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JOURNAL OF APPLIED PHYSICS VOLUME 91, NUMBER 10 15 MAY 2002

Exact nucleation modes in arrays of magnetic particles

R. Skomski®
Department of Physics and Astronomy and Center for Materials Research and Analysis,
University of Nebraska, Lincoln, Nebraska 68588

Magnetization reversal in arrays of magnetic nanoparticles with perpendicular anisotropy is
investigated. Aside from domain-wall propagation effects, the reversal involves two main aspects:
the nucleation behavior of individual particles and interparticle interactions. Due to magnetostatic
self-interaction effects, the interparticle interaction cannot be reduced to a stray-field correction to
the external field. Exact nucleation fields and explicit stray-field and self-interaction contributions
are obtained for rings of equidistant dots. An exact treatment of self-interactions in various
structurally inhomogeneous but rotationally symmetric wire, sphere, and thin-film nanostructures
leads to renormalization of the uniaxial anisotropy. Finally, an approximate method to calculate
nucleation fields is discussed. 2002 American Institute of Physic§DOI: 10.1063/1.1452251

I. INTRODUCTION A(r), for example, at grain boundaries, amount to modified
boundary conditiorfst® but are of secondary importance in

The search for rigorous solutions in micromagnetism ha%he present context

been a challenge for many decadéOne reason is the in- The nucleation fieldH, investigated in this work is the

volvement of Maxwell's equations, which are difficult to field H= — Hye, at which the remanent magnetization state

treat due to their nonlocal character. Some exact solutiong . . .
. . . - Pecomes unstable. When this state is close to perfect align-
are the curling and coherent-rotation modes in perfect ellip-

soids of revolutiof and the quasicoherent bulging and ment, as is assumed in this work, we can write

clamped curling modes in nanostructuféghe problem of a

very elongated prolate spheroid remained highly controver- S(f)=¢,

sial for many years, but quite recently it was proven that no

third mode(buckling exists® wherem=m,g,+mg, is a small perpendicular magnetiza-

This work focuses on particle arrays with perpendiculartion component. Putting Eq2) into Eg. (1) yields

anisotropy. The structures, which have attracted much atten-

tion in several areas of magnetism, are of considerable tech- g _

nological interest, for example, as storage media, sensors,

and permanent magnét$.In this article we present some

exact results, discuss their ranges of applicability, and eluci-

date the relation between exact and approximate solutionsvhereF ., is the magnetostatic self-interaction contribution.

Some of the results are also of interest for systems witlTo discuss nucleation it is necessary to consider all terms

in-plane anisotropy, such as multilayé&rs. linear and quadratic in the small quantity; eigenmode
analysis of the resulting free energy then yields the sought-
for nucleation field.

Il. MICROMAGNETIC FREE ENERGY The most difficqlt part of Eq_(3) to treat is the magne-
tostatic self-interaction term, which can also be written as

Since micromagnetic processes are realized by rotations 2 ,

of the magnetization vector, it is convenient to consider the ¢ :'“OMSJ VSN vs(r )dVdV' ()

local magnetization directios(r)=M (r)/M. In terms of ms 8w [r—r’| '

the s, the relevant micromagnetic free energy is

+m(r), 2

1 L 2
Em(r)

1
A(VmM)2—K,(r)m?— EMOMSHZmZ dav

+Fmgm), ()

Substituting Eq(2) into Eq. (4) yields a number of surface

) ) and bulk terms with well-defined physical meanings. Aside

F= f (A(VS) = Ky(r)s; — (1o/2)MsHqg(s)s from terms associated with bulk magnetization inhomogene-
ities, there are two main contributions. First, theomponent
— moMgHs)dV, (D) of the local field interacts witls,. As we can see from Eq.

(2), this demagnetizing-field contribution yields a term pro-
n Portional tom(r)?. Second, there is a self-interaction associ-

field, andH is the applied fieldexternal field. For simplic-  &téd with the perpendicular magnetization component

ity, we assume thaA is constant throughout the magnet. This contribution is an integral oven(r) m(r’) or, alterna-

Inhomogeneous or discontinuous exchange interactiond/e!y; overvm(r) Vm(r’). For example, from the definition
of the curling modé,

where A is the exchange stiffnes&; is the first uniaxial
anisotropy constantly is the magnetostatic self-interactio

dElectronic mail: rskomski@unlserve.unl.edu m(r)=my(r,z)sin¢e,—my(r,z)cosge, (5)
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FIG. 1. Schematic single-particle and many-particle nucleation madges:
single particle,(b) two particles,(c) particles on a square, arid) ring of

N=6 particles. FIG. 2. Demagnetizing-field contributiongdashed lines and self-

interaction contributiongsolid lineg to the nucleation-field of ring struc-
tures with perpendicular anisotropy.

it follows that Vm(r)=0. By contrast, coherent rotation cre-
ates surface charges, becausehas a component perpen-
dicular to the surface.

nucleation is actually realized by coherent rotation along the
dumbbell axis, so that Fig.() shows an excited mode.

IV. SINGLE-PARTICLE MODES

ll. ARRAY INTERACTIONS In sufficiently small particlege.qg., very thin wires, small
The distinction between external interaction and self- spherical particles, ultrathin film patchethe nucleation

interaction fields carries over to particle arrays. Figure 1m0de is coherent, that is(r)=const. In a narrower sense,

shows rings consisting o particles(dots with perpendicu- coherent rotation is limited to structurally homogeneous el-
lar anisotropy. We assume that the particles, of volume Iips_oids of r-evolution, but in some cases it is possil:l)le to
are ellipsoidal and sufficiently small, so that the local field isd(,aflne quasicoherent modes, characterizedlinyd$=0.

homogeneous throughout each particle. Using &4 we S'E?fPfed3 shqwshsom(ta gegmetlrzles tlr? which thﬁre are ;\(ell—:a
can express the magnetization directigygi=1,...N) in etined quasiconerent modes. For the cases Shown In Fig. 3,

terms of perpendicular magnetization components. the magnetostatic energy can be incorporatedkntpgiving
Neighboring particles create a magnetostatic interaction fiel&Ise to an effective anisotropy constantktfy. The solution
which adds to the external field, but this is not the onIyOf the nonlocal nucleation problem then reduces to finding
consideration, because flux closure associated wittre- the eigenfunctions of an ordinary differential equation. In the

duces the magnetostatic self-interaction energy. Examples &PSes in Figs. ®) and 3c), the eigenfunctions are superpo-

this flux closure are shown in Figs(cl and 1d).

In the case of a ring dfl equidistant dots, the nucleation
problem has an analytic solution. Figurgs)land 1d) show
the geometry foN=4 and 6, respectively. The nucleation

mode is a macroscopic generalization of the curling mode. €z
The result of the calculation is the nucleation field,
Hy=k1 L ap oM Y 6
= =(1- +
N ,LLOMS 2( dOI) s 4 d3(C c ) () n= ez
where d is the nearest-neighbor center-to-center distance. (a) H=He,

The first two terms in this equation are the magnetocrystal-

line and shape-anisotropy fields of the dots, whereas the last

term describes the interactions between the dots.cTleen-

tribution is the interaction field created by neighboring dots,
whereas the* term reflects the self-interaction of the per-
pendicular magnetization components. Figure 2 com- (c)

paresc, and c* for rings of various size. In the limiN . - .

. . . . FIG. 3. Some inhomogeneous nanostructures exhibiting quasicoherent rota-
=, where the ring degenerates into a linear chaip, {jon. Kk,(r) symbolized by different shadings: the darker the region, the
=2.404 andc*=2c,. In the case of a dumbbelN=2, higher the anisotropy.
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sitions of exponential function’’ whereas the modes corre- the theoretical nucleation field. However, this popular rule
sponding to Fig. @) are spherical Bessel functions! does not apply to hard-magnetic wires, whd;r@,qug
For spherical symmetryr s is constant, that is, inde- and the relative nucleation-field reduction is much lower.
pendent ofm(r). One way of showing this is to divide a (Defects in hard magnets often cause deviations from the
magnet of the type in Fig. (& into shells of thickness prediction XK;/uoMs,?* but this is a different mecha-
47r2dr: the shells do not interact because the field inside anism)
homogeneously magnetized shell is zEr& Simular argu-
ments apply to other ellipsoids of revolution, such as coated!- DISCUSSION AND CONCLUSIONS
cylinders(not shown in Fig. § but then the individual shells Akey assumption in Sec. Il was that all dots are equiva-
or “tubes” have anm-dependent self-energy. lent. In reality, this equivalence is broken due to geometrical
In the limit of thin wires, the surface charges amount tononequivalence or to dot imperfections. In the general case
an effective anisotropy constaiitg(2) =Ky(2)+uoM4 (see,  of n nonequivalent small dots, the interaction problem re-
e.g., Ref. 13 In thin films, Fig. 3c), we exploit thatVB  duces to diagonalization of anX 2n matrix. For small im-
=0 at the interface between any adjacent layers and obtaiperfections, the nucleation field may still calculated analyti-
Hg=—M,(2)e,. (For homogeneous thin films, this mecha- cally, but very complicated structures require numerical
nism was discussed in Ref).4For the considered wire, method$® that go beyond the scope of this work.
sphere, and thin-film geometries, these findings can be sum- The nonequivalence of the dots becomes important when
marized in terms of the the associated change in the single-dot nucleation field is
Kei(r) =K (r)+ 2ogM3(1—3D,) f:omparable to or larger than the interaction fie_ld. The pehz_iv-
ef ! 0TS o ior of the array then changes from cooperative, as in Fig.
1(d), to noncooperativésingle particle like. It is important
to note that the mechanisms discussed in this work remain
V. APPROXIMATE SOLUTIONS operational at finite temperatures, because the energy barriers

The exact solutions discussed up to now are useful t6€SPonsible for coercivity are much larger thiggil. As a
study idealized systems, but the importance of defects wagonsequence, modes with more negative instability fields,
recognized long agbHere we consider the case where mag-Hz<—Hn, are difficult to excite thermally and therefore
netization reversal starts at the end of a wire. To investigat§Televant to the nucleation problem. _
the influence of the wire ends we exploit a quantum- In (_:onclusmn, we have _dlscussed exgct solutlons_of
mechanical analodyand apply Ritz's variational method. In nucleéation problems for particles and particle arrays with
quantum mechanics, the ground-state energy is obtained @ar.pendmular amgotropy. In rings of equidistant dots,. inter-
minimizing E=(y|H|)/(4|%). In the micromagnetic case, actions between |.dent.|cal pamgles lead to coope.rgtlve. ef-
the nucleation field is obtained by minimizing the field ex- fécts: The nucleation field contains both demagnetizing field
pression, and self-interaction contributions and can be calculated ex-
actly. Exact solutions have also been found for the magneto-
static self-energy of some inhomogeneous nanostructures.

()

whereDy is equal to 0, 1/3, and 1, respectively.

2 J(A(VM)2+ Kggm?+ 2uoMAH(r)m?)dV
N_ .

oMy fm?dv
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As a trial function we usem(r)=mg e exg—(z
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— Mg for zg— R<z<Zz, and zero elsewhere. Equatid8)
then yields

Hy

[AN?+KeruoM I 1—exp—AR)]].  (9)

- #oMs
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