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Abstract

Each year, the US Air Force Academy graduates nearly 1000 young men and women. To support the decision of

which cadets will be classified into which career fields, we describe a linear programming formulation with appealing

computational properties that enable it as the core of a decision support tool. We explore methods for measuring and

balancing cadets� class standing, Air Force career field requirements, and cadets� career field preferences in the context

of this model. Our computational experiments demonstrate the improvement of this method over previous classification

approaches, yielding more than 10% increase in the number of cadets assigned to their top career field choice and

yielding nearly a 100% reduction in the number of cadets not receiving any of their career field choices. We also explore

alternative methods for measuring cadets� career field preferences and demonstrate the positive effect of the new

measurement scheme on the overall classification. Because of the short running time of this model, it will serve as a

flexible, real-time component of the Academy�s classification process.

� 2003 Elsevier B.V. All rights reserved.

Keywords: Manpower planning; Human resources; Military; Linear programming; Network flows

1. Introduction

Each year, the United States Air Force Acad-

emy in Colorado Springs, CO graduates and

commissions roughly one thousand young men

and women as Air Force officers. Following their

commissioning, each member of the graduating
class begins his or her service in one of nearly three

dozen career fields. In past years, the process by

which each was assigned to a career field was

manually intensive and often resulted in a signifi-

cant percentage of graduates assigned to fields in

which they had little prior interest.

In this paper, we describe an optimization-

based methodology for assisting the classification
process, which is the process of matching gradu-

ating officers to career fields. The model balances

the personnel needs of the Air Force with indi-

viduals� career field preferences and their perfor-

mance during four years at the Academy. The

assignments suggested by the model provide an
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initial starting point for the Academy�s personnel
office and the Air Force Personnel Center (AFPC)

in San Antonio, TX to make the final Air Force

Specialty Code (AFSC) assignments. The speed of

the model and its ability to identify the marginal

value of alternate career field allocations make it

an attractive real-time tool to support personnel

planners and analysts.

We make the following significant contribu-
tions:

• model and implement this decision problem as a

flexible and easily-solved network flow model;

• demonstrate the performance of the model

using data from the Academy�s graduating

classes of 2001 and 2002; and

• demonstrate the benefits of collecting more de-
tailed information regarding individual job

preferences.

This paper is organized as follows. We describe

the career field classification process and create a

network flow model to aid in this process. We then

illustrate several methods for establishing trade-

offs between cadet preferences and their class rank.
To better match cadets with their top job choices,

we propose a change to the manner in which cadet

job preferences are measured. Finally, we examine

these methods when applied the graduating classes

of 2001 and 2002. Our work with the Class of 2001
provided a baseline for this multi-year project, and

our work with the Class of 2002 served as a pro-

totype and proof-of-concept of a complete classi-

fication system. This work led to a fully automated

system that was adopted and implemented by the

Air Force for initial use with the Class of 2003.

2. The Air Force career field classification process

Each fall, the Academy initiates the process of

collecting cadet AFSC preferences, ranking the

cadets relative to their peers, and assigning cadets

to career fields based on rankings, preferences, and

quotas (summarized in Fig. 1). We provide detail

on the major elements of this process.

2.1. Ranking cadets

Each fall, a central board of senior Academy

leaders convenes to provide an overall assessment

of each cadet�s performance during his or her four
years at the Academy. This assessment takes into

consideration a cadet�s academic performance,
athletic performance, and leadership involvement.

Their assessment is a combination of objective and

subjective measures that results in a score between

30 and 50 points for each cadet.
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USAFA Board Process
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AFSC Matching Process
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to AFSCs

(Section 3)
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Fig. 1. The Academy�s process of ranking its graduates and assigning them to initial career fields.
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This ‘‘AFSC board’’ consists of ten members
divided equally into two separate panels. The

composition of each panel ensures representation

from each of the Academy�s mission areas: aca-

demics, athletics, and leadership training. Each

panel evaluates between 450 and 500 cadets, de-

pending on the actual graduating class size. For a

given panel, each reviewer rates only the members

from that panel�s batch of cadets. Each panel mem-
ber assigns each cadet a score between 6 and 10, and

the overall rating is a sum of the five panel mem-

bers� individual scores. The results from each panel

are standardized and combined into a single rank-

ordered list of all cadets in the graduating class.

2.2. Classifying cadets

Cadets will enter a career field in one of two

general categories: rated and non-rated. Rated ca-

dets are those who will enter a flying career field

(i.e., pilot or navigator) and non-rated cadets are

those entering a non-flying career field. Each year,

AFPC officials determine the number of rated slots

available to the Academy. Pilot-qualified cadets

compete for those slots according to the rank they
receive from the AFSC board. In recent years,

nearly every physically qualified graduate received

a pilot slot. This report focuses upon the process of

classifying non-rated cadets into career fields.

All cadets are asked in the fall of the senior year

to pick their top six non-rated AFSCs and to

specify their preference on a 1–6 scale, with 1 in-

dicating their top choice. In past years, this clas-
sification followed a greedy matching process.

Beginning with the top ranked cadet (based upon

AFSC Board results), each cadet selected their

AFSC from the set of available AFSCs. In general,

this method assured the top of the rank ordering

of getting their top AFSC choice. The lower

ranked cadets were less likely to receive their top

choices and were increasingly likely to face a set of
AFSCs that were not among their original six

choices. Because of the limitations of this greedy

classification process, we proposed a new optimi-

zation-based process for classifying cadets to

AFSCs. This process meets Air Force needs, re-

wards the Academy�s top performers, and recog-

nizes the preferences of all cadets.

3. Optimization-based classification model

Given the described process, we offer the fol-

lowing model to assist this classification decision.

Let set I represent all non-rated cadets considered

in the selection process and set J denote all pos-

sible jobs (e.g., career fields). The value of assign-

ing cadet i 2 I to job j 2 J is denoted by cij. We
defer the important discussion of how we arrive at

this value to later sections. AFPC provides target

quotas for each AFSC. More generally, we allow

AFPC to specify lower and upper limits for each

career field, denoted by lj and uj.
Our primary decision is to determine the best

assignment of cadets to jobs (the definition of best

remains). We model this with the binary decision
variable, yij, which equals 1 if cadet i is assigned to
job j and zero otherwise. Through the use of slack

variables, we allow deviation from the upper and

lower limits for each job. The variable sþj is the

amount by which the number of cadets assigned to

job j exceeds the upper limit, uj. Similarly, s�j is the

amount by which we under-fill job j. The cost of
violating the upper and lower limits are given by
dþ
j and d�

j , respectively.

With the goal of maximizing the value of as-

signments made for the cadets, offset by the cost of

missing the Air Force�s objectives for each career

fields, we introduce the following optimization

model:

max
X
i2I

X
j2J

cijyij �
X
j2J

ðdþ
j s

þ
j þ d�

j s
�
j Þ

subject to :
X
j2J

yij ¼ 1 i 2 I ; ð1Þ
X
i2I

yij � sþj 6 uj j 2 J ; ð2Þ
X
i2I

yij þ s�j P lj j 2 J ; ð3Þ

yij 2 f0; 1g i 2 I ; j 2 J ; ð4Þ
sþj ; s

�
j P 0 and integer j 2 J : ð5Þ

Constraint set (1) forces the assignment of each

cadet to exactly one AFSC. Constraint set (2)

limits the number of cadets assigned to an AFSC

to the upper limit plus any deviation from that

limit. Constraint set (3) forces the number of ca-
dets assigned to an AFSC to the lower limit minus
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any deviation from that limit. Constraint sets (4)

and (5) enforce the assignment variables to be bi-

nary and the AFSC deviation to be integral.

While the model allows deviations both above

the upper AFSC limit and below the lower AFSC

limit, AFPC typically specifies a single target

quota for each AFSC and expects no deviation. As

such, we set the upper and lower limits to the
target quota and increase the costs of deviating (dþ

j

and d�
j ) from the target to be large so that the

model will satisfy the target quotas exactly.

To solve this 0–1 integer program, we only need

to solve its linear programming relaxation. This

model can be mapped directly to a network flow

problem, which has the property that any solution

to the linear programming relaxation will be inte-
gral and, therefore, optimal (see [1]). Because of

the mapping, the formulation also has the integ-

rality property and we need not consider methods

like branch and bound to find the optimal integer

solution. Moreover, because this is a network flow

problem, specialized algorithms (i.e., the network

simplex method) can be used to solve this model

within seconds. As such, the model�s fast run times
(i.e., seconds) make it ideal for supporting the

classification process in real-time; reducing classi-

fication iterations between the Academy and

AFPC from weeks to potentially hours.

Models of similar form have been used for

military personnel allocation, including decisions

to assign US Navy personnel to vacant jobs with

the goal of minimizing moving cost [9]. The details
of the implementation of the Navy�s assignment

system, including issues such as user acceptance,

are described in Blanco and Hillery [2] and

Whisman et al. [12]. Krass et al [8] describe a non-

linear network optimization problem to assist the

Navy in determining assignments of personnel to

combat duty. Reeves and Reid [10] introduces an

interactive, preference-driven manpower planning
model for the US Army Reserves. This model

balances five objectives for the assignments within

a 100 person unit over the course of a one-year

planning horizon. Weigel and Wilcox [11] describe

a hierarchy of models that support the Army�s
enlisted personnel system. The models are used to

support a variety of decisions, from policy-level

analysis to detailed, unit-level planning issues. Fi-

nally, optimization methods have been applied to
decisions of manpower scheduling, including the

assignment of service department workers with

specialized skills to jobs (see [4]) and the determi-

nation of a maintenance workforce specialization

structure and the assignment of specific tasks to

workers (see Dietz and Rosenshine [6]).

The problem we consider differs from these

previous works in two key respects. First, we are
not considering one-to-one assignments of persons

to jobs; rather, we are assigning persons to career

fields, which have a required target for the number

of people. Second, our objective function does not

deal with explicit measures such as travel costs.

Ultimately, we are concerned with giving the

decision-maker, not the model, the final say re-

garding the delicate trade-off between cadet pref-
erences and their standing in the class.

3.1. The objective function

The output of the AFSC board is an aggregate

subjective score and subsequent rank order of each

cadet. The output of the cadet�s career field selec-

tion is a ordering, from 1 to 6, of their job pref-
erences. These two outputs combine to form the

objective function coefficients (cij) of classifying

the jth job preference to the ith ranked cadet. In

this section, we discuss alternatives for combining

the inputs (i.e., cadet rank/score and job prefer-

ence) into a single value that captures the appro-

priate trade-off between the two inputs. For

example, we might wish to make the top-ranked
cadet�s second choice (c1;2) equal to the middle

cadet�s top choice (c163;1). The exact trade-off de-

pends on the decision-maker�s preference. In fact,

decision-makers are more concerned with the net

effect of the objective function (i.e., the impact

upon the overall classification of cadets) than the

function itself. In this section, we first describe

methods to represent the value associated with a
cadet�s class rank, vðiÞ, that will give us a flexible

method for capturing this trade-off. We then show

how this value is combined with each cadet�s
AFSC preferences, prefði; jÞ, to yield the model�s
objective function coefficients:

cij ¼ f ½vðiÞ; prefði; jÞ
: ð6Þ
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In Section 3.2 we describe alternatives for repre-

senting vðiÞ and in Section 3.3 we describe methods
for representing prefði; jÞ. In Section 3.3, we

will present methods to better measure job

preferences and build them into the objective

function.

3.2. Valuing a cadet’s rank, v(i)

There are many ways to represent the value

awarded when cadets receive their top AFSC

choice. This value is one component of the overall

function described in (6). In general, we assume

that the value curve, vðiÞ, should be strictly de-

creasing with respect to class rank. The general

shape of the curve will have a drastic effect upon
how the optimization model makes trade-offs be-

tween the AFSC classification for persons with

different class standing. In this section, we explore

three such curves: (1) vðiÞ displays a constant

marginal reduction as class rank increases, (2) vðiÞ
displays a diminishing marginal reduction as class

rank increases, and (3) vðiÞ is determined by the

actual AFSC board score.

3.2.1. Constant marginal difference

In general, we would like the value awarded

for matching cadets with their top choice to be a

linear, diminishing function of board rank. That

is, the first cadet receives the greatest value. The

difference between the first and second cadets

will be the same as the second and third, which
will be the same as the third and fourth, and

so on.

Thus, the value received due to cadet rank is

given by

vðiÞ ¼ N � rankðiÞ; ð7Þ

where N is the number of graduates. If we care
only about the cadet�s standing relative to their

non-rated peers, N is the number of non-rated

cadets and rankðiÞ is cadet i�s rank within the non-

rated group. Note that this is a linear function of

rank, as shown in Fig. 2, where N is 327 (the

number of non-rated cadets in 2001). Again, this

curve represents the value awarded whenever a

cadet receives his or her top choice AFSC.

3.2.2. Decreasing marginal difference

Again, we would like the value awarded for
matching a cadet with their top choice to be a

decreasing function of class rank. In this section,

marginal change in this value, vðiÞ, should increase
rapidly as we move toward the top of the class.

This function is consistent with the philosophy

that ‘‘top’’ cadets have truly distinguished them-

selves in their four years at the Academy. The

marginal difference decreases as we move lower in
the class rank.

To capture this philosophy, we employ a

learning curve function (for example, see [3]). As-

sume N is the total number of cadets, and a is a

number between 0 and 1 that represents a rate of

learning (or the slope of the learning curve). Let i
be the cadet�s rank. Then the value awarded for

assigning each cadet is

vðiÞ ¼ N � ilog2 a: ð8Þ

When a is, say 0.95, the learning curve reduces the

value by 5% each time cadet rank is doubled. In
our application, the value of assigning cadet #2�s
top choice returns a value that is 5% less than

cadet #1�s. Assigning a top choice to cadet #4 has

a value that is 5% less than cadet #2�s, and so

forth. This function provides marginal changes

consistent with the philosophy of rewarding top

performers. Fig. 3 shows the 95% learning curve

for N ¼ 327.

0

50

100
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200

250

300

350

0 100 200 300 400

v(
i)

Cadet Rank

Fig. 2. Value received for first choice as a linear function of

board rank.
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3.2.3. Board score approach

Our final curve once again assumes that the

value function, vðiÞ, decreases with class rank. In

this section we introduce a function that provides
both increasing marginal rewards for top per-

formers and increasing marginal penalties for low

performers. In order to entice the model to give

more top choices to the top ranked cadets, it must

be increasingly difficult for the lowest ranked ca-

dets to get their top choices. Thus, in the lower tier

of class rank, the marginal penalty increases as we

near the bottom. Interestingly, plotting AFSC
board score (see Fig. 4) gives the desired distribu-

tion of values, vðiÞ. Moreover, this method uses

direct output from the AFSC board as an input to

the model.

3.3. Accounting for career field preferences,

pref (i,j)

In the previous sections, we described three

methods for representing a baseline value, vðiÞ, for
assigning the top choice to cadets based upon their

board rank/score. We now create the objective

function, cij, by combining the rank value, vðiÞ,
with the preferences, prefði; jÞ, that each cadet

assigns to each AFSC. The current method relies

solely upon the 1–6 preference scale provided by

cadets. We also consider a second method that

captures the relative preference (or indifference)

between their six career field choices.

3.3.1. Ordinal preferences

We denote cadet is preference for job j by

prefði; jÞ, which equals 1 for their top choice and 6

for their 6th choice. We let prefði; jÞ ¼ 0 when job

j is not one of the cadet is top six choices. The

objective function coefficient that combines both

rank and preference is given by

cij ¼
vðiÞ

prefði; jÞ ; when prefði; jÞ > 0;

�vðiÞ; otherwise:

8<
: ð9Þ

Fig. 5 displays the board score (see Section 3.2.3)

family of functions. The top curve in the figure

represents the value of assigning cadets their top

choice. The second highest curve shows the value

of assigning cadets� to their second AFSC choice.

The third through sixth curves represent assigning
cadets to their third through sixth AFSC. The

bottom curve is the negative of the top choice and

applies whenever a cadet is assigned to an AFSC

not listed as one of their top six.

Note that the bottom ranked cadet receives the

same value (i.e., 0) for all career fields. The model

will be indifferent about which career field to as-

sign this cadet. We can add an additional param-
eter to this method that helps control the extent to

which the lower ranked cadets are sacrificed for

the benefit of the others. The objective function

coefficients determined in (9) become

cij ¼
vðiÞ þ k
prefði; jÞ ; when prefði; jÞ > 0;

�ðvðiÞ þ kÞ; otherwise:

8<
:
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Fig. 3. Value received for the first choice is a decreasing func-

tion of board rank, with decreasing marginal difference.
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The effect of this change is that the curves in Fig. 5

become increasingly separated as we increase the

constant, k. This increase causes the model to

avoid assigning cadets to non-preferred jobs. Ra-

ther than selecting an a priori value for k, we vary
this parameter to provide decision-makers with a

set of possible classifications from which to
choose.

3.3.2. Relative preferences

Our primary measure of the model�s perfor-

mance was the number of cadets receiving their

top preference(s). Given this, we readdress how

preferences are measured. When ranking jobs on a

scale of 1–6, we have no information regarding the
relative preference between job selections. A model

that uses the objective function coefficients de-

scribed in (9) assigns significantly different values

to a cadet�s first and second AFSC. However, it

might be the case that the cadet is indifferent be-

tween the two AFSCs. In this situation, awarding

the cadet�s second choice (based upon the forced

rank ordering) may free a slot that enables a lower
ranked cadet to receive a higher preference.

Modifying our approach for creating the ob-

jective function coefficients is straightforward. We

define rði; jÞ as the relative satisfaction cadet i has
for job j. A cadet�s top preference(s) will receive a

relative satisfaction of 1, and all other preferences

have a value less than one. For each cadet i 2 I
and job j 2 J the objective function coefficients are
given by

cij ¼
rði; jÞ � vðiÞ if rði; jÞ > 0;
�vðiÞ if rði; jÞ ¼ 0;

�
ð10Þ

where vðiÞ is determined by methods such as the

three discussed earlier.

A number of mechanisms can be use to solicit

relative preferences from the cadets. But the
overall idea is the same: to gain some recognition

of how each cadet feels about their six job choices.

Capturing individual preferences is superior to any

of the arbitrary preference schemes inherent in the

1–6 ranking process. The bottom line is the impact

upon classifications: which cadets receive which

jobs. Because individual preferences and AFSC

quotas greatly affect the classification of each
graduating class, we do not anticipate developing a

‘‘correct set’’ of value functions. Instead, we de-

velop a process that enables decision-makers the

ability to easily, and quickly, explore the effects of

alternative functions.

4. Computational results

In this section, we offer empirical results that

demonstrate the success of this optimization-based
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Fig. 5. Value received based on class rank and career field preference; receiving a non-preferred career field is penalized.
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classification model. We begin with computational
results from the Class of 2001 and demonstrate the

solution quality and its improvement over the

traditional greedy approach described in Section 2.

We then illustrate the effects of objective function

changes upon the model�s solution. We next turn

to the Class of 2002, with whom we examine the

effect of using individually specified preferences

{see (10)} rather than the 1–6 ranking of a cadet�s
six AFSC choices {as prescribed in (9)}.

Because this decision support environment re-

lies upon Excel spreadsheets and Access databases,

we opted to model within a spreadsheet environ-

ment on a Pentium III workstation. We imple-

mented the model using both the Large-Scale

Solver from Frontline Systems [7] and XPRESS-

MP version 13.0 [5]. The Frontline solver is the
large-scale version of the Excel Solver. To use

XPRESS-MP, we linked the solver to the spread-

sheets using ODBC connections and SQL. The

fact that this model is a network flow problem

means the optimal linear solution is always integer

and, hence, solve times are fast. We do not report

solution times because the model solves in seconds,

which is more than sufficient for the purposes of
our model.

4.1. Results for Class of 2001

Of the graduating class of 2001, 327 graduates

were classified into non-rated AFSCs. The AFPC

initially specified 322 target quotas across 36 ca-

reer fields, and allowed the Academy to classify the
additional 5 cadets into their preferred AFSCs. We

penalized deviation from each AFSC quota heav-

ily. Thus, the model matched each AFSC quota

exactly (aside from the difference between gradu-

ates and total target quotas).

4.1.1. Comparison with greedy classification

Our first goal was to compare the model�s so-
lution to that generated by the greedy classification

approach. This greedy method begins by awarding

the top-ranked cadet their first choice. We simulate

the greedy method by decrementing the number of

remaining slots in that career field and turn to the

second ranked cadet. This cadet selects their

highest choice among the remaining available

slots. The process continues until all cadets are
classified. If, in our simulated heuristic, a cadet

finds no slots among their six choices, we proceed

to the next cadet and the process continues. At the

end, we randomly assign the cadets who did not

receive one of their top six choices to the remain-

ing slots. In practice, a cadet who finds no avail-

able openings throughout their original six choices

makes a selection from any of the available
openings rather than risk a random classification.

Therefore, as we compile the statistics on the

number getting one of their six choices versus a

non-preferred career field, our heuristic over esti-

mates the number getting one of their AFSC

preferences. Recall that our heuristic does not al-

low a cadet to ‘‘take away’’ a preferred AFSC of a

lower ranked cadet if none of their preferences
were available. Thus, the quality of the solution (in

practice) can only be worse than the results re-

ported.

Table 1 provides both the results obtained using

the optimization versus the greedy heuristic. The

‘‘# assigned’’ columns indicate the number of ca-

dets who received their first choice, second choice,

and so forth (proceeding down the rows). Notice
the difference between the numbers of first choices

given using the optimization versus the existing

greedy approach. Moreover, the number of ‘‘non-

preferred’’ jobs assigned is reduced from 12 to ei-

ther 0 or 3, depending upon the objective function

used. Thus, cadet preferences are better satisfied

using the optimization. Presumably, this will have

a positive effect on morale and long-term com-
mitment to the Air Force.

4.1.2. Viewing alternative solutions

Comparing the results from the objective func-

tion reported in Table 1, we see a difference that

seems to indicate the learning curve objective

function (Fig. 3) gives a better aggregate solution.

The learning curve model reports more first pref-
erences received and zero ‘‘non-preferred’’ choices

received. However, this may be misleading as we

examine the differences more closely.

Fig. 6 displays the AFSC preference received of

all 327 cadets using the two objective functions.

While the learning curve objective function yields a

greater number of first choices, notice the large
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number of cadets in the top quarter of the class

who did not get their first choices. Conversely, the

board score objective function does award three
cadets AFSCs for which they had no preference,

but these three cadets are at the bottom of the

class. The overall effect of the board score objective

function is that the model sacrifices the preferences

of cadets at the bottom of the class to free higher

preferences for those near the top of the class.

It is not our goal to specify a single objective

function that will dominate all other objective

functions. Given that each year�s data changes
dramatically, it is not sensible to expect that an

objective function will have the same effect on the

classification. We emphasize that the model does

not establish policy. Rather, the model provide

multiple solutions quickly, from which the Acad-

emy�s decision makers can determine the trade-offs
and classification policy they prefer.

4.2. Results for Class of 2002

We developed the prototype of this model while

the Class of 2001 classification was in-process.

Because of the apparent success of the model as

applied to the Class of 2001, we conducted a full

proof-of-concept during the Class of 2002�s clas-
sification process. This class had similar charac-
teristics to the previous class: 348 graduates were

classified into 37 non-rated AFSCs.

4.2.1. Comparison with greedy classification

During the 2002 classification process, senior

decision-makers specified an additional condition:

the top 25% cadets in the class were guaranteed

their top AFSC preference (assuming they were
qualified). We added the following constraints to

the model to enforce this requirement:

yij ¼ 1; 8ði; jÞ : rankðiÞ6 N
4

and prefði; jÞ ¼ 1;

where N is the number of cadets. In addition, we
penalized heavily deviations from AFSC quotas

until the model filled the targets exactly. Finally,

Table 1

Results for the Class of 2001, comparing the model using two objective functions with the greedy approach to job classification

Job preference Model results

Greedy Heuristic Learning curve objective Board score objective

# Assigned Cum% # Assigned Cum% # Assigned Cum%

1 215 65.7 248 75.8 244 74.6

2 53 82.0 42 88.7 40 86.9

3 18 87.5 14 93.0 10 89.9

4 13 91.4 7 95.1 6 91.7

5 12 95.1 9 95.9 14 96.0

6 4 96.3 7 100.0 10 99.1

No. pref 12 100.0 0 100.0 3 100.0
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Fig. 6. Graph of job preference received versus class rank using

both the learning curve objective function (a) and the board

score objective function (b).
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we used the board score (Section 3.2.3) approach

within the objective function.

The results are displayed in Table 2. The model

outperforms the greedy heuristic, moving the per-

cent of cadets receiving their first choice from 58%

to just over 69%. The number of cadets receiving

none of their job choices dropped from 22 to 3.

Thus, applying the optimization-based classifica-
tion model to the Class of 2002 data yield similar

results to those found with the Class of 2001 data.

In addition, Table 2 shows a summary of the ac-

tual classification created by the AFPC who also

used an optimization-based approach. We see the

clear advantage of our model both in terms of the

increase in the number of graduates assigned to

their top choice and in terms of the decrease in the
number of graduates assigned to none of their

choices.

4.2.2. Preference experiment

Prior to the actual classification process, during

the spring of their junior year, we collected infor-

mation regarding AFSC preference beyond the 1–

6 ranking. We surveyed 350 participants (both

rated and non-rated cadets) and compared the

AFSC classification using this additional infor-

mation {see (9)} with the existing 1–6 ranking

procedure (8).
The method we used to capture relative pref-

erences follows. We gave each cadet 1000 points to

allocate among six AFSCs. Assigning an equal

number of points to all six AFSCs indicates in-

difference among the six. Allocating all points to a

single AFSC indicates a strong preference for that

single career field, but indifference among all re-
maining AFSCs. All non-selected AFSCs received

zero preference points.

The relative satisfaction of a cadet-AFSC clas-

sification was found by dividing the points the

cadet assigned to that AFSC by the maximum

points the cadet assigned to any single AFSC.

That is, for each cadet the value of rði; jÞ used in

Eq. (9) is found by dividing the number of points
assigned to AFSC j, pði; jÞ, by the maximum

awarded to any AFSC by that cadet:

rði; jÞ ¼ pði; jÞ
maxj0

pði; j0Þ: ð11Þ

While there are a number of ways to collect and

measure these relative preferences, this method

renders a [0–1] scale.

Using board scores (Section 3.2.3) as the basis
for the objective function coefficients, we first

compare the models with the different preference

measures in the objective function. In Table 3, we

show how each model performs by counting the

number of 1–6 preferences actually assigned. On

the surface, using the relative preferences appears

to hurt the quality of the solution. Fewer people

receive their top choice. A more precise perfor-
mance measure is how the models compare with

respect to the relative preferences.

In Table 4, we see the positive effect of using the

relative preferences in the objective function. The

scale used in the left column shows the relative

preferences. If a cadet receives a job for which they

had assigned maximum points, their satisfaction

level is 100%. Furthermore, if a cadet was indif-

Table 2

Comparison of Greedy Heuristic and the actual classification with the optimization model for the Class of 2002

Job preference Model results

Greedy Heuristic Actual classification Board score objective

# Assigned Cum% # Assigned Cum% # Assigned Cum%

1 202 58.2 218 62.8 240 69.2

2 59 75.2 57 79.3 54 84.7

3 29 83.6 25 86.5 15 89.0

4 12 87.0 16 91.1 9 91.6

5 14 91.1 9 93.7 11 94.8

6 9 93.7 10 96.5 15 99.1

No. pref 22 100.0 12 100.0 3 100.0
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ferent between his two top AFSC choices (which
is impossible to determine in existing 1–6 rank-

ing system), then being classified into either of

those AFSCs would yield 100% satisfaction. Using

the relative preferences, we see a large increase

(from 76.3% to 84%) in the number of cadets

at least 50% satisfied and a corresponding reduc-

tion in the number of unsatisfied cadets. Thus,

adding relative preferences provides additional
flexibility to better meet the desires of the gradu-

ation class.

5. Concluding remarks and future work

This optimization-based approach for the

AFSC classification process provides a flexible tool
to support the decision authorities at the Academy

and the AFPC. We emphasize that from year-to-

year, variation in the data exists such that selecting

a single method for creating the objective function
is not sensible. The ease of incorporating different

objective functions and the fast run time of the

model allow us to quickly create a set of solutions

that best reflect the philosophies of decision-mak-

ers.

In addition, our explorations of using actual

AFSC preferences indicate value-added in chang-

ing from the current 1–6 ranking system. Clearly
actual preferences provide more relevant infor-

mation than arbitrarily assigning preferences to

each classification. However, obtaining true pref-

erences ignores the presence of gamesmanship,

which is likely. We have not explored this effect.

Future extensions to the system include a web-

base mechanism for displaying information about

each AFSC, its projected availability, and current
cadet interest in each AFSC. This website will

collect preference data supporting the optimiza-

tion. It will alleviate much of the time-consuming

process of advising and counseling cadets about

the likelihood of receiving certain AFSCs. The

manner in which these relative preferences are

collected is an area of further study. Finally, the

fact that this model is a network flow problem
(thus, the optimal linear solution is always integer)

means we can exploit dual information to provide

feedback on the relative interest of certain AFSCs.

The duals could be the basis to coordinate target

quotas and the AFSC classification across all three

commissioning sources: the Academy, the Reserve

Officer Training Corps (ROTC), and the Officer

Training School (OTS).
Because of the demonstrated success of our

model, AFPC has revised their process. They have

implemented and will utilize this optimization

Table 3

Preference received (on the 1–6 scale) using either 1–6 preferences or relative preferences in the objective function

Job preference 1–6 preference used in objective function Relative preference used in objective function

# Assigned Cum% # Assigned Cum%

1 227 64.9 209 59.7

2 43 77.1 56 75.7

3 17 82.0 25 82.9

4 20 87.7 19 88.3

5 19 93.1 17 93.1

6 19 98.6 19 98.6

No. pref 5 100.0 5 100.0

Table 4

Preferences received (measured with the relative scale) using

either 1–6 preferences or relative preferences in the objective

function

Satisfaction

level (%)

Job preference measure

1–6 ranking Relative preferences

# Cum% # Cum%

100 234 66.9 238 68.0

90+ 0 66.9 5 69.4

75+ 8 69.1 14 73.4

50+ 25 76.3 37 84.0

25+ 20 82.0 17 88.9

10+ 22 88.3 15 93.1

<10 29 96.6 19 98.6

0 12 100.0 5 100.0
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model for the graduating class of 2003. In addi-
tion, the Personnel Center is modifying existing

software to incorporate this classification model

for both ROTC and OTS career field classifica-

tions.
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