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Quantum entanglement of anisotropic magnetic nanodots
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Anisotropic magnetic nanodots are promising physical realizations of qubits for quantum computing at finite
temperature owing to their well-separated low-lying energy levels and scalability. The entanglement of two
interacting magnetic nanodots is investigated and shown both analytically and numerically to be resonantly
dependent on their interaction strength and on differences in their properties. These results provide criteria for
fabricating and coupling magnetic nanodots so that their low-lying eigenstates can be significantly entangled.

DOI: 10.1103/PhysRevA.70.062307 PACS number(s): 03.67.Mn, 75.10.Jm, 85.35.Be

Recently [1], mesoscopic magnetic particles have been
analyzed as potential qubits for quantum computing and their
properties have been compared to DiVincenzo’s criteria[2]
for practical quantum computing devices. These nanometer-
sized particles have large magnetic moments, making them
easier to produce and to measure than other spin-based sys-
tems. They also have well-spaced energy levels owing to
their intrinsic magnetocrystalline anisotropy, making them
feasible for quantum computing at temperatures of the order
of 10 K. Self-assembly of magnetic nanostructures has been
shown to be a viable fabrication technique[3]. In addition,
networks of single-domain magnetic nanodots have been
shown experimentally to be capable of performing logic op-
erations at room temperature and to have significant advan-
tages over current microelectronic technology[4]. While
magnetic fields can be used to control the state of a single
magnetic dot, pairwise entanglement of such dots is essential
to construct two-qubit quantum gates[5]. However, such
pairwise entanglement has not yet been analyzed in detail.

We examine here the entanglement of a pair of nanomag-
nets and its dependence on the magnitudes of their intrinsic
spins, magnetic anisotropy parameters, and exchange cou-
pling J. We show that the pairwise entanglement of ferro-
magnetic nanomagnets is maximal in two cases:(i) when the
nanomagnets have identical properties—i.e., identical spins
and magnetic anisotropies—and(ii ) when their exchange
coupling parameterJ is given by the ratio of the differences
of their magnetic anisotropies to the differences of their
spins. (Practical means for tuningJ are discussed below.)
The pairwise entanglement of two mesoscopic magnets de-
creases signficantly when their properties do not satisfy these
conditions. Such behavior is very different from the pairwise
entanglement of pure Heisenberg spin systems(see, e.g.,
[6]).

A magnet possesses a magnetocrystalline anisotropy if its
magnetic energy depends upon the angle between its magne-
tization direction and the crystal axes. Since the magneto-
crystalline anisotropy necessarily involves spin-orbit cou-
pling (in addition to crystal-field interactions and to
interatomic exchange), one may exploit the strong spin-orbit
interaction in many heavy metal atoms to tune the anisotropy
over several orders of magnitude[7,8]. For example, the
low-temperature anisotropy field of certain rare-earth com-
pounds is about 50 T.

We consider two nonequivalent interacting magnetic nan-
odots or clusters with total spinsS andS8. Fabricated meso-
scopic objects tend to have imperfections, and it is important
to understand the effects of their nonequivalence on the sys-
tem’s quantum properties. As we shall show, small differ-
ences in the properties of the nanodots can have a major
effect on the extent to which they can be entangled. The spin
magnitudesS andS8 are proportional to the dot size and can
also be written asS=NS0 andS8=N8S08, whereS0 andS08 can
be interpreted as the numbers of spins per atom andN andN8
as the numbers of atoms per dot.(More exactly,S0 andS08 are
the spins per unit volume, whileN and N8 are the dot vol-
umes divided by the unit volume.)

We write the single-dot spin Hamiltonian as[7]

H0 = −
KuN

3S2 s3Ŝz
2 − Ŝ2d. s1d

The uniaxial anisotropy constantKu [measured in tempera-
ture units(K)] reflects the chemical composition and crystal
structure of the dots[9]. Since the anisotropy energy can be
written asEsSz=0d−EsSz=Sd;KuN, Ku is equal to the an-
isotropy energy per unit volume. The energy difference be-
tween the lowest two eigenvalues of Eq.(1)—i.e., EsSz=S
−1d−EsSz=Sd, is KuNs2S−1d /S2—thus allowing one to con-
trol the energy level spacings by adjusting the dot parameter
Ku. Since we consider two different dots, we must deal with
two sets of parameters and unequal level spacings.

The two dots are coupled by a Heisenberg-type exchange
interaction characterized by the coupling constantJ. The to-
tal two-dot Hamiltonian is then

H = H0sKu,N,Ŝd + H0sKu8,N8,Ŝ8d − JŜ · Ŝ8. s2d

The exchange interaction may originate from various physi-
cal mechanisms—e.g., from the net Ruderman-Kittel-
Kasuya-Yosida(RKKY ) interaction with a nonferromagnetic
metallic substrate or medium[9,10]—or it may be realized
by means of a nanojunction(e.g., a ferromagnetic wire
bridging the dots and having a diameter of a few interatomic
distances yields an effective exchange coupling that depends
on the wire’s length and cross sectional area), or as proposed
in [1], by coupling neighboring magnetic dots through induc-
tive superconducting loops, where the couplingJ depends on
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the current induced in the loop by one spin and the field
produced at the site of the other. A key point is that these
means of introducing coupling allow one to control the value
of J, which facilitates realization of two-qubit gates, as dis-
cussed in[11].

We are primarily interested in the entanglement of two
interacting magnetic nanodots at relatively low temperatures
as physical realizations of entangled qubits. Despite the fact
that the energy spectrum of each dot comprises a ladder of
states, we consider only two states per dot: the ground state
u0l and the lowest-lying excited stateu1l. Excitations with
higher energies are important at high temperatures and in
some external field regimes; these corrections are estimated
below and shown to be unimportant for the parameters con-
sidered here.

The physical nature ofu0l and u1l depends on the values
of the parameters involved. There are two main cases: ferro-
magnetic(FM) coupling, for whichJ.0, and antiferromag-
netic(AFM) coupling, for whichJ,0. In our model, the two
cases must be treated separately. For simplicity, we assume
that the spin componentSz of the first dot is positive, so that
the statesu0l and u1l have the quantum numbersSz=S and
Sz=S−1, respectively. For the second dot, the respective
quantum numbers are eitherSz8=S8 andSz8=S8−1 (FM case)
or Sz8=−S8 and Sz8=−S8+1 (AFM case). The two-dot wave
function can be written in the Schmidt basis as

ucl = au00l + bu01l + gu10l + du11l, s3d

where uabl= ual ^ ubl. The stateucl is pure and, in general,
entangled. Well-known examples of entangled states are the
four maximally entangled Bell states, which are proportional
to u00l± u11l and u01l± u10l. In Fig. 1 we illustrate the physi-
cal meaning of the quantum states for both the FM and AFM
cases.

The matrix elements of the Hamiltonian in Eq.(2) in
terms of the Schmidt basis are easily obtained by using the

raising and lowering operators,Ŝ±=Ŝx± iŜy and Ŝ±8=Ŝx8± iŜy8.
Taking k00uHu00l as our zero-point energy, the respective
Hamiltonian matrices for the cases of FM and AFM cou-
plings are

HFM =1
0 0 0 0

0 Q8 + JS − JÎSS8 0

0 − JÎSS8 Q + JS8 0

0 0 0 S
2 s4d

and

HAFM =1
0 0 0 − JÎSS8

0 Q8 + JS 0 0

0 0 Q + JS8 0

− JÎSS8 0 0 S
2 . s5d

Here Q=KuNs2S−1d /S2, Q8=Ku8N8s2S8−1d /S82, and S=Q
+Q8+sS+S8−1dJ.

The two-level approximation that we use in the present
work—i.e., taking into account only the two lowest-lying
levels in each of the quantum dots(so that our system has
only four energy eigenstates)—requires justification. This ap-
proximation is valid provided that taking into account higher
excited states of each dot does not introduce any additional
energy eigenvalues of the two-dot system between the
lowest-energy eigenvalues of our two-level(qubit) approxi-
mation; also, the higher excited dot states should not signifi-
cantly shift the lowest eigenvalues of our two-dot system. In
order to check our two-level(qubit) approximation, we have
performed two additional sets of calculations, taking three
and four levels into account in each of the dots. The three-
level approximation results in nine energy eigenstates, while
the four-level approximation results in 16 eigenstates. In Fig.
2 we compare the calculated energy eigenvalues in the two-
and four-level approximations as functions of the anisotropy
parameter of the second dot,Ku8, when the first dot has the
parameterKu=50 K. As one sees, in the range of 25 K
,Ku8,100 K, inclusion of higher excited dot states does not
introduce any additional energy eigenvalues below the three
lowest-energy eigenvalues corresponding to our two-level
approximation, and all energy eigenvalues of the two-level
approximation are essentially unchanged in the four-level ap-
proximation. (Similar results are found for the three-level
case.) As our results below focus on the system’s ground

FIG. 1. Schematic of the low-lying basis states of two inequiva-
lent nanodots coupled by(a) ferromagnetic and(b) antiferromag-
netic couplings. The arrows denote single-dot spins; theuSzu=S
states anduSzu=S−1 states are denoted byu0l and u1l, respectively.

FIG. 2. Energy eigenstates of two interacting magnetic nan-
odots, considering, respectively, only the two and four lowest-
energy levels in each dot. Curves in bold represent energy eigen-
values occurring in both the two- and four-level approximations;
curves of regular thickness correspond to those occurring only in
the four-level approximation. The fixed parameters areS0=S08=1,
N=1000,N8=1100, andKu=50 K.
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state and two lowest excited states, especially in the region
Ku8<Ku, the results shown in Fig. 2 justify the use of our
two-level approximation for qubits.

Several measures of entanglement for two-qubit systems
have been proposed and analyzed[12–16]. We use here the
measure of entanglement termedconcurrence[12,13,17],
which is closely related to the entanglement of formation
[12]. For a two-qubit system described by the density matrix
r, the concurrence parameterC is defined as follows[12,17]:

C = maxsÎl1 − Îl2 − Îl3 − Îl4,0d, s6d

whereli si =1,2,3,4d are eigenvalues of the operator

R= rssy ^ sydr * ssy ^ syd, s7d

which in Eq. (6) are ordered so thatl1ùl2ùl3ùl4. For
the pure stateucl in Eq. (3), a simple expression forC can be
obtained[18]:

C = 2uad − bgu. s8d

We consider first the case of FM coupling[cf. Fig. 1(a)].
The ground stateu00l is separable. The first and second ex-
cited states are given by superpositions of two Schmidt basis
states,

uc1l = cosuu01l + sinuu10l, s9d

uc2l = sinuu01l − cosuu10l, s10d

and are generally entangled. Hereu is a mixing angle that
depends onS, S8, Q, Q8, andJ. By diagonalizing the inter-
action matrixHFM, one obtains

tanu = x − Î1 + x2, s11d

x ;
Q8 − Q − JsS8 − Sd

2JÎSS8
. s12d

For the statesuc1,2l in Eqs.(9) and(10) the concurrence has
a very simple form,C= usins2udu, which yields

C =
2JÎSS8

ÎfJsS− S8d − sQ − Q8dg2 + 4J2SS8
. s13d

One observes that for dots with identical properties,C=1.
For nonequivalent dots(the typical case), nonzero values of
the termsS−S8 andQ−Q8 in the denominator allow one to
maximize the magnitude of the concurrence by adjusting the
dot parameters. Specifically, for a given set of parameters
S08=S0, N, N8=N+DN, Ku, andKu8=Ku+DKu, the value ofJ
that makes the concurrence of the first two excited states of
the FM system equal to unity is

J =
Q − Q8

S− S8
=

1

S0
2S2

DKu

DN
−

NDKu − KuDN

S0NDNsN + DNdD . s14d

If sDN/Nd!1 and 1/s2NS0d!1, the desired value of the
coupling constant is given by

J <
1

S0
2S2

DKu

DN
+

1

S0

Ku8

N2D . s15d

In the antiferromagnetic case, Fig. 1(b), the ground state
is u00l with some admixture ofu11l and is thus generally
entangled, whereas the first two excited states are the unper-
turbed separable statesu01l and u10l. The concurrence of the
AFM ground state is

C =
2uJuÎSS8

ÎS2 + 4J2SS8
. s16d

One sees thatC decreases monotonically as the anisotropy
parameterKu8 increases(owing to the dependence ofS on
Ku8).

Figure 3 shows the concurrenceC as a function of the
anisotropy parameterKu8 of the second dot for the FMsJ
.0d and AFM sJ,0d couplings, for several values ofuJu.
Figure 3 shows that the larger the value ofJ, the greater is
the entanglement as measured by the concurrence. However,
because large couplings may lead to significant decoherence
effects (as discussed below), experimental realizations are
restricted to employing only small values ofJ. As Fig. 3
shows, for small values ofJ only the FM coupling results in
substantially entangled states. In fact, the FM entanglement
exhibits a resonancelike behavior with its peak located in the
vicinity of the avoided crossing(near Ku8<50 K) between
the second and third energy levels shown in Fig. 2. The
width of the peak depends on the interaction strength: as the
value of the exchange parameterJ decreases, the peak nar-
rows. For small values ofJ, a key implication of Fig. 3 is
that in order to realize significant entanglement of two FM
nanodots one must be able to fabricate them with similar
properties. Maximally entangled states may be achieved in
either of two cases:(i) the dots must be fabricated with iden-
tical properties or(ii ) the properties of the fabricated dots
(i.e., N, N8, Ku, Ku8, andJ) must satisfy the resonance condi-
tion in Eq. (14). By appropriately tuningJ, realization of
maximum entanglement for dots fabricated with similar but
not necessarily identical properties should be possible. In

FIG. 3. Concurrence of the lowest-lying entangled states as a
function of the anisotropyKu8 of the second dot. The solid and
dashed curves denote the concurrenceC for the cases of FM and
AFM couplings, respectively, for several values ofuJu: (1) 0.005 K,
(2) 0.01 K, (3) 0.025 K, (4) 0.05 K, and(5) 0.1 K. The fixed pa-
rameters areS0=S08=1, N=1000,N8=1100, andKu=50 K. A reso-
nancelike behavior of concurrence is seen for small values ofJ for
the case of FM coupling, in contrast to the case of AFM coupling.
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contrast to the FM case, the concurrence of the ground state
in the AFM case exhibits a monotonic decrease withKu8, as
shown by the dashed lines in Fig. 3.

Strong interdot exchange(i.e., largeJ) is undesirable for
two reasons. First, since dynamical manipulation of en-
tangled qubits may be realized using relatively weak time-
dependent magnetic fields(which are not considered here),
the interdot coupling strength should be comparable to the
magnitude of the interaction with such fields. Second, strong
interdot coupling may lead to spin flips inside the dots so that
S and S8 are no longer good quantum numbers, thereby in-
validating our model.

The intradot exchange coupling, however, should be suf-
ficiently strong to ensure that the single-dot quantum num-
bersS andS8 are well defined. This requires the suppression
of multiplet excitations(spin waves) inside the dots. The
energies of the lowest-lying spin-wave states scale as
Aa3/L2, whereA is the exchange or spin-wave stiffness[7]
of the dot material,a is the interatomic distance, andL is the
dot size. For typical materials[19,20] and for temperatures
significantly higher than 10 K, the maximum dot size should
therefore not exceed a few nanometers. In larger dots, low-
lying spin-wave excitations have energies comparable to the
eigenvalues ofHFM andHAFM in Eqs.(4) and (5).

The maximum temperature at which the magnetic dots
can be used as qubits is governed by the energy level spac-
ings of the dots. These in turn are determined byKu andKu8.

An upper limit for the achievable temperature is several tens
of kelvins in high anisotropy systems withKu.10 MJ/m3.
Such high anisotropies can be realized by exploiting the
strong spin-orbit coupling of 4d, 5d, and 4f electrons, both in
bulk [7,20] and in nanostructures[20,21]. Note that the typi-
cal 3d anisotropies(exploited in [22]) are much smaller:
about 0.05 and 0.5 MJ/m3 for Fe and Co, respectively.

In summary, our calculations indicate that magnetocrys-
talline anisotropy and the Heisenberg exchange interaction
can be used to realize significantly entangled states of meso-
scopic ferromagnetic dots at relatively high temperatures.
The nanodots can be produced by advanced processing
methods, and the dot parameters, such as size, magnetocrys-
talline anisotropy, and interdot coupling, can be used to con-
trol the entanglement. Explicit expressions for the entangle-
ment have been presented, and the conditions for obtaining
maximal entanglement have been specified. The effects of an
external magnetic field will be presented elsewhere.

This work has been supported in part by the Army Re-
search Office, the Department of Energy(Division of Chemi-
cal Sciences, Geosciences, and Biosciences and Division of
Materials Science), the W. M. Keck Foundation, the National
Science Foundation Materials Research Science and Engi-
neering Center Program, and the Nebraska Research Initia-
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