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Exact nucleation modes in arrays of magnetic particles
R. Skomskia)

Department of Physics and Astronomy and Center for Materials Research and Analysis,
University of Nebraska, Lincoln, Nebraska 68588

Magnetization reversal in arrays of magnetic nanoparticles with perpendicular anisotropy is
investigated. Aside from domain-wall propagation effects, the reversal involves two main aspects:
the nucleation behavior of individual particles and interparticle interactions. Due to magnetostatic
self-interaction effects, the interparticle interaction cannot be reduced to a stray-field correction to
the external field. Exact nucleation fields and explicit stray-field and self-interaction contributions
are obtained for rings of equidistant dots. An exact treatment of self-interactions in various
structurally inhomogeneous but rotationally symmetric wire, sphere, and thin-film nanostructures
leads to renormalization of the uniaxial anisotropy. Finally, an approximate method to calculate
nucleation fields is discussed. ©2002 American Institute of Physics.@DOI: 10.1063/1.1452251#

I. INTRODUCTION

The search for rigorous solutions in micromagnetism has
been a challenge for many decades.1,2 One reason is the in-
volvement of Maxwell’s equations, which are difficult to
treat due to their nonlocal character. Some exact solutions
are the curling and coherent-rotation modes in perfect ellip-
soids of revolution3 and the quasicoherent bulging and
clamped curling modes in nanostructures.4 The problem of a
very elongated prolate spheroid remained highly controver-
sial for many years, but quite recently it was proven that no
third mode~buckling! exists.5

This work focuses on particle arrays with perpendicular
anisotropy. The structures, which have attracted much atten-
tion in several areas of magnetism, are of considerable tech-
nological interest, for example, as storage media, sensors,
and permanent magnets.6,7 In this article we present some
exact results, discuss their ranges of applicability, and eluci-
date the relation between exact and approximate solutions.
Some of the results are also of interest for systems with
in-plane anisotropy, such as multilayers.8,9

II. MICROMAGNETIC FREE ENERGY

Since micromagnetic processes are realized by rotations
of the magnetization vector, it is convenient to consider the
local magnetization directions„r …5M „r …/Ms . In terms of
the s, the relevant micromagnetic free energy is

F5E ~A~¹s!22K1~r !sz
22~m0/2!MsHd~s!s

2m0MsHs!dV, ~1!

where A is the exchange stiffness,K1 is the first uniaxial
anisotropy constant,Hd is the magnetostatic self-interaction
field, andH is the applied field~external field!. For simplic-
ity, we assume thatA is constant throughout the magnet.
Inhomogeneous or discontinuous exchange interactions

A(r ), for example, at grain boundaries, amount to modified
boundary conditions7,10 but are of secondary importance in
the present context.

The nucleation fieldHN investigated in this work is the
field H52HNez at which the remanent magnetization state
becomes unstable. When this state is close to perfect align-
ment, as is assumed in this work, we can write

s~r !5ezS 12
1

2
m~r !2D1m„r …, ~2!

wherem5mxex1myey is a small perpendicular magnetiza-
tion component. Putting Eq.~2! into Eq. ~1! yields

F5E S A~¹m!22K1„r …m
22

1

2
m0MsHzm

2DdV

1Fms~m!, ~3!

whereFms is the magnetostatic self-interaction contribution.
To discuss nucleation it is necessary to consider all terms
linear and quadratic in the small quantitym; eigenmode
analysis of the resulting free energy then yields the sought-
for nucleation field.

The most difficult part of Eq.~3! to treat is the magne-
tostatic self-interaction term, which can also be written as

Fms5
m0Ms

2

8p E ¹s~r !¹s~r 8!

ur2r 8u
dVdV8. ~4!

Substituting Eq.~2! into Eq. ~4! yields a number of surface
and bulk terms with well-defined physical meanings. Aside
from terms associated with bulk magnetization inhomogene-
ities, there are two main contributions. First, thez component
of the local field interacts withsz . As we can see from Eq.
~2!, this demagnetizing-field contribution yields a term pro-
portional tom„r …2. Second, there is a self-interaction associ-
ated with the perpendicular magnetization componentm.
This contribution is an integral overm„r … m„r 8… or, alterna-
tively, over¹m„r … ¹m„r 8…. For example, from the definition
of the curling mode,3

m~r !5m0~r ,z!sinfex2m0~r ,z!cosfey , ~5!a!Electronic mail: rskomski@unlserve.unl.edu
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it follows that¹m„r …50. By contrast, coherent rotation cre-
ates surface charges, becausem has a component perpen-
dicular to the surface.

III. ARRAY INTERACTIONS

The distinction between external interaction and self-
interaction fields carries over to particle arrays. Figure 1
shows rings consisting ofN particles~dots! with perpendicu-
lar anisotropy. We assume that the particles, of volumeV,
are ellipsoidal and sufficiently small, so that the local field is
homogeneous throughout each particle. Using Eq.~2!, we
can express the magnetization directionssi ( i 51,...,N) in
terms of perpendicular magnetization componentsmi .
Neighboring particles create a magnetostatic interaction field
which adds to the external field, but this is not the only
consideration, because flux closure associated withmi re-
duces the magnetostatic self-interaction energy. Examples of
this flux closure are shown in Figs. 1~c! and 1~d!.

In the case of a ring ofN equidistant dots, the nucleation
problem has an analytic solution. Figures 1~c! and 1~d! show
the geometry forN54 and 6, respectively. The nucleation
mode is a macroscopic generalization of the curling mode.
The result of the calculation is the nucleation field,

HN5
2K1

m0Ms
1

1

2
~123Ddot!Ms2

MsV

4pd3 ~cz1c* !, ~6!

where d is the nearest-neighbor center-to-center distance.
The first two terms in this equation are the magnetocrystal-
line and shape-anisotropy fields of the dots, whereas the last
term describes the interactions between the dots. Thecz con-
tribution is the interaction field created by neighboring dots,
whereas thec* term reflects the self-interaction of the per-
pendicular magnetization componentsmi . Figure 2 com-
parescz and c* for rings of various size. In the limitN
5`, where the ring degenerates into a linear chain,cz

52.404 andc* 52cz . In the case of a dumbbell,N52,

nucleation is actually realized by coherent rotation along the
dumbbell axis, so that Fig. 1~b! shows an excited mode.

IV. SINGLE-PARTICLE MODES

In sufficiently small particles~e.g., very thin wires, small
spherical particles, ultrathin film patches! the nucleation
mode is coherent, that is,m„r …5const. In a narrower sense,
coherent rotation is limited to structurally homogeneous el-
lipsoids of revolution, but in some cases it is possible to
define quasicoherent modes, characterized bydm/df50.11

Figure 3 shows some geometries in which there are well-
defined quasicoherent modes. For the cases shown in Fig. 3,
the magnetostatic energy can be incorporated intoK1 , giving
rise to an effective anisotropy constant ofKeff . The solution
of the nonlocal nucleation problem then reduces to finding
the eigenfunctions of an ordinary differential equation. In the
cases in Figs. 3~b! and 3~c!, the eigenfunctions are superpo-

FIG. 1. Schematic single-particle and many-particle nucleation modes:~a!
single particle,~b! two particles,~c! particles on a square, and~d! ring of
N56 particles. FIG. 2. Demagnetizing-field contributions~dashed lines! and self-

interaction contributions~solid lines! to the nucleation-field of ring struc-
tures with perpendicular anisotropy.

FIG. 3. Some inhomogeneous nanostructures exhibiting quasicoherent rota-
tion. K1(r ) symbolized by different shadings: the darker the region, the
higher the anisotropy.
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sitions of exponential functions,3,7 whereas the modes corre-
sponding to Fig. 3~a! are spherical Bessel functions.3,11

For spherical symmetry,Fms is constant, that is, inde-
pendent ofm(r ). One way of showing this is to divide a
magnet of the type in Fig. 1~a! into shells of thickness
4pr 2dr: the shells do not interact because the field inside a
homogeneously magnetized shell is zero.11,12 Simular argu-
ments apply to other ellipsoids of revolution, such as coated
cylinders~not shown in Fig. 3!, but then the individual shells
or ‘‘tubes’’ have anm-dependent self-energy.

In the limit of thin wires, the surface charges amount to
an effective anisotropy constantKeff(z)5K1(z)1m0Ms

2/4 ~see,
e.g., Ref. 13!. In thin films, Fig. 3~c!, we exploit that¹B
50 at the interface between any adjacent layers and obtain
Hd52Mz(z)ez . ~For homogeneous thin films, this mecha-
nism was discussed in Ref. 4!. For the considered wire,
sphere, and thin-film geometries, these findings can be sum-
marized in terms of the

Keff~r !5K1~r !1 1
4m0Ms

2~123Dg!, ~7!

whereDg is equal to 0, 1/3, and 1, respectively.

V. APPROXIMATE SOLUTIONS

The exact solutions discussed up to now are useful to
study idealized systems, but the importance of defects was
recognized long ago.2 Here we consider the case where mag-
netization reversal starts at the end of a wire. To investigate
the influence of the wire ends we exploit a quantum-
mechanical analogy7 and apply Ritz’s variational method. In
quantum mechanics, the ground-state energy is obtained by
minimizing E5^cuHuc&/^cuc&. In the micromagnetic case,
the nucleation field is obtained by minimizing the field ex-
pression,

HN5
2

m0Mg

*~A~¹m!21Keffm
21 1

2m0MsDH~r !m2!dV

*m2dV
.

~8!

As in quantum mechanics, the method yields comparatively
accurate eigenvalues~nucleation fields!, even if the trial
mode is only moderately realistic.

As a trial function we usem„r …5m0 ex exp@2(z0

2z)/l#, wherez0 denotes the position of the wire end andl
is the inverse localization length13 of the mode. Since the
field is not known exactly, we approximate it byDH5
2Ms for z02R,z,z0 and zero elsewhere. Equation~8!
then yields

HN5
2

m0Ms
@Al21Keff

1
2m0Ms

2@12exp~2lR!##. ~9!

Minimizing this expression with respect tol and substituting
l into Eq. ~9! yields the corrected nucleation field. In thin
wires, l'0 andHN52Keff /m0Ms. Finite-thickness correc-
tions involve the dimensionless parameterm0Ms

2R2/A and
reduceHN . In ‘‘soft-magnetic’’ wires, this correction is es-
sentially comparable to the uncorrected nucleation field, and
an empirical rule is that the coecivity is about one third of

the theoretical nucleation field. However, this popular rule
does not apply to hard-magnetic wires, whereK1@m0Ms

2

and the relative nucleation-field reduction is much lower.
~Defects in hard magnets often cause deviations from the
prediction 2K1 /m0Ms ,12,14 but this is a different mecha-
nism.!

VI. DISCUSSION AND CONCLUSIONS

A key assumption in Sec. III was that all dots are equiva-
lent. In reality, this equivalence is broken due to geometrical
nonequivalence or to dot imperfections. In the general case
of n nonequivalent small dots, the interaction problem re-
duces to diagonalization of a 2n32n matrix. For small im-
perfections, the nucleation field may still calculated analyti-
cally, but very complicated structures require numerical
methods15 that go beyond the scope of this work.

The nonequivalence of the dots becomes important when
the associated change in the single-dot nucleation field is
comparable to or larger than the interaction field. The behav-
ior of the array then changes from cooperative, as in Fig.
1~d!, to noncooperative~single particle like!. It is important
to note that the mechanisms discussed in this work remain
operational at finite temperatures, because the energy barriers
responsible for coercivity are much larger thankBT. As a
consequence, modes with more negative instability fields,
Hz,2HN , are difficult to excite thermally and therefore
irrelevant to the nucleation problem.

In conclusion, we have discussed exact solutions of
nucleation problems for particles and particle arrays with
perpendicular anisotropy. In rings of equidistant dots, inter-
actions between identical particles lead to cooperative ef-
fects. The nucleation field contains both demagnetizing field
and self-interaction contributions and can be calculated ex-
actly. Exact solutions have also been found for the magneto-
static self-energy of some inhomogeneous nanostructures.
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