Evidence of hollow golden cages: Supplementary Materials and Supporting Information

Satya S. Bulusu
University of Nebraska-Lincoln, sbulusu@iiti.ac.in

Xi Li
Rowland Institute at Harvard, li@rowland.harvard.edu

Lai-Sheng Wang
Washington State University & Pacific Northwest National Laboratory, ls.wang@pnl.gov

Xiao Cheng Zeng
University of Nebraska-Lincoln, xzeng1@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/chemzeng

Part of the Chemistry Commons

http://digitalcommons.unl.edu/chemzeng/18

This Article is brought to you for free and open access by the Published Research - Department of Chemistry at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Xiao Cheng Zeng Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Fig. 3. Simulated anion photoelectron spectra [based on the density-functional theory (DFT) calculation with the PBE0/LANL2DZ functional and basis set] for all of the candidate lowest-energy isomers of Au_{15} (A), Au_{16} (B), Au_{17} (C), and Au_{18} (D) identified in Fig. 3 A–D, respectively.
Simulated Anion Photoelectron Spectra

Figure 4A

Au_{15}^- (top 5)
Au$_{16}^-$ (top 5)

Figure 4B
Figure 4C

Au_{17}^- (top 6)
Figure 4D

Au$_{18}$- (top 6)
Fig. 4. Top-10 lowest-energy isomers of \(\text{Au}_{15} \) (A), \(\text{Au}_{16} \) (B), \(\text{Au}_{17} \) (C), \(\text{Au}_{18} \) (D), and \(\text{Au}_{19} \) (E) obtained from a basin-hopping global search combined with DFT optimization and total-energy calculation. The energy values (in eV) given beneath each isomer are the relative energy with respective to the leading lowest-energy isomer. The energy values in black are based on the PBE exchange-correlation functional (1), and the double numerical basis set with polarization functions, implemented in the DMOL\(^3\) package (2). Those isomers with their energy value within 0.2 eV from the leading lowest-energy isomer are all regarded as candidates for the lowest-energy structure to be compared with experimental data. Relative energies among these candidate lowest-energy isomers are further evaluated by using a modest and a large basis sets. The energy values in blue are based on optimization with the PBEPBE/LANL2DZ functional/basis set, implemented in the GAUSSIAN 03 package (3), and the energy values in red are based on single-point calculations at the PBEPBE/SDD+Au(2f)//PBEPBE/LANL2DZ level of theory, implemented in the GAUSSIAN 03 package (3). Here “SDD+Au(2f)” denotes the Stuttgart/Dresden ECP valence basis (4, 5) augmented by two sets of \(f \) polarization functions (exponents = 1.425, 0.468). The isomers enclosed by a black frame also are highlighted in Fig. 1B.

Notes

Au\textsubscript{15}− (top10)

Figure 3A
Figure 3B

Au_{16}^- (top10)
Figure 3C

Au$_{17}^-$ (top10)
Figure 3D

$\text{Au}_{18}^{-} \text{ (top10)}$
Figure 3E
Table 2. The experimental adiabatic detachment energies (ADEs) for Au_n^- ($n = 15$–19) measured from the threshold of the first photoelectron band

<table>
<thead>
<tr>
<th>Isomer</th>
<th>ADE, eV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au_{15}^-</td>
<td>3.61 ± 0.03</td>
</tr>
<tr>
<td>Au_{16}^-</td>
<td>3.99 ± 0.03</td>
</tr>
<tr>
<td>Au_{17}^-</td>
<td>4.03 ± 0.03</td>
</tr>
<tr>
<td>Au_{18}^-</td>
<td>3.24 ± 0.03</td>
</tr>
<tr>
<td>Au_{19}^-</td>
<td>3.71 ± 0.03</td>
</tr>
</tbody>
</table>