central deflection for single layer shell. 
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4.2.2    Bulging factor for single layer shell structure  

 As mentioned Chapter 2, bulging factor for single layer shell structures is related to the 

stress intensity towards the crack tip and which is defined by equation (2.27) in Chapter 

2. For a particular material the Young’s modulus of elasticity remains constant, the 

bulging factor reduces with increasing hoop stress which is directly related to the internal 

pressure, as given by equation (2.27). This behavior is clearly shown in Figure 4.2. It is 

observed that the central deflection and bulging factor of the crack have opposite trends 

in the sense that the central deflection increases with increasing internal pressure while 

the bulging factor decreases with increasing internal pressure. This observation is similar 

to that provided in [4.3]. The explanation for the bulging factor is that since the bulging 

factor is approximately inversely proportional to the hoop stress of the shell structure as 

the internal pressure increases the hoop stress also increase so that the bulging decreases. 

The reason why the bulging factor decreases as the hoop stress increases can loosely be 

interpreted as the following. When the hoop stress increases the region of the surface 

around the crack is being pulled more intensely and in effect the bulge is being reduced.    
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Figure 4.2   Bulging factor of single layer cylindrical shell. 

 

4.3    Central Deflection and Bulging Factors for Two Layers Cylindrical Shell  

This section is concerned with the central deflections and bulging factors with increasing 

internal pressure for two layer cracked cylindrical shell. The total thickness of the two 

equal layers is the same as the single layer case. This provides, loosely speaking, a basis 

for comparison to that of the single layer shell structure presented in the last section.  
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Carbon–epoxy (AS4/3501-6) was used and its properties are: 

E1 = 1.47 × 1011 N/m 2  ( 2.13 × 107 psi ), 

E2 = 10.3 × 109 N/m 2  (1.50 × 106  psi ), 

G12 = G13 = G23 = 0.7 ×109 N/m 2  (1.0 × 106  psi), 

Poisson’s ratio ν12 = 0.27, and 

density ρ = 1600.0 kg/m3  (5.8 × 10 
- 2 lb/in3) 

 

4.3.1    Central deflection  

Figure 4.3 shows the variation of central deflections with internal pressure for the [0/30] 

case. The behavior is similar to that for the single layer case in Figure 4.1 in that the 

central deflection increases with increasing internal pressure. Additional computed results 

for the two layer shell structure with various ply angles of the two layers are presented in 

Figure 4.4.  Note that the first natural frequency for this case is 203 rad/s.  
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Figure 4.3  Central deflections for two layers shell [0/30]. 

 

 

Figure 4.4   Central deflections for two layers shell with different ply angles: 

- , [0/30]; -.-. , [0/60]; - - . , [0/90]. 
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4.3.2    Bulging factors for two layers shell structure 

Figure 4.5 shows the bulging factors for ply angles [0,30] with the internal pressure. The 

behavior is similar to that of the single layer case in that it is decreasing with increasing 

internal pressure. Bulging factors for the same two layers but different ply angles shell 

structure are presented in Figure 4.6.  It can be noticed that there is not much variation 

between bulging factors with different ply angles.  

 

 

Figure 4.5   Bulging factors for two layers shell [0/30]. 
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Figure 4.6   Bulging factors for two layers shell with different ply angles: 

-.-. , [0/30]; - -, [0/60]; - , [0/90]. 

 

4.4    Central Deflection and Bulging Factors for Four Layers Shell Structure 
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(AS4/3501-6) and therefore its properties are identical to those for the two layer case 

presented in the last section. 

 

4.4.1    Central deflection  

Figure 4.7 shows the variation of the central deflections against internal pressure, when 

ply angle [0/45]sym. As expected, central deflection increases with increasing internal 

pressure. However, central deflection accelerated within internal pressure range of 15 to 

30 kPa. The first natural frequency for this case is 224.3 rad/s. Figure 4.8 shows the 

change in central deflections against internal pressure with ply angles being varied within 

the four layers. In the latter case the first natural frequency for this case is 214.3 rad/s. 

 

Figure 4.7   Central deflections for four layers shell [0/45] sym. 

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120

C
en

tr
al

 D
ef

le
ct

io
n 

W
 (

m
m

)

Internal Pressure p (kPa)



 
 
 

54 
 

 

Figure 4.8   Central deflections for four layers shell with different ply angles: 

- , [0/45] sym; - . - ., [0/90] sym. 

 

4.4.2    Bulging factors for four layers shell structure 

Figure 4.9 and Figure 4.10 shows the bulging factors curve against internal pressure with 

fixed ply angles and varying ply angles respectively. Figure 4.9 represents the bulging 

factors when ply angles are kept as [0/45] sym for the four layers shell. It can be seen in 

Figure 4.10 that, change in ply angles within laminas of composite shell structure affects 

the bulging factors and this variation is significant.   
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Figure 4.9   Bulging factors for four layers shell [0/90] sym. 

 

Figure 4.10   Bulging factors for four layers shell with different ply angles: 

- , [0/45]sym ; -. -, , [0/90]sym 
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4.5    Comparison of Bulging Factors for Shells with Different Numbers of Layers 

Figure 4.11 shows the bulging factors against internal pressure. It can be noticed that, 

bulging factors vary with the number of layers in the laminated composite cylindrical 

shell structures. As shown in this figure, there is drastic reduction in the bulging factor 

from single layer to the two layer case.  

However, very small difference in the bulging factors occurred between the two 

and four layers cases.  

 

Figure 4.11   Comparison of bulging factors for different number of layers: 

-.-., single layer; - -, two layers [0/90]; - , four layers [0/90]sym. 
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4.6   Bulging Factors for Cracked Laminated Composite Shell Structure with Free- 

        Free  Boundary Conditions 

Results discussed so far, were based on the clamped-clamped boundary conditions. In 

this section another set of boundary conditions is included. Aside from the boundary 

conditions all other geometrical and material properties are similar to those for the 

clamped-clamped boundary conditions cases. 

 

 4.6.1    Single layer shell structure with free-free boundary condition 

Figure 4.12 show the bulging factors for the single layer cracked shell structure with free-

free boundary conditions for different internal pressure. It can be clearly seen from the 

figure that the bulging factor reduces with increasing internal pressure. The reduction in 

the bulging factor is more pronounced in the range of pressure between 10 and 30 kPa 

while its rate of reduction is less pronounced in the range between 60 kPa and 100 kPa. It 

may be appropriate to note that for this case the first natural frequency for this case is 

39.6 rad/s. 
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Figure 4.12  Single layer shell with free-free boundary conditions. 

 

 

4.6.2    Two layers shell structure with free-free boundary conditions 

Two layers cylindrical shell structure with free-free boundary conditions and different ply 

angles are considered in this sub-section. The computed results are presented in Figure 

4.13.  Note that the results for ply angles [0/90] show approximately a 10% higher 

bulging factor than that for those of ply angles [0/30]. Note that the first natural 

frequency for the case with [0/90] is 16.93 rad/s while that for the [0/30] case is 13 rad/s. 
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Figure 4.13   Comparison of bulging factors for two layers with free-free boundary 
conditions: 

-  , [0/30]; - - , [0/90]. 
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However, the rate of change of the bulging factor is higher within internal pressure range 

of 10 to 25 kPa. Results of ply angle arrangement [0/30] show a 15% reduction of the 

bulging factor compared with those for ply angle arrangement [0/90]. It should be 

mentioned that the first natural frequencies for the [0/30] and [0/90] cases are found to be 

14.52 and 20.84 rad/s, respectively. 

 

 

Figure 4.14   Bulging factors for four layers with free-free boundary conditions: 

-  , [0/30]sym; - - , [0/90]sym. 
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4.6.4    Comparison of shell structures with free-free boundary conditions 

With the bulging factors presented in the foregoing sub-sections, it is now convenient to 

compare all the cases in a single figure. The latter is Figure 4.15.  It can be observed that 

average bulging factors for the two layers cases are reduced by as much as 53% 

compared with those for the single layers while those of the four layers cases are 

decreased by about 39%. 

 

 

Figure 4.15   Bulging factors for different layers with free-free boundary conditions: 

-  , single layer; -.-. , two layers [0/90]; - - , four layers [0/90]sym. 
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Chapter 5  Concluding Remarks and Recommendations for Future 

Work 

 

5.1   Introduction 

In this chapter, summary and concluding remarks of the present research conducted are 

presented. Recommendations for future work are included in Section 5.3. 

  

5.2   Summary and Concluding Remarks 

In this investigation of the geometrically nonlinear responses and bulging factors of 

cracked laminated composite cylindrical shell structures subjected to internal pressure are 

studied and analyzed.   

 In Chapter 1, literature survey was done not only for non-cracked cylindrical 

laminated structures but also for deflection of cracks in pressurized shell structures. 

Intensive survey shows that there is very limited work reported regarding the dynamic 

responses and bulging factors of the cracked cylindrical shell structures.  There is no 

work, however, on bulging factors for laminated composite shell structures although 

composite materials are intensively used for different parts of aircrafts. Therefore, the 

major focus was given to the computation of dynamic responses of central deflections of 

the cracks and bulging factors of laminated composite shell structures.    
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 Chapter 2 includes the theoretical development of the approach to solving for the 

dynamic responses and bulging factors of laminated composite shell structures. Bulging 

factors for isotropic shell structures from previous work reviewed in Chapter 1 were 

introduced and highlighted in this chapter. 

Since laminated composite materials are widely used in the aircrafts, a brief 

overview of composite materials and their descriptions is mentioned in this chapter. 

Types of composite materials are also mentioned. Advantages of different composite 

materials are discussed. The shell elements used in this research, hybrid strain-based 

laminated composite triangular shell finite elements (HLCTS) which were developed by 

To and Wang are briefly described and explained. These elements have several 

advantages such as, capability of dealing with large deformations.  

 Finite element models for non-cracked and cracked cylindrical shell structures are 

illustrated in Chapter 3. Central deflections were obtained for two layers, four layers and 

eight layers cylindrical composite non-cracked shell structures to study their differences. 

It can be also mentioned that for non-cracked shell structures not only number of laminas 

but also ply angles have important influence. Central deflections for the cracked shell 

structures are presented in the later part of this section. Cracked shell structures with 

single layer, two layers and four layers were studied. During the study of two layers or 

multilayer cracked shell structures, ply angles within laminas are varied and differences 

can be seen in the figures presented. It can be seen that even keeping the ply angle for the 

first lamina constant and changing the second ply angle also makes significant change in 

the central deflection.  
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 In Chapter 4, central deflections and bulging factors for single and multilayer 

laminated composite shell structures when internal pressure varied are presented. For the 

cases with fixed-fixed boundary conditions, central deflections increase with increase in 

internal pressure, whereas bulging factors decrease with increasing internal pressure. It 

can be noticed that central deflections vary as ply angles change within the laminated 

composite shell structure even though the trend of central deflection increases with 

increasing internal pressure remains the same.  

For the aforementioned cases, bulging factors reduces with increasing internal 

pressure. It should be noted, however, that the ply angle plays a significant role. Bulging 

factors for the two layers and four layers with different ply angles show little variation. 

Bulging factors shows 48% reduction with comparison to the two layers cylindrical shell 

structure, whereas, the four layers shell structure shows 55% reduction. Variation in 

bulging factors for two layers and four layers shows 6 to 7% reduction.  

Bulging factors for cracked laminated composite cylindrical shell structures with 

free-free boundary conditions were obtained and discussed. As mentioned above the 

trend of decrease of bugling factors remains the same for free-free boundary conditions. 

However, in these different boundary conditions, reduction in bulging factors are 72% 

and 63% for two layers and four layers, respectively.  

5.3   Recommendations for Future Work 
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 First, the results of the investigation presented in the foregoing are concerned with 

the same crack type and size for single layer and multi layers. Therefore, bulging factors 

for different crack types and sizes can be examined. 

 Second, crack propagation can also be included in the future studies as stress 

intensity at cracked location is higher which may tend to propagate the crack in different 

direction.   

 Third, bulging factors for multi-cracks can be studied for laminated composite 

shell structures, since in practice aircrafts can have multi cracks.  

 Fourth, computed results presented in the foregoing obtained by applying the 

finite element method should be verified by experiments. 

 Fifth, the internal pressure applied in the present investigation can be replaced 

with explosive internal or external pressure to simulate internal or external explosion in 

or outside the aircraft. 
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