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Continuous and smooth potential energy surface for conductorlike
screening solvation model using fixed points with variable areas

Peifeng Su and Hui Lia�

Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA

�Received 29 August 2008; accepted 13 January 2009; published online 20 February 2009�

Rigorously continuous and smooth potential energy surfaces, as well as exact analytic gradients, are
obtained for a conductorlike screening solvation model �CPCM, a variant of the general COSMO�
with Hartree–Fock �RHF, ROHF, UHF, and MCSCF� and density functional theory �R-DFT,
RO-DFT, and U-DFT� methods using a new tessellation scheme, fixed points with variable areas
�FIXPVA�. In FIXPVA, spheres centered at atoms are used to define the molecular cavity and
surface. The surface of each sphere is divided into 60, 240, or 960 tesserae, which have positions
fixed relative to the sphere center and areas scaled by switching functions of their distances to
neighboring spheres. Analytic derivatives of the positions and areas of the surface tesserae with
respect to atomic coordinates can be obtained and used to evaluate the solvation energy gradients.
Due to the accurate analytic gradients and smooth potential energy surface, geometry optimization
processes using these methods are stable and convergent. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3077917�

I. INTRODUCTION

Continuum solvation models are important computa-
tional models for theoretical studies of condensed phase
chemistry.1 In a continuum model the solvent is treated as a
dielectric medium or a conductor, while the solute is repre-
sented by a distribution of charges. The polarizable con-
tinuum models �the earlier DPCM �Ref. 2� and the more
recent IEF-PCM �Ref. 3��, the conductorlike screening mod-
els �COSMO,4 GCOSMO,5 and CPCM �Ref. 6�� and the SS-
�V�PE �Ref. 7� models are representative continuum solva-
tion models that use the surface elements method. The
analytic gradients have been derived and implemented for
DPCM,8,9 IEF-PCM,10,11 COSMO,4 GCOSMO,12 and
CPCM,6,13 and used for molecular geometry optimization.
However, if an improper scheme is used for molecular sur-
face tessellation, such analytic gradients are either inaccurate
or numerically instable, or both, and geometry optimizations
are often difficult to accomplish.

York and Karplus14 showed that using a switching func-
tion to treat the appearance and disappearance of tesserae
lead to a rigorously smooth potential energy surface for the
COSMO solvation model; Senn et al.15 implemented a simi-
lar approach for Car–Parrinello ab initio molecular dynam-
ics. Their methods use atom-centered spheres �no additional
spheres� to define the solvent accessible surface for solutes
and use spherical Gaussian functions to describe the intert-
essera electrostatic interactions.

Based on the GEPOL �Ref. 16� scheme, which uses ad-
ditional spheres to fill the crevice between neighboring
spheres and define the solvent excluded surface �SES� for
solutes, Pomelli17 developed a similar switching function
method for IEF-PCM and obtained smooth potential energy

surfaces. However, two issues may arise in the GEPOL
scheme: �1� too many small spheres may be added and the
number of surface tesserae may be significantly increased;
�2� the additional spheres have small radii and tessera areas,
which may lead to unsmooth potential energy surfaces.

Li and Jensen18 developed a modified GEPOL scheme
called GEPOL-AS �AS stands for area scaling�, which, by
scaling the areas of the tesserae that are too close to each
other, can significantly increase the stability of IEF-PCM and
CPCM geometry optimization procedures. A feature of the
GEPOL-AS scheme is that for two separated spheres close to
each other, the tesserae between the spheres are effectively
scaled by a distance and angle switching function, as if they
were excluded by the additional spheres used in the GEPOL
scheme. However, the rigorously analytic gradients for the
GEPOL-AS based IEF-PCM and CPCM methods are very
difficult to obtain. In addition, the GEPOL-AS based PCM
potential energy surfaces are not smooth.

Based on prior work described above, a new tessellation
scheme, fixed points with variable area �FIXPVA�, is devel-
oped for conductorlike screen solvation models �COSMO�,
and is implemented for CPCM, which is a specific variant of
COSMO. FIXPVA can produce continuous and smooth po-
tential energy surfaces, as well as exact analytic gradients for
geometry optimization. In FIXPVA, atom-centered spheres
�no additional spheres� are used, and the SESs for CPCM
calculations are mimicked with switching functions.

This paper is organized as follows. In Sec. II, the general
theory for COSMO/HF and COSMO/density functional
theory �DFT� calculations is outlined, with a focus on the
formulas for energy gradient calculation; then the FIXPVA
scheme is described in detail, including the derivatives of the
tessera coordinates and areas with respect to atomic coordi-
nates. In Sec. III, the general methods used for COSMO
calculations are briefly described. In Sec. IV, some numerical
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results are presented and discussed, with an emphasis on
demonstrating the accuracy of the gradients and the smooth-
ness of the potential energy surfaces. Finally, a conclusion is
presented in Sec. V.

II. THEORY

A. COSMO

In COSMO, the induced surface charges on the tesserae,
written as a vector q, are obtained by solving a matrix
equation,4

q = − �C−1V , �1�

where � is a scaling factor that has a general expression ��
−1� / ��+x�, with � being the dielectric constant of the sol-
vent and x being a value between 0 and 2. There are evi-
dences that x=1 /2 may produce better results over a large
range of �.4,6,13 In this work only x=0 and �= ��−1� /� is
discussed. The selection of the value for x does not affect the
main results reported in this paper. In Eq. �1� vector V con-
sists of the electrostatic potentials at the tesserae due to the
solute nuclei and electrons; C is a geometric matrix, which
has the following elements:

Cii = 1.07�4�

ai
, �2�

Cij =
1

�ri − r j�
, �3�

where ri, and ai are, respectively, the center and area of
tessera i. The C matrix is symmetric. The factor 1.07 in Eq.
�2� was first obtained by Klamt and Schüürmann.4

In practice, the induced surface charges can be obtained
by solving Eq. �1� separately for solute nuclear potential VN

and electronic potential Ve, and the resultant charges are de-
noted as qN and qe, respectively:

qN = −
� − 1

�
C−1VN, �4�

qe = −
� − 1

�
C−1Ve, �5�

with

VN�i� = �
�

Z�

�r� − ri�
, �6�

Ve�i� = �
��

P��V���i� , �7�

V���i� = − ��	 1

�re − ri�
	�
 , �8�

where Z� and r� are the nuclear charge and coordinates of
atom �; � and �, as well as � and � used in this paper, are
Gaussian type basis functions; P�� is the density matrix; re is
the electronic coordinate.

Equation �5� can also be equivalently written as the basis
set induced surface charges q�� contracted by the density
matrix:

qe�i� = �
��

P��q���i� . �9�

q�� are obtained by solving Eq. �1� for the basis set poten-
tials V�� at the tesserae:

q�� = −
� − 1

�
C−1V��, �10�

with V�� given by Eq. �8�. It is convenient to use q�� to form
an operator, such as that used in Eq. �11�.

The electrostatic potentials created by the induced sur-
face charges are then included into the Hartree–Fock or DFT
Kohn–Sham equations to variationally determine the total
molecular energy Etotal:

Etotal = �
��

P���T�� + V��,N −
1

2�
i
��	 qN�i�

�re − ri�
	�
�

+
1

2 �
����

P��P���������

+ �
i
��	 q���i�

�re − ri�
	�
�

+ Exc��� + �ENN +
1

2�
�

�
i

Z�qN�i�
�r� − ri�

+
1

2�
��

P���
�

�
i

Z�q���i�
�r� − ri�

� , �11�

where T�� and V�� are the basis set kinetic energy and
electron-nuclei potential energy integrals, respectively;
Exc��� is the exchange-correlation energy; ENN is the nuclear
repulsion energy.

In Eq. �11� the four terms involving qN and q�� are,
respectively, the electrostatic interactions between �1� solute
electrons and induced surface charge due to the solute nuclei,
�2� solute electrons and induced surface charge due to the
solute electrons, �3� solute nuclei and induced surface charge
due to the solute nuclei, and �4� solute nuclei and induced
surface charge due to the solute electrons. These four terms
can be combined to form a single term 1

2Vq, which is re-
ferred to as the solvation energy; the remaining terms have
the same forms as those in the gas phase calculations, and
can be written as Egas:
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Etotal = �
��

P���T�� + V��,N� +
1

2 �
����

P��P���������� + Exc��� + ENN −
1

2�
��

P���
i
��	 qN�i�

�re − ri�
	�


+
1

2 �
����

P��P���
i
��	 q���i�

�re − ri�
	�
 +

1

2�
�

�
i

Z�qN�i�
�r� − ri�

+
1

2�
��

P���
�

�
i

Z�q���i�
�r� − ri�

= Egas +
1

2
VeqN +

1

2
Veqe +

1

2
VNqN +

1

2
VNqe = Egas +

1

2
Vq . �12�

For Hartree–Fock methods, the exchange-correlation term
Exc��� is

Exc��� = −
1

2 �
����

P��P�������� . �13�

For DFT methods, Exc��� has various forms, which are not
the main concern of this paper.

B. Gradient

The general expressions of the nuclear gradients in con-
tinuum solvation models have been derived for DPCM,8

IEF-PCM,10,19 COSMO,4 GCOSMO,12 and CPCM.6,13 In the
following, for the purpose of establishing the necessary no-
tations and describing the actual implementation, a short
derivation of the COSMO gradients is presented.

In COSMO/HF and COSMO/DFT calculations, when
the coordinate x �of atom X� changes by �x, �1� the nuclear
coordinates of atom X will change by �x, �2� the basis set
centered at atom X will change by �x and �3� the coordinates
and areas of some COSMO tesserae will also change accord-
ing to the surface tessellation scheme.

Following Eqs. �11� and �12�, the first derivative of the
total molecular energy with respect to x is

Etotal
x = �

��

P���T��
x + V��,N

x � +
1

2 �
����

P��P��������x

+ Exc
x ��� + ENN

x −
1

2�
��

P���
i
��	 qN�i�

�re − ri�
	�
x

+
1

2 �
����

P��P���
i
��	 q���i�

�re − ri�
	�
x

+
1

2�
�

�
i
�Z�qN�i�

�r� − ri�
�x

+
1

2�
��

P���
�

�
i
�Z�q���i�

�r� − ri�
�x

− �
��

W��S��
x ,

�14�

where S is the basis set overlap integral matrix, W is the
energy-weighted density matrix �note the orbital energy in-
cludes both the DFT exchange-correlation and COSMO con-
tributions�. The W��S��

x term absorbs all the quantities con-
taining the derivative of the density matrix �this is possible

because, and only if, the C matrix in Eq. �1� is symmetric�.
Therefore, the exchange-correlation energy gradient Exc

x ���
in Eq. �14� only involves the derivatives of the exchange-
correlation potential integrals and the density matrix �no de-
rivatives of the density matrix�. Equation �14� is an analogy
of Pulay’s original formula for the gas phase Hartree–Fock
gradient, and can be derived using the same procedure.20

Equation �14� clearly shows that the total molecular en-
ergy gradient in COSMO/HF and COSMO/DFT methods
consists of two parts: �1� one part, denoted as Egas

x , has the
same form as “the gas phase” gradient, but evaluated with
the COSMO perturbed density matrix and the COSMO cor-
rected energy-weighted density matrix; �2� the other part,
denoted as Esol

x , contains the derivatives of the COSMO sol-
vation terms:

Egas
x = �

��

P���T��
x + V��,N

x � +
1

2 �
����

P��P��������x

+ Exc
x ��� + ENN

x − �
��

W��S��
x , �15�

Esol
x = −

1

2�
��

P���
i
��	 qN�i�

�re − ri�
	�
x

+
1

2 �
����

P��P���
i
��	 q���i�

�re − ri�
	�
x

+
1

2�
�

�
i
�Z�qN�i�

�r� − ri�
�x

+
1

2�
��

P���
�

�
i
�Z�q���i�

�r� − ri�
�x

. �16�

The first term in Eq. �16� can be expanded as

−
1

2�
��

P���
i
��	 qN�i�

�re − ri�
	�
x

= −
1

2�
��

P���
i
��	 1

�re − ri�
	�
x

qN�i�

−
1

2�
��

P���
i
��	 1

�re − ri�
	�
qN

x �i� . �17�

The derivative of the induced nuclear charge qN
x in Eq. �17�

can be avoided by using the standard formula
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�C−1�x = − C−1�C�xC−1 �18�

to convert induced charges back to potentials:

−
1

2�
��

P���
i
��	 1

�re − ri�
	�
qN

x �i� =
1

2�
i

Ve�i�qN
x �i� =

1

2
VeqN

x

=
1

2
Ve�−

� − 1

�
C−1VN�x

= −
1

2
�� − 1

�
�Ve��C−1�xVN + C−1VN

x �

= −
1

2
�� − 1

�
�Ve�− C−1CxC−1VN� −

1

2
�� − 1

�
�VeC

−1VN
x

=
1

2
� �

� − 1
�qeC

xqN +
1

2
qeVN

x . �19�

So, Eq. �17� becomes

−
1

2�
��

P���
i
��	 qN�i�

�re − ri�
	�
x

= −
1

2�
��

P���
i
��	 1

�re − ri�
	�
x

qN�i� +
1

2
� �

� − 1
�qeC

xqN +
1

2
qeVN

x . �20�

Similarly, the second, third and forth terms of Eq. �16� can be derived, so Eq. �16� becomes

Esol
x = −

1

2�
��

P���
i
��	 1

�re − ri�
	�
x

qN�i� +
1

2
� �

� − 1
�qeC

xqN +
1

2
qeVN

x − �
��

P���
i
��	 1

�re − ri�
	�
x

qe�i�

+
1

2
� �

� − 1
�qeC

xqe +
1

2
� �

� − 1
�qNCxqN + qNVN

x +
1

2
qeVN

x +
1

2
� �

� − 1
�qNCxqe −

1

2�
��

P���
i
��	 1

�re − ri�
	�
x

qN�i� .

�21�

For convenience, Eq. �21� can be written as

Esol
x = − �

��

P���
i
��	 1

�re − ri�
	�
x

q�i� + qVN
x

+
1

2
� �

� − 1
�qCxq . �22�

Equation �22� shows that the derivatives of the solvation
terms can be evaluated directly with the total induced surface
charge q.

The first term in Eq. �22� represents the forces between
induced surface charges and solute electrons due to the
changes of the basis set potential integrals at the tesserae
when the x coordinate changes, and can be evaluated with
the derivatives of the basis sets:

��	 1

�re − ri�
	�
x

= � ��

�r�
	 1

�re − ri�
	�
 �r�

�x

+ ��	 1

�re − ri�
	 ��

�r�

 �r�

�x

+ ��	 ���re − ri�−1�
�ri

	�
 �ri

�x
, �23�

where r� and r� are, respectively, the center points of basis
functions � and �. If �r� /�x=�r� /�x=�ri /�x, which means

basis functions �, � and tessera i move together, Eq. �23� is
exactly zero because the integral will not change �the relative
positions of r�, r�, and ri are not changing�, and the last term
in Eq. �23� can be evaluated with the derivatives of the basis
set:

��	 ���re − ri�−1�
�ri

	�
 = − � ��

�r�
	 1

�re − ri�
	�


− ��	 1

�re − ri�
	 ��

�r�

 . �24�

Therefore, Eq. �23� becomes

��	 1

�re − ri�
	�
x

= � ��

�r�
	 1

�re − ri�
	�
� �r�

�x
−

�ri

�x
�

+ ��	 1

�re − ri�
	 ��

�r�

� �r�

�x
−

�ri

�x
� ,

�25�

where �r� /�x and �r� /�x are one if the basis functions � and
� belong to atom X, and are zero otherwise; �ri /�x depends
on the surface tessellation scheme. The basis set of atom X
will move and cause changes in the basis set potential inte-
grals at all tesserae. In other words, the “electrons of atom X”
�in the sense that they are described by the basis set of X�
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feel the electrostatic forces from all surface charges. In the
meantime, the coordinates of �some or all� tesserae will also
change, and cause changes in the basis set potential integrals
at themselves. In other words, the “tesserae of atom X” �in
the sense that they move with atom X� feel the electrostatic
forces from all electrons.

The second term in Eq. �22� represents the forces be-
tween induced surface charges and solute nuclei due to the
changes of the nuclear potentials at each tessera when the x
coordinate changes, and can be evaluated straightforwardly:

qVN
x = �

�
�

i

Z�q�i���r� − ri�−3 · �ri − r��

· � �r�

�x
−

�ri

�x
�� . �26�

�r� /�x is one if atom r� is x, and is zero otherwise; �ri /�x
depends on the surface tessellation scheme. The nucleus of
atom X will move by �x and cause changes in the potentials
at all tesserae; in the meantime, the coordinates of �some or
all� tesserae will also change and cause changes in the
nuclear potentials at themselves. In other words, the nucleus
of atom X feels the electrostatic forces from all surface
charges, and the tesserae of atom X feel the electrostatic
forces from all solute nuclei.

The third term in Eq. �22� represents the forces between
induced surface charges and can be written separately for the
diagonal and off-diagonal parts of the C matrix:

1

2
� �

� − 1
�q�i�Cii

x q�i� = −
1

2
� �

� − 1
�1.07�4�

2�ai�3/2
�ai

�x
q�i�q�i� ,

�27�

1

2
� �

� − 1
�q�i�Cij

x q�j� = −
1

2
� �

� − 1
��ri − r j�−3�ri − r j�

· � �ri

�x
−

�r j

�x
�q�i�q�j� . �28�

Equation �27� represents the self-repulsion force of the
charges within tessera i due to its area changes; Eq. �28�
represents the forces between the charges on tesserae i and j:
the forces are seemingly halved by the 1/2 factor, but are
actually not, because the C matrix is symmetric �i.e., Cij

=C ji�. The values of �ai /�x and �ri /�x depend on the surface
tessellation scheme.

Clearly, the key for evaluating Eq. �22� is to obtain the
derivatives of the areas �ai� and coordinates �ri� of the
tesserae with respect to the atomic coordinate x.

C. Fixed point with variable area

A simple and efficient surface tessellation scheme, FIX-
PVA, is described here. FIXPVA is able to provide the ana-
lytic derivatives of the areas �ai� and coordinates �ri� of the
tesserae, thus enabling the evaluation of analytic gradients.
In addition, FIXPVA can generate rigorously continuous and
smooth potential energy surfaces, which are crucial for ge-
ometry optimizations.

The main features of the FIXPVA scheme can be sum-
marized as

�a� Each atom is assigned with a sphere and no additional
spheres are used;

�b� each sphere is divided into a certain number of tesserae
�such as 60, 240, or 960�;

�c� the position of a tessera is always fixed relative to the
center of the associated sphere;

�d� the area of a tessera is a smooth function of its dis-
tances to other spheres.

In the following, more detailed descriptions are presented.
The position of a tessera is always fixed relative to the

center of its sphere �i.e., the atom�. As a result, the deriva-
tives of the tessera coordinate ri with respect to the atomic
coordinate x �of atom X� can be evaluated efficiently:

�ri

�x
= �1, if i is on sphere X ,

0, if i is not on sphere X .
� �29�

Equation �29� can be used to evaluate Eqs. �25�, �26�, and
�28�.

Two spheres, A and B, are used to illustrate the FIXPVA
scheme �Fig. 1�. The area of a tessera i at point P1 on the
surface of sphere A �radius is RA� is initially assigned as a0

=4�RA
2 /60 �assume the sphere is divided into 60 tesserae�.

Then, according to two distances to another sphere B, m and
n, the area of tessera i is scaled by two functions, f1 and f2:

ai = f1 · f2 · a0, �30�

where f1 and f2 are the well-known fifth-order polynomial
functions:21

FIG. 1. Two distances �m and n� are used for two switching functions to
scale the area of a tessera at P1.
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f1 = �
1, m 	 m2,

10�m2 − m1
2

m2
2 − m1

2�3

− 15�m2 − m1
2

m2
2 − m1

2�4

+ 6�m2 − m1
2

m2
2 − m1

2�5

, m2 
 m 	 m1,

0, m1 
 m ,
� �31�

f2 = �
1, n 	 n2,

10�n2 − n1
2

n2
2 − n1

2�3

− 15�n2 − n1
2

n2
2 − n1

2�4

+ 6�n2 − n1
2

n2
2 − n1

2�5

, n2 
 n 	 n1,

0, n1 
 n .
� �32�

It is noted that the same type of switching function was used
in the method of York and Karplus,14 but the variables are
different.

As shown in Fig. 1, m is the distance from the tessera P1

to the surface intersecting point P4 of a neighboring sphere
�P1, P2, P3, and P4 are on the same plane�; n is the distance
from the tessera P1 to the surface point P5 of a neighboring
sphere �P2, P5, and P3 are on the same line�:

m2 = �r1 − r4�2, �33�

n2 = �r1 − r5�2. �34�

The values of 0.02 and 0.3 Å, respectively, are used for m1

and m2. In principle, a value of zero can be used for m1.
However, this may lead to cases in which two tesserae on
two spheres have zero distance. Although their areas are zero
when the distance is zero, the numerical instability in dealing
with these “zero-divided-by-zero” problems is better
avoided. The value for m2 cannot be too small or too large—
otherwise the switching function f1 will be either too sharp
�sudden scaling� or too wide �unnecessary scaling�. Numeri-
cal tests show that 0.3 Å is likely the minimum value that
can always lead to satisfactory smooth potential energy
surfaces.

The values of 1.0 and 1.5 Å, respectively, are used for n1

and n2. These values are determined according to the fact
that there should be no solvent molecules between two non-
bonded heavy atoms �such as C, N, O, S, and P in both solute
and solvent molecules� that are 5–6 Å from each other. In
continuum solvation model calculations spheres with radii of
�2.0 Å are used for heavy atoms so values of 1.0–1.5 Å are
reasonable for n1 and n2. In addition, f2 is necessary for two
separated spheres because in this case m does not exist so
two tesserae on two separated spheres can have full areas and
arbitrarily small distances. In principle, it is possible to use
only one switching function of one distance, such as the
distance of a tessera to the surface of another sphere, for all
the tesserae, as used by York and Karplus14 However, it is
difficult to use only one switching function to achieve a simi-
lar result produced by the f1 and f2 used in the present work.

Figure 2 visualizes how the surface areas are affected by
switching functions for two spheres with radii =2 Å. Points
I, J, K, and L and the center points of the two spheres are on
the x-y plane, and the center point of the left sphere has a

coordinate �0, 0�, and the coordinates of I, J, K, and L are �0,
2�, �1, 1.732�, �1,732,1�, and �2,0�, respectively �all in Å�.
The coordinate of the right sphere is �x, 0� with x changes
from 0 to 6 Å.

Tesserae at points I, J, K, and L on the left sphere origi-
nally have full areas �1.0a0�. As the right sphere approaches
and merges in, the area of tessera L starts to be scaled when
the distance between the two sphere centers is 5.5 Å �Rleft

=2.0 Å, Rright=2.0 Å, n2=1.5 Å�, and is scaled to zero
when the distance is 5.0 Å. For tessera L, only the switching
function f2 is meaningful because it is already zero before
the spheres contact. Tessera K is almost solely controlled by
f2, but f1 also contribute after the spheres merge into each
other. As a result, the area of tessera K starts to be scaled at
a distance of 4.85 Å �where n�1.5 Å� and is scaled to al-
most zero at a distance of 4.0 Å �where n=1.035 Å�. Tessera
J is controlled solely by f1 �since n always 	1.732 Å	n2�,
and is scaled at distances 2.5 and 2.1 Å. Similar to J, tessera
I is also controlled solely by f1, and is scaled at distances 0.6
and 0.1 Å.

In general, the area of a tessera is scaled by the switch-
ing functions associated with all the other spheres. In an
actual calculation, of course, it is only effectively scaled by
the switching functions associated with a few neighboring
spheres since all distant spheres have f1= f2=1. The deriva-
tive of the area of a tessera with respect to an atomic coor-
dinate x �of atom X� depends on the derivatives of the

FIG. 2. The areas of tesserae I, J, K, and L on the left sphere are smoothly
switched to zero as the right sphere approaches and cuts in. The radii of the
two spheres are both of 2 Å.
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switching functions associated with the sphere centered at
atom X and the switching functions associated with spheres
centered at other atoms.

For example, if tessera i �on sphere A� is close to three
other spheres �B, C, and D�, three sets of switching functions
are involved:

ai = �f1 · f2��g1 · g2��h1 · h2� · a0, �35�

where f , g, and h are switching functions for sphere B, C,
and D, respectively.

Using sphere B �Fig. 1� to represent a neighboring
sphere, the derivative of ai with respect to the x3 coordinate
of the center point, P3 �x3, y3, z3�, of sphere B is

�ai

�x3
= �g1 · g2��h1 · h2� · a0 · � f1

� f2

�x3
+ f2

� f1

�x3
� . �36�

Clearly, the derivatives of m2 and n2 are required to obtain
the derivatives of f1 and f2.

� f1

�x3
= �30�m2 − m1

2

m2
2 − m1

2�2

− 60�m2 − m1
2

m2
2 − m1

2�3

+ 30�m2 − m1
2

m2
2 − m1

2�4� 1

m2
2 − m1

2

��m
2
�

�x3
, �37�

� f2

�x3
= �30�n2 − n1

2

n2
2 − n1

2�2

− 60�n2 − n1
2

n2
2 − n1

2�3

+ 30�n2 − n1
2

n2
2 − n1

2�4� 1

n2
2 − n1

2

��n2�
�x3

. �38�

Here the derivatives of m2 and n2 with respect to x3 are
derived. As shown in Fig. 1, c is the distance between the
center points, P2 �x2 ,y2 ,z2� and P3 �x3 ,y3 ,z3�, of spheres A
and B; d is the distance between tesserae P1 �x1 ,y1 ,z1� and
the center point of sphere B:

c = ��x2 − x3�2 + �y2 − y3�2 + �z2 − z3�2, �39�

d = ��x1 − x3�2 + �y1 − y3�2 + �z1 − z3�2. �40�

Using the cosine formula, m2 can be expressed as �angles
shown in Fig. 1�:

m2 = 2RA
2�1 − cos ��

= 2RA
2�1 − cos�� − ��

= 2RA
2�1 − cos  cos � − sin  sin �� , �41�

with

cos � =
RA

2 + c2 − d2

2RAc
;

�42�

sin � =
��2RAc�2 − �RA

2 + c2 − d2�2

2RAc
,

cos � =
RA

2 + c2 − RB
2

2RAc
;

�43�

sin � =
��2RAc�2 − �RA

2 + c2 − RB
2�2

2RAc
.

Without showing the details, the derivative of m2 with re-
spect to the coordinate x3 of the center point of sphere B can
be obtained:

��m2�
�x3

=
�x3 − x2�

c4 ��RA
2 + c2 − d2� · �RA

2 + c2 − RB
2� + Fab�

−
1

c2 ��x1 − x2��RA
2 + c2 − RB

2� + �x3 − x2�

��RA
2 + c2 − d2�� −

1

2c2

�Fab

�x3
, �44�

where

Fab

= ��RA + c + d� · �RA + c − d� · �RA − c + d� · �− RA + c + d� · �RA + c + RB� · �RA + c − RB� · �RA − c + RB� · �− RA + c + RB� ,

�45�

�Fab

�x3
=

1

2
Fab · �� �c

�x3
+

�d

�x3
�

�RA + c + d�
+
� �c

�x3
−

�d

�x3
�

�RA + c − d�
+
�−

�c

�x3
+

�d

�x3
�

�RA − c + d�
+
� �c

�x3
+

�d

�x3
�

�− RA + c + d�
� +

1

2
Fab · � �c

�x3
�� 1

�RA + c + RB�

+
1

�RA + c − RB�
+

− 1

�RA − c + RB�
+

1

�− RA + c + RB�� , �46�
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with �see Eqs. �39� and �40��

�c

�x3
=

x3 − x2

c
;

�d

�x3
=

x3 − x1

d
. �47�

It is trivial to show that

��n2�
�x3

= − 2�x1 − x5��1 −
RB

c
+

�x2 − x3�2

c3 RB�
− 2�y1 − y5�� �x2 − x3��y2 − y3�

c3 RB�
− 2�z1 − z5�� �x2 − x3��z2 − z3�

c3 RB� , �48�

with

n2 = �x1 − x5�2 + �y1 − y5�2 + �z1 − z5�2, �49�

x5 = x3 + �x2 − x3�RB/c;

y5 = y3 + �y2 − y3�RB/c; �50�

z5 = z3 + �z2 − z3�RB/c .

In short, the analytic derivatives of the switching functions
for the tesserae can be readily and efficiently evaluated with
the Cartesian coordinates of the tesserae, the sphere center
points and the radii of the spheres, and used to calculate the
derivatives of the tessera areas, which are required by
Eq. �27�.

In Fig. 1, sphere A �of atom A� can also move while
other spheres �atoms� remain still. Since the distances from
tessera i to other spheres will change as A moves, ai will
change. The derivatives of ai with respect to the coordinates
of P2 �x2 ,y2 ,z2�, the center point of sphere A, can be evalu-
ated by summing up the negative derivatives of ai with re-
spect to the coordinates of the center points of all the rest
spheres. For example, if only spheres A and B are considered
�Fig. 1�,

�ai

�x2
= −

�ai

�x3
. �51�

III. IMPLEMENTAION AND COMPUTATIONAL
METHODOLOGY

The FIXPVA tessellation scheme was implemented in
the GAMESS �Ref. 22� program for the CPCM/HF and
CPCM/DFT methods, with which all the calculations were
performed. The CPCM program in GAMESS was imple-
mented by Li and Jensen18 in a previous work on the basis of
the IEF-PCM program originally implemented by Tomasi
et al.23 and Li et al.24 The GEPOL and GEPOL-AS schemes
are also available in GAMESS.

In FIXPVA, the partition of each sphere surface into 60
initial tesserae is based on pentakis dodecahedron �60 non-
equilateral but equal area triangles on a sphere�, the same as
in the GEPOL scheme. The projections of the 60 triangle
center points on the sphere are defined as the center points of

the tesserae, and 1/60 of the sphere area is assigned to each
tessera as the initial area, which is scaled by the switching
functions.

Options with 240 and 960 initial tesserae per sphere
have also been implemented for the GEPOL, GEPOL-AS
and FIXPVA scheme. To obtain 240 initial tesserae for a
sphere, each of the 60 nonequilateral triangles is subdivided
into four identical triangles and projected onto the sphere.
Although the four subdivided triangles have identical areas,
their projections on the sphere have different surface areas
that can differ by �7%. The situation is similar for 960
initial tesserae. The projections of the subdivided triangle
center points are taken as the initial tessera center points; and
the projections of the subdivided triangle areas are calculated
using the Gauss–Bonnet formula and taken as the initial
tessera areas �the actual implementation uses precalculated
scaling factors to obtain the correct areas�. The center points
and areas of the boundary tesserae are recalculated in GE-
POL and GEPOL-AS; while in FIXPVA, the initial areas will
be scaled. It is found that the continuity and smoothness of
the FIXPVA-CPCM potential energy surfaces are insensitive
to the density of tesserae, and 60 per sphere is as good as 240
and 960, and is recommended for general use for its effi-
ciency �see discussion on the rotational variance�. In all the
calculations reported in this paper, 60 tesserae per sphere
were used.

In the CPCM calculations, the solvent was water with
�=78.39. Spheres with radii of 0, 2.124, 2.016, 1.908, 2.52,
and 2.76 Å were used for H, C, N, O, S, and Cu atoms,
respectively, to define the molecular cavity; no additional
spheres were used. Using zero radii for H atoms means that
they do not contribute to the formation of the surface. The
induced surface charges were determined by a semi-iterative
DIIS procedure24,25 with no charge renormalization. Geom-
etry optimization is performed in internal coordinates gener-
ated by the automatic delocalized coordinate algorithm.26

The 6-31G� basis set was used for all the HF and B3LYP
calculations in this study.

IV. RESULTS AND DISCUSSION

A. Gradients

Tables I–III present both the analytic and numerical gra-
dients obtained with CPCM �using FIXPVA tessellation
scheme� and RHF, MCSCF, ROHF, UHF, R-B3LYP, RO-
B3LYP, and U-B3LYP methods. The numerical gradients
were computed with double displacements �forward and
backward� using a step size of 0.001 au for each step. Other
DFT methods were also tested and similar results were
obtained.

Table I presents the total energy gradients for acetate
�Fig. 3� in water computed with CPCM /RHF /6-31G� and
CPCM /R-B3LYP /6-31G� at the geometry optimized in the
gas phase with RHF /6-31G�. The agreement between the
analytic and numerical gradients is perfect. Because the ana-
lytic gradients are “exact”, the errors are in the numerical
values due to the finite displacements. For the RHF case, the
maximum error in the numerical gradients is 5.4
�10−6 a.u., and the root-mean-square error is 2.5
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�10−6 a.u.. For the R-B3LYP case, the maximum error in
the numerical gradients is 3.2�10−6 a.u., and the root-
mean-square error is 1.1�10−6 a.u.

Table II shows the CPCM/MCSCF �Ref. 27� gradients
for the CHCOO− radical �Fig. 3� in its first excited state,
which is singlet �S=0�. The geometry was optimized in the
gas phase with MCSCF /6-31G� method. In the MCSCF cal-
culation, 28 electrons in 14 orbitals are frozen, and 2 elec-

trons are in 2 active orbitals. Although there are four possible
determinants, this is actually a three-determinant MCSCF
calculation due to the symmetry constraint �singlet�. The
agreement between the analytic and numerical gradients is
also perfect: the maximum error in the numerical gradients is
10.9�10−6 a.u., and the root-mean-square error is 4.1
�10−6 a.u.

Table III lists the CPCM/UHF, CPCM/ROHF, CPCM/U-
B3LYP, and CPCM/RO-B3LYP gradients for the CHCOO−

radical �Fig. 3� in its ground state, which is triplet �S=1�.
The geometry was optimized in the gas phase with
UHF /6-31G� method. Again, the agreement between the
analytic and numerical gradients is perfect. The maximum
errors in the numerical gradients vary from 2.2�10−6 to
5.8�10−6 a.u., and the root-mean-square errors vary from
0.8�10−6 to 2.1�10−6 a.u..

These data evidently show that using FIXPVA, very ac-
curate analytic gradients can be obtained for both CPCM/HF
and CPCM/DFT methods. The accuracy of the analytic gra-
dients must be at the same level ��10−6 a.u.� or better. The
errors in the analytic gradients are mainly caused by the er-
rors in solving the SCF equations and the induced surface
charges, and can be, in principle, systematically reduced by
tightening the convergence criteria for the SCF and CPCM
iterations. It is worth noting that ab initio or DFT calcula-
tions use various approximations or cutoffs in basis set inte-
gral evaluation, SCF convergence, and especially derivative
integral evaluation, so default settings in GAMESS produce
the gas phase gradients good to about 1�10−6 a.u.. It is
expected that the FIXPVA-CPCM HF and DFT gradients are
accurate to the same limitations as the gas phase code, and
so, in this sense, the exact gradients have been obtained for
FIXPVA-CPCM HF and DFT methods.

B. Surface area and induced surface charge

If the same set of atomic radii is used for a molecule
with no additional spheres, the tesserae in the boundary re-
gion of two intercepting spheres are downscaled or zeroed by
switch functions in FIXPVA, leading to a much smaller total
surface area as compared to GEPOL and GEPOL-AS. A con-
cern is that the induced surface charge in the FIXPVA
scheme may significantly deviate from the expected theoret-
ical value, which is −��-1� /� of the net molecular charge if
all the electron density is included in the cavity.

Table IV lists the total number and total area of the
tesserae generated for acetate �structure optimized in the gas
phase with RHF /6-31G�� by GEPOL, GEPOL-AS, and FIX-
PVA schemes. The actual surface area of the molecular cav-
ity is 97.83 Å2 as calculated by GEPOL, and the corre-
sponding FIXPVA value is 88.77 Å2, approximately 10%

FIG. 3. �Color online� Structures of acetate and two CHCOO− radicals
�singlet and triplet�.

TABLE I. Gradients �a.u.� calculated for CH3COO− at the geometry opti-
mized in the gas phase with RHF /6-31G�.

Coordinates

CPCM /RHF /6-31G� CPCM /R-B3LYP /6-31G�

Analytic Numerical Analytic Numerical

C1X �0.000 931 9 �0.000 930 7 �0.000 705 6 �0.000 705 6
C1Y 0.000 179 7 0.000 179 5 0.000 308 3 0.000 308 2
C1Z �0.005 375 7 �0.005 375 9 �0.002 582 3 �0.002 581 9
C2X 0.003 836 9 0.003 837 5 0.006 360 2 0.006 360 3
C2Y �0.000 237 0 �0.000 242 2 �0.000 481 5 �0.000 481 8
C2Z 0.028 739 6 0.028 735 1 0.039 188 0 0.039 184 8
O3X �0.002 723 3 �0.002 719 6 �0.037 725 1 �0.037 726 8
O3Y 0.000 252 2 0.000 252 2 0.000 401 7 0.000 401 6
O3Z �0.012 572 5 �0.012 572 3 �0.019 407 8 �0.019 406 4
O4X 0.000 321 1 0.000 318 3 0.030 514 9 0.030 514 1
O4Y �0.000 185 7 �0.000 185 6 �0.000 110 3 �0.000 110 4
O4Z �0.009 952 9 �0.009 952 3 �0.026 786 7 �0.026 786 2
H5X 0.000 656 7 0.000 656 4 �0.005 741 2 �0.005 740 1
H5Y 0.000 000 5 0.000 000 5 �0.000 159 6 �0.000 159 8
H5Z �0.000 441 5 �0.000 441 1 0.004 406 5 0.004 406 7
H6X �0.000 602 7 �0.000 608 1 0.003 743 6 0.003 742 1
H6Y �0.000 076 4 �0.000 076 4 �0.005 681 1 �0.005 680 5
H6Z �0.000 188 0 �0.000 188 0 0.002 523 7 0.002 523 4
H7X �0.000 556 7 �0.000 562 0 0.003 553 3 0.003 551 4
H7Y 0.000 066 7 0.000 066 6 0.005 722 4 0.005 721 9
H7Z �0.000 209 0 �0.000 208 9 0.002 658 5 0.002 658 4
Max error 0.000 005 4 0.000 003 2
rms error 0.000 002 5 0.000 001 1

TABLE II. Gradients �a.u.� calculated with CPCM /MCSCF /6-31G� for
CHCOO− radical in its first excited state �singlet� at the geometry optimized
in the gas phase with the MCSCF /6-31G� method.

Coordinates Analytic Numerical

C1X 0.003 631 6 0.003 632 0
C1Y 0.000 113 5 0.000 102 6
C1Z �0.003 764 1 �0.003 765 1
C2X 0.004 891 8 0.004 892 8
C2Y �0.001 298 7 �0.001 289 8
C2Z 0.015 969 1 0.015 970 4
O3X �0.002 034 8 �0.002 036 0
O3Y 0.001 448 5 0.001 448 0
O3Z �0.008 472 0 �0.008 472 0
O4X �0.002 882 6 �0.002 882 4
O4Y �0.000 197 9 �0.000 200 2
O4Z �0.005 604 8 �0.005 605 2
H5X �0.003 606 1 �0.003 606 7
H5Y �0.000 065 4 �0.000 058 8
H5Z 0.001 871 8 0.001 872 6
Max error 0.000 010 9
rms error 0.000 004 1
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less. The total number of tesserae in GEPOL and
GEPOL-AS is 164, but is 114 in the FIXPVA case due to the
exclusion of the boundary tesserae that have their center
points lying in neighboring spheres. In GEPOL and GEPOL-
AS, all boundary tesserae are kept and assigned with new
center coordinates and areas.

Although the total area in the FIXPVA case is �10%
less, the total induced surface charge is almost the same as
those in the GEPOL and GEPOL-AS cases. If all the electron
density is contained in the cavity, the theoretical total in-
duced surface charge should be ��-1� /�=77.39 /78.39
=0.987 243e for acetate anion. Due to the incomplete inclu-
sion of the electron density, the theoretical total induced sur-
face charge should be slightly less than 0.987 243e in this
case. The values obtained in the GEPOL and GEPOL-AS
cases are �0.976e, �1% less than 0.987 243e; the values in
the FIXPVA cases are �0.970e, 1.7% less than 0.987 243.
Therefore, all these induced surface charges are close to the
expected theoretical value.

For acetate, the solvation energy is around �68 kcal/
mol, a typical value for univalent ions of that size. The value
obtained with the FIXPVA scheme is 1.1 kcal/mol less nega-
tive than the GEPOL values �Table IV�. For acetic acid, the
solvation energy is around �10 kcal/mol, and the FIXPVA

value is 0.3 kcal/mol less negative than the GEPOL values.
For many purposes, these differences are insignificant, and
the same set of radii can be interchangeably used for CPCM
regardless which tessellation scheme, FIXPVA or GEPOL, is
used.

Finally, it is noted that FIXPVA is a different tessellation
scheme from GEPOL, and it is not anticipated that the same
set of radii parametrized for GEPOL is perfect for FIXPVA.
If a better agreement to experiments is desired, a new set of
radii shall be parameterized for FIXPVA-CPCM as done for
other tessellation schemes.

C. Smooth potential energy surface

The energy profiles of NaCl dissociation in aqueous so-
lution are computed by CPCM /RHF /6-31G� using GEPOL,
GEPOL-AS, and FIXPVA schemes with a 0.1 Å increment in
the Na–Cl distance �Fig. 4�. Radii of 1.8 and 2.76 Å are used
for Na+ and Cl−, respectively, to define the solute surface. It
is noted that these calculations are not intended to reproduce
any experimental or simulated dissociation curve, but merely
to examine the smoothness of the potential energy surfaces
in the CPCM.

Clearly, the GEPOL curve fluctuates at the Na–Cl dis-

TABLE III. Gradients �a.u.� calculated for CHCOO− radical in its ground state �triplet� at the geometry optimized in the gas phase with the UHF /6-31G�

method.

Coordinates

CPCM /UHF /6-31G� CPCM /ROHF /6-31G� CPCM /U-B3LYP /6-31G� CPCM /RO-B3LYP /6-31G�

Analytic Numerical Analytic Numerical Analytic Numerical Analytic Numerical

C1X 0.000 186 8 0.000 188 7 �0.003 260 6 �0.003 261 7 �0.007 369 3 �0.007 368 7 �0.008 238 9 �0.008 238 9
C1Y 0.000 658 6 0.000 660 2 0.000 614 9 0.000 614 7 0.001 302 5 0.001 302 4 0.001 284 0 0.001 283 9
C1Z �0.007 143 3 �0.007 145 5 �0.004 461 5 �0.004 455 7 �0.012 007 2 �0.012 007 8 �0.011 212 7 �0.011 213 6
C2X 0.005 537 7 0.005 541 8 0.007 873 3 0.007 873 9 �0.000 601 3 �0.000 601 5 0.000 397 5 0.000 398 6
C2Y �0.002 206 3 �0.002 206 5 �0.002 192 5 �0.002 192 5 �0.003 493 0 �0.003 492 2 0.003 467 1 �0.003 466 3
C2Z 0.024 248 8 0.024 250 3 0.022 948 7 0.022 948 8 0.049 283 6 0.049 281 4 0.048 313 3 0.048 312 3
O3X �0.003 036 6 �0.003 040 1 �0.002 511 1 �0.002 512 2 �0.036 847 7 �0.036 849 3 �0.036 759 0 �0.036 758 7
O3Y 0.001 665 0 0.001 664 9 0.001 605 1 0.001 605 0 0.002 920 5 0.002 920 1 0.002 900 1 0.002 899 8
O3Z �0.009 419 9 �0.009 420 4 �0.008 409 8 �0.008 409 6 �0.019 145 1 �0.019 145 4 �0.018 693 8 �0.018 693 7
O4X �0.000 735 8 �0.000 736 4 �0.001 052 4 �0.001 052 0 0.034 774 0 0.034 774 0 0.034 374 9 0.034 373 6
O4Y �0.000 079 4 �0.000 079 4 �0.000 049 5 �0.000 049 4 �0.000 199 5 �0.000 199 9 �0.000 197 1 �0.000 197 6
O4Z �0.008 170 8 �0.008 173 7 �0.008 778 4 �0.008 778 8 �0.023 232 0 �0.023 231 5 �0.023 175 7 �0.023 174 7
H5X �0.001 952 1 �0.001 952 5 �0.001 049 2 �0.001 051 1 0.010 044 3 0.010 043 5 0.010 225 6 0.010 225 7
H5Y �0.000 037 9 �0.000 039 8 0.000 022 0 0.000 021 9 �0.000 530 5 �0.000 530 3 �0.000 520 0 �0.000 520 1
H5Z 0.000 485 1 0.000 488 4 �0.001 298 9 �0.001 301 4 0.005 100 7 0.005 101 1 0.004 768 9 0.004 772 0
Max error 0.000 004 1 0.000 005 8 0.000 002 2 0.000 003 1
rms error 0.000 002 1 0.000 001 8 0.000 000 8 0.000 001 0

TABLE IV. The number of tesserae �NTS�, surface area, total surface charges, and molecular energies �E�
computed for acetate in water.

Methods NTS
Area
�Å�

CPCM /RHF /6-31G� CPCM /B3LYP /6-31G�

Surface charge
�e�

E
�a.u.�

Surface charge
�e�

E
�a.u.�

GEPOL 164 97.83 0.976 489 �227.333 067 0.975 904 �228.481 667
GEPOL-AS 164 97.30 0.976 504 �227.333 059 0.975 912 �228.481 654
FIXPVA 114 88.77 0.970 468 �227.331 347 0.969 694 �228.479 868
The gas phase 0 �227.225 068 0 �228.377 000
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tance of 4.56 Å, which is the sum of RNa and RCl, corre-
sponding to the sudden separation of the Na and Cl spheres
�Fig. 4�a��. Due to the area scaling, the GEPOL-AS curve
start to fluctuate at a shorter distance, �4.2 Å, and continues
to fluctuate until the distance is over 5.3 Å �Fig. 4�b��. Al-
though in general GEPOL-AS performs better than GEPOL,
for this particular case, it is not better.

As expected, the FIXPVA curve is smooth over the en-
tire range �Fig. 4�c��. The smoothness of the FIXPVA-CPCM
potential energy surfaces depends on the parameters m1, m2,
n1, and n2 for the switching functions �see Eqs. �31� and
�32��. Apparently, these parameters have been given reason-
able values and the smoothness is satisfactory.

There is a noticeable barrier of 0.0121 hartree �or 0.76
kcal/mol� in the FIXPVA curve �Fig. 4�c��. As the Na+ and
Cl− ions approach each other, the total energy increases from
a minimum of �621.426 89 hartree at 5.8 Å to a maximum
of �621.425 68 hartree at 4.9 Å. The scaling would start at

6.06 Å �from 1.8+2.76+1.5� if a tessera happens to be on
the line P2P3 in Fig. 1. An inspection on the change of the
cavity surface area clearly shows that this barrier is a result
of the scaling of a tessera starting at 5.8 Å �which means the
tessera is not on the line P2P3 in Fig. 1�. Although the
GEPOL-AS curve does not show a barrier, its level is notice-
ably raised in the 4.3–5.3 Å region, corresponding to the area
scaling. No barrier is found in the GEPOL curve.

Why such a barrier exists in the FIXPVA calculation can
be readily explained by the fact that when the solvent mol-
ecules start to be removed between the ions, the ions become
desolvated so the solvation energy of the system becomes
less negative, i.e., the beginning of the scaling of the tesserae
reduces the screening of the ions by the solvent and reduces
the solvation energy. This reduction in the solvation energy
will likely produce a barrier on the energy curves such as in
the NaCl case. Whether such a barrier exists in the real
physical process can hardly be answered by merely using
continuum solvation models; molecular dynamics or Monte
Carlo simulations are likely to provide more insights into this
interesting issue. For example, Smith and Dang’s28 simula-
tion clearly indicates that the Potential of Mean Force, which
is defined as the free energy of a pair of ions as the function
of distance, has a �1.6 kcal /mol peak at �3.7 Å for
Na+Cl−. Therefore, the FIXPVA scheme is not physically
wrong in predicting such a barrier. However, as mentioned at
the beginning of this section, these calculations are not in-
tended to reproduce any experimental or simulation results.
To do so, a careful parameterization of the switching func-
tions and probably the atomic radii as functions of distance,
is required, and is beyond the scope of this paper.

D. Rotational variance

Due to the asymmetric tessellation in the current imple-
mentation of the GEPOL, GEPOL-AS, and FIXPVA scheme,
the CPCM/HF and CPCM/DFT energies are not rotationally
invariant: molecules may have a preference in their orienta-
tions to minimize the energy.

Acetate in 20 random orientations was used to test the
rotational variances of the GEPOL, GEPOL-AS, and FIX-
PVA scheme. When 60 initial tesserae per sphere were used
it is found that the GEPOL and GEPOL-AS schemes exhibit
small rotational variance �both are 0.1 kcal/mol� while the
FIXPVA exhibits a relatively large rotational variance �0.9
kcal/mol�. When 240 initial tesserae per sphere were used the
FIXPVA rotational variance reduces to 0.2 kcal/mol, which is
small. Continuum solvation models rely on parameterization
of the atomic radii and the errors in the calculated solvation
energy for ions are usually larger than 1 kcal/mol. Therefore,
60 tesserae per sphere is still a good option for its efficiency.
In future studies, it is possible to devise a better tessellation
scheme that can generate smooth potential energy surfaces
while remain rotationally invariant.

E. Geometry optimization

Due to the rotational variance, CPCM geometry optimi-
zations should, in principle, be performed in Cartesian coor-
dinates so the molecules are free to rotate in order to find the

FIG. 4. Energy profiles calculated with CPCM /RHF /6-31G� for NaCl
dissociation.
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true minima. However, it is well known that geometry opti-
mization performed in Cartesian coordinates is much slower
than that in internal coordinates. CPCM geometry optimiza-
tions performed in Cartesian coordinates are even slower due
to the flatter potential energy surfaces. Tests show that even
for very small molecules such as acetic acid, FIXPVA-
CPCM geometry optimization in Cartesian coordinates can-
not converge in hundreds of steps, and is impractical. In
general, internal coordinates are recommended. Using inter-
nal coordinates, the orientation of a molecule will be largely
fixed, and the internal geometry of the molecule is optimized
to minimize the energy.

A 74-atom model molecule �Fig. 5� of the CuA center of
the CuA azurin was extracted from the x-ray structure 1CC3
in PDB,29 and then optimized using the
CPCM /U-B3LYP /6-31G� method. This model molecule has
a net charge of +1e, and a spin multiplicity=2. For compari-
son, both the GEPOL-AS �Ref. 18� and FIXPVA schemes
were used. The automatically generated delocalized internal
coordinates were used in the geometry optimization.26 The
energy and root-mean-square gradient �RMSG� profiles in
the optimization processes are plotted in Fig. 6.

The FIXPVA optimization went smoothly: the energy
monotonically decreases and the default convergence criteria
�10−4 a.u. for maximum gradient and 0.333�10−4 a.u. for
the RMSG� are met at the 110th step. The GEPOL-AS en-
ergy curve is not smooth, and the same convergence criteria
cannot be met in 124 steps. Compared to GEPOL-AS, the
FIXPVA optimized energy is �1.2 kcal /mol higher, which
is expected due to its reduced surface area.

Other tests for large and small molecules using various
wave functions show that FIXPVA-CPCM geometry optimi-
zations can always be performed robustly. The largest mol-
ecule tested so far contains 145 atoms and 1286 Gaussian-
type basis functions.

V. CONCLUSION

A new molecular surface tessellation method, FIXPVAs
are described in this paper for COSMO and its variant
CPCM. The main features of FIXPVA are that the positions
of the surface tesserae are fixed relative to their center atoms,

and the tessera areas are smooth functions of their distances
to neighboring spheres. For each tessera, two switching func-
tions are used for each neighboring sphere. The analytic de-
rivatives of the tessera positions and areas with respect to
atomic coordinates can be obtained and used for evaluating
the nuclear gradients. Numerical tests show that �1� the ac-
curacy of the FIXPVA gradients is �10−6 a.u., the same as
that of the gas phase HF and DFT calculations, �2� the po-
tential energy surfaces obtained with FIXPVA are smooth,
and �3� FIXPVA geometry optimization processes are stable
and convergent.
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