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Prioritizing Test Cases For Regression Testing

Gregg Rothermel, Member, IEEE Computer Society,
Roland H. Untch, Member, IEEE Computer Society, Chengyun Chu, and
Mary Jean Harrold, Member, IEEE Computer Society

Abstract—Test case prioritization techniques schedule test cases for execution in an order that attempts to increase their
effectiveness at meeting some performance goal. Various goals are possible; one involves rate of fault detection—a measure of how
quickly faults are detected within the testing process. An improved rate of fault detection during testing can provide faster feedback on
the system under test and let software engineers begin correcting faults earlier than might otherwise be possible. One application of
prioritization techniques involves regression testing—the retesting of software following modifications; in this context, prioritization
techniques can take advantage of information gathered about the previous execution of test cases to obtain test case orderings. In this
paper, we describe several techniques for using test execution information to prioritize test cases for regression testing, including:
1) techniques that order test cases based on their total coverage of code components, 2) techniques that order test cases based on
their coverage of code components not previously covered, and 3) techniques that order test cases based on their estimated ability to
reveal faults in the code components that they cover. We report the results of several experiments in which we applied these
techniques to various test suites for various programs and measured the rates of fault detection achieved by the prioritized test suites,
comparing those rates to the rates achieved by untreated, randomly ordered, and optimally ordered suites. Analysis of the data shows
that each of the prioritization techniques studied improved the rate of fault detection of test suites, and this improvement occurred even
with the least expensive of those techniques. The data also shows, however, that considerable room remains for improvement. The

studies highlight several cost-benefit trade-offs among the techniques studied, as well as several opportunities for future work.

Index Terms—Test case prioritization, regression testing, software testing, empirical studies.

1 INTRODUCTION

OFTWARE engineers often save the test suites they develop

for their software so that they can reuse those test suites
later as the software evolves. Such test suite reuse, in the
form of regression testing, is pervasive in the software
industry [24] and, together with other regression testing
activities, has been estimated to account for as much as one-
half of the cost of software maintenance [4], [20]. Running
all of the test cases in a test suite, however, can require a
large amount of effort. For example, one of our industrial
collaborators reports that for one of its products of about
20,000 lines of code, the entire test suite requires seven
weeks to run.

For this reason, researchers have considered various
techniques for reducing the cost of regression testing,
including regression test selection, and test suite minimiza-
tion techniques. Regression test selection techniques (e.g.,
[5], [7], [21], [29]) reduce the cost of regression testing by
selecting an appropriate subset of the existing test suite
based on information about the program, modified version,
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and test suite. Test suite minimization techniques (e.g., [6],
[15], [30], [37]) lower costs by reducing a test suite to a
minimal subset that maintains equivalent coverage of the
original test suite with respect to a particular test adequacy
criterion.

Regression test selection and test suite minimization
techniques, however, can have drawbacks. For example,
although some empirical evidence indicates that, in certain
cases, there is little or no loss in the ability of a minimized
test suite to reveal faults in comparison to its unminimized
original [37], [38], other empirical evidence shows that the
fault detection capabilities of test suites can be severely
compromised by minimization [30]. Similarly, although
there are safe regression test selection techniques (e.g., [3],
[7], [29], [34]) that can ensure that the selected subset of a
test suite has the same fault detection capabilities as the
original test suite, the conditions under which safety can be
achieved do not always hold [28], [29].

Test case prioritization techniques [31], [36] provide another
method for assisting with regression testing.! These
techniques let testers order their test cases so that those
test cases with the highest priority, according to some
criterion, are executed earlier in the regression testing
process than lower priority test cases. For example, testers
might wish to schedule test cases in an order that achieves
code coverage at the fastest rate possible, exercises features
in order of expected frequency of use, or exercises

1. Some test case prioritization techniques may be applicable during the
initial testing of software [1]. In this paper, however, we are concerned only
with regression testing. Section 2 discusses other applications of prioritiza-
tion and related work on prioritization in further detail.

0098-5589/01/$10.00 © 2001 IEEE



930 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 10, OCTOBER 2001

subsystems in an order that reflects their historically
demonstrated propensity to fail.

When the time required to reexecute an entire test suite is
short, test case prioritization may not be cost-effective—it
may be sufficient simply to schedule test cases in any order.
When the time required to execute an entire test suite is
sufficiently long, however, test-case prioritization may be
beneficial because, in this case, meeting testing goals earlier
can yield meaningful benefits.

Because test case prioritization techniques do not
themselves discard test cases, they can avoid the drawbacks
that can occur when regression test selection and test suite
minimization discard test cases. Alternatively, in cases
where the discarding of test cases is acceptable, test case
prioritization can be used in conjunction with regression
test selection or test suite minimization techniques to
prioritize the test cases in the selected or minimized test
suite. Further, test case prioritization can increase the
likelihood that, if regression testing activities are unexpect-
edly terminated, testing time will have been spent more
beneficially than if test cases were not prioritized.

In this paper, we describe several techniques for
prioritizing test cases for regression testing. We then
describe several empirical studies we performed with these
techniques to evaluate their ability to improve rate of fault
detection—a measure of how quickly faults are detected
within the testing process. An improved rate of fault
detection during regression testing provides earlier feed-
back on a system under test and lets debugging activities
begin earlier than might otherwise be possible. Our results
indicate that test case prioritization can significantly
improve the rate of fault detection of test suites. Our results
also highlight several cost-benefit trade-offs between var-
ious techniques.

The next section of this paper precisely describes the test
case prioritization problem, presents several prioritization
techniques, and discusses previous work on prioritization.
Section 3 presents the design, results, and analysis of our
empirical studies. Section 4 discusses our results and their
practical implications, and Section 5 presents overall
conclusions and discusses future work.

2 TEeST CASE PRIORITIZATION

We formally define the test case prioritization problem as
follows:

Definition 1. The Test Case Prioritization Problem:
Given: T, a test suite, PT, the set of permutations of T, and f,
a function from PT to the real numbers.
Problem: Find T' € PT such that (VT") (I" € PT) (T" #

) [f(T) = f(T")].

In this definition, PT represents the set of all possible
prioritizations (orderings) of 7, and f is a function that,
applied to any such ordering, yields an award value for that
ordering. (For simplicity, and without loss of generality, the
definition assumes that higher award values are preferable
to lower ones.)

There are several aspects of the test case prioritization
problem that are worth describing further. First, there

are many possible goals of prioritization, including the
following:

e Testers may wish to increase the rate of fault
detection of a test suite—that is, the likelihood of
revealing faults earlier in a run of regression tests
using that test suite.

e Testers may wish to increase the coverage of cover-
able code in the system under test at a faster rate,
thus allowing a code coverage criterion to be met
earlier in the test process.

e Testers may wish to increase their confidence in the
reliability of the system under test at a faster rate.

e  Testers may wish to increase the rate at which high-
risk faults are detected by a test suite, thus locating
such faults earlier in the testing process.

e Testers may wish to increase the likelihood of
revealing faults related to specific code changes
earlier in the regression testing process.

Here, these goals are stated qualitatively. To measure the
success of a prioritization technique in meeting any such
goal, however, we must describe the goal quantitatively. In
Definition 1, f represents such a quantification. Later in this
paper, we will precisely define one particular function f for
use in quantifying the first of these goals.

Second, depending upon the choice of f, the test case
prioritization problem may be intractable or undecidable.
For example, given a function f that quantifies whether a
test suite achieves statement coverage at the fastest rate
possible, an efficient solution to the test case prioritization
problem would provide an efficient solution to the
knapsack problem.” Similarly, given a function f that
quantifies whether a test suite detects faults at the fastest
rate possible, a precise solution to the test case prioritization
problem would provide a solution to the halting problem.
In such cases, prioritization techniques must be heuristics.

Third, test case prioritization can be used either in the
initial testing of software or in the regression testing of
software. One difference between these two applications is
that, in the case of regression testing, prioritization
techniques can use information gathered in previous runs
of existing test cases to help prioritize the test cases for
subsequent runs.

Fourth, it is useful to distinguish two varieties of test case
prioritization: general test case prioritization and version-
specific test case prioritization. In general test case prioritiza-
tion, given program P and test suite T, we prioritize the test
cases in T with the intent of finding an ordering of test cases
that will be useful over a succession of subsequent modified
versions of P. Thus, general test case prioritization can be
performed following the release of some version of the
program during off-peak hours, and the cost of performing
the prioritization is amortized over the subsequent releases.
It is hoped that the resulting prioritized suite will be more
successful than the original suite at meeting the goal of the
prioritization, on average over those subsequent releases.

2. Informally, the knapsack problem is the problem of, given a set U
whose elements each have a cost and a value, and given a size constraint
and a value goal, finding a subset U’ of U such that U’ meets the given size
constraint and the given value goal. For a more formal treatment see [11].
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TABLE 1
A Catalog of Prioritization Techniques
Code | Mnemonic Description
M, untreated no prioritization
M- random randomized ordering
Ms optimal ordered to optimize rate of fault detection
My stmt-total prioritize in order of coverage of statements
Ms stmt-addtl prioritize in order of coverage of statements not yet covered
Mg branch-total | prioritize in order of coverage of branches
M~ branch-addtl | prioritize in order of coverage of branches not yet covered
Mg FEP-total prioritize in order of total probability of exposing faults
My FEP-addtl prioritize in order of total probability of exposing faults, adjusted to
consider effects of previous test cases

In contrast, in version-specific test case prioritization, given
program P and test suite 7', we prioritize the test cases in 7'
with the intent of finding an ordering that will be useful on
a specific version P’ of P. Version-specific prioritization is
performed after a set of changes have been made to P and
prior to regression testing P’. Because this prioritization is
accomplished after P’ is available, care must be taken to
keep the cost of performing the prioritization from exces-
sively delaying the very regression testing activities it is
intended to facilitate. The prioritized test suite may be more
effective at meeting the goal of the prioritization for P’ in
particular than would a test suite resulting from general test
case prioritization, but may be less effective on average over
a succession of subsequent releases.

Typically—though not necessarily—general test case
prioritization does not use information about specific
modified versions of P, whereas version-specific prioritiza-
tion does use such information. Of course, it is possible for
general test case prioritization techniques to incorporate
information about expected modifications to improve the
average performance of prioritized test suites over a
succession of program versions, and it is possible to use
prioritization techniques that ignore the modified program
as version-specific techniques.

Fifth, it is also possible to integrate test case prioritization
with regression test selection or test suite minimization
techniques—for example, by prioritizing a test suite
selected by a regression test selection algorithm, or by
prioritizing the minimal test suite returned by a test suite
minimization algorithm.

Finally, given any prioritization goal, various prioritiza-
tion techniques may be applied to a test suite with the aim of
meeting that goal. For example, in an attempt to increase
the rate of fault detection of test suites, we might prioritize
test cases in terms of the extent to which they execute
modules that, measured historically, have tended to fail.
Alternatively, we might prioritize test cases in terms of
their increasing cost-per-coverage of code components, or
in terms of their increasing cost-per-coverage of features
listed in a requirements specification. In any case, the
intent behind the choice of a prioritization technique is to
increase the likelihood that the prioritized test suite can
better meet the goal than would an ad hoc or random
ordering of test cases.

In this paper, we restrict our attention, focusing on
general test case prioritization in application to regression
testing, independent of regression test selection and test
suite minimization. We focus on a specific goal and
function f, and we evaluate the abilities of several
prioritization techniques to help us meet this goal.

2.1 Prioritization for Rate of Fault Detection

Our focus in this paper is the first goal listed at the
beginning of Section 2: increasing the likelihood of reveal-
ing faults earlier in the testing process. Informally, we
describe this goal as one of improving our test suite’s rate of
fault detection: We describe a function f that quantifies this
goal in Section 3.2.

As we suggested in Section 1, there are several
motivations for meeting this goal. An improved rate of
fault detection during regression testing can let software
engineers begin their debugging activities earlier than
might otherwise be possible, speeding the release of the
software. An improved rate of fault detection can also
provide faster feedback on the system under test and
provide earlier evidence when quality goals have not been
met, thus allowing strategic decisions about release sche-
dules to be made earlier than might otherwise be possible.
Further, in a testing situation in which the amount of testing
time that will be available is uncertain (for example, when
market pressures may force a release of the product prior to
execution of all test cases), such prioritization can increase
the likelihood that, whenever the testing process is
terminated, testing resources will have been spent more
cost-effectively in relation to potential fault detection than
they might otherwise have been.

In this paper, we consider nine different test case
prioritization techniques (see Table 1). The first three
techniques serve as experimental controls (though not
actually “techniques” in a practical sense, we refer to them
as such to simplify the presentation.) The last six techniques
represent heuristics that could be implemented using
software tools; all of these techniques use test coverage
information, produced by prior executions of test cases, to
prioritize test cases for subsequent execution. A source of
motivation for such approaches is the conjecture that the
availability of test execution data can be an asset; however,
such approaches also make the assumption that past test
execution data can be used to predict, with sufficient
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accuracy, subsequent execution behavior. In practice, code
modifications made to create a new version may alter test
execution patterns; an issue impacting the efficacy of test
case prioritization techniques is whether these alterations
will significantly impact the predictive value of past
execution data.

We next describe the nine techniques listed in Table 1 in
turn.

M,: No prioritization. To facilitate our empirical studies,
one prioritization technique that we consider is simply the
application of no technique; this lets us consider “un-
treated” test suites and serves as a control.

M;: Random prioritization. The success of an untreated test
suite in meeting a goal may depend upon the manner in
which the test suite is initially constructed. Therefore, as an
additional control in our studies, we apply random
prioritization, in which we randomly order the test cases
in a test suite.

M;: Optimal prioritization. As we shall discuss in Section 3,
to measure the effects of prioritization techniques on the
rate of fault detection, our empirical studies use programs
that contain known faults. Given program P and a set of
known faults for P, if we can determine, for test suite T,
which test cases in 1" expose which faults in P, then we can
determine an optimal ordering of the test cases in T for
maximizing 7"”s rate of fault detection for that set of faults.
In practice, of course, this is not a practical technique, as it
requires a priori knowledge of the existence of faults and of
which test cases expose which faults; however, by using this
technique in our empirical studies, we can gain insight into
the success of other practical heuristics, by comparing their
solutions to optimal solutions.

An algorithm that always determines an optimal test-
case ordering may have to consider all possible test-case
orderings and, therefore, must have a worst-case runtime
exponential in test suite size. Many of the test suites we use
in our empirical studies are too large to support the
practical use of such an algorithm; thus, in our empirical
studies, we have employed a greedy “optimal” prioritiza-
tion algorithm. Given a program P with a set of faulty
versions, a test suite T, and information on which test cases
in T expose which faults, our algorithm iteratively selects
the test case in T' that exposes the most faults not yet
exposed by a selected test case, until test cases that expose
all faults have been selected. When test cases that expose
all faults have been selected by this algorithm, remaining
test cases must be prioritized by some method. Given the
measure of rate of fault detection that we employ in this
work, however, this ordering of subsequent test cases has
no effect on rate of fault detection (this shall become clear
following discussion of our effectiveness measure in
Section 3.2). Thus, our algorithm prioritizes these remain-
ing test cases in order of their appearance in the original
test suite.

This greedy prioritization algorithm may not always
choose the optimal test case ordering. To see this, suppose a
program contains four faults, and suppose our test suite for
that program contains three test cases that detect those
faults as shown in Table 2. Our greedy algorithm may select

TABLE 2
A Case in Which the Greedy “Optimal” Prioritization Algorithm
May Not Produce an Optimal Solution

Test Case Fault
1 2 3 4
t X X
o X X
t3 X X

test case t; first, test case t» second, and test case t3 third.
However, the optimal test case orderings in this case are t,,
ts, t1 and ts3, t9, t;. Despite this fact, as we shall show, our
algorithm provides a useful benchmark against which to
measure practical techniques because we know that an
optimal ordering could perform no worse than the ordering
that we calculate. For brevity, in the rest of this paper, we
refer to our technique that incorporates this algorithm as
optimal prioritization.

M,: Total statement coverage prioritization. By instru-
menting a program, we can determine, for any test case,
which statements in that program were exercised (covered)
by that test case. We can then prioritize test cases in terms of
the total number of statements they cover by counting the
number of statements covered by each test case and then
sorting the test cases in descending order of that number.
(When multiple test cases cover the same number of
statements, an additional rule is necessary to order these
test cases; we order them randomly.)

To illustrate, Fig. 1 depicts a procedure (left) and the
statement coverage of the executable statements in that
procedure achieved by three test cases (center). Applied in
this case, total statement coverage prioritization yields test
case order (3, 1, 2).

For a test suite containing m test cases and a program
containing n statements, total statement coverage prioriti-
zation can be accomplished in time O(m n 4+ m log m). (The
first term denotes the time required to count the statements
covered by each test case, and the second term denotes the
time required to sort the test cases according to coverage.)
Typically, n is greater than m, in which case the cost of this
prioritization is O(m n).

Note that our measure of total statement coverage does
not consider repetition in coverage in its calculation. That
is, a statement that is executed once is treated the same as
a statement that, due to looping, is executed multiple
times. This treatment, however, is the treatment that
underlies code-coverage-based testing techniques gener-
ally. Alternative measures could consider execution
counts; we leave the investigation of such alternatives as
a subject for future work.

Ms: Additional statement coverage prioritization. Total
statement coverage prioritization schedules test cases in the
order of total coverage achieved; however, having executed
a test case and covered certain statements, more may be
gained in subsequent testing by executing statements that
have not yet been covered. Additional statement coverage
prioritization iteratively selects a test case that yields the
greatest statement coverage, then adjusts the coverage
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STATEMENT COVERAGE

procedure P testcase 1 | testcase2 | testcase 3
1. sl 1 X X X
2. while (cl) do
. ( ) 2 X X X BRANCH COVERAGE
3. if (c2) then 3 X X
4. exit é 4 X lest case 1 test case 2 test case 3
[}
else % entry X X X
5. s3 D 5 X 2-lrue X X
endif s 2-false X X
3-true X
6. s4 0
. 6 X 3-false X
endwhile
7. s5 7 X X
8. s6 8 X X
9. s7 9 X X

Fig. 1. Procedure P and the statement and branch coverage of P achieved by three test cases.

information on all remaining test cases to indicate their
coverage of statements not yet covered and repeats this
process until all statements covered by at least one test case
have been covered. (When multiple test cases cover the
same number of statements not yet covered, an additional
rule is necessary to choose one of these test cases; we do this
randomly.)

Having ordered a subset of the test cases in a test suite in
this manner, we may reach a point where each statement
has been covered by at least one test case, and the
remaining unprioritized test cases cannot add additional
statement coverage. Next, we could order these remaining
test cases using any prioritization technique; in this work,
we order the remaining test cases by reapplying additional
coverage prioritization (i.e., by resetting the coverage
vectors for all of these test cases to their initial values, and
reapplying the algorithm ignoring all previously prioritized
test cases).

For illustration, consider Fig. 1. In this example, both
total and additional statement coverage prioritization
select test case 3 first; however, whereas total coverage
prioritization selects test case 1 second, additional cover-
age prioritization detects that test case 1 covers no
statements not already covered by test case 3 and that
test case 2 covers an uncovered statement and outputs test
case order (3, 2, 1).

Additional statement coverage prioritization requires
coverage information for each unprioritized test case to be
updated following the choice of each test case. Given a test
suite containing m test cases and a program containing
n statements, selecting a test case and readjusting coverage
information has cost O(mn) and this selection and
readjustment must be performed O(m) times. Therefore,
the cost of additional statement coverage prioritization is
O(m2 n), a factor of m more expensive than total statement
coverage prioritization.

Ms: Total branch coverage prioritization. Total branch
coverage prioritization is the same as total statement
coverage prioritization, except that it uses test coverage
measured in terms of program branches rather than
statements. In this context, we define branch coverage as
coverage of each possible overall outcome of a (possibly

compound) condition in a predicate. Thus, for example,
each 1f or while statement must be exercised such that it
evaluates at least once to true and at least once to false.
To accommodate functions that contain no branches, we
treat each function entry as a branch, and regard that
branch as covered by each test case that causes the function
to be invoked.

Because in theory branch coverage properly subsumes
statement coverage [27] (e.g., a test suite that is adequate for
branch coverage is necessarily adequate for statement
coverage, but not vice-versa), one might conjecture that
prioritization based on branch coverage should on average
be at least as effective as, if not more effective than,
prioritization based on statement coverage. On the other
hand, the arms of a branch often contain different numbers
of statements and, in this case, ordering by branches may
cause less-than-ideal attention to be paid to branches that
contain the most code; on this basis, one might conjecture
that prioritization for statement coverage would be more
effective than prioritization for branch coverage.” To begin
to address these contradictory intuitions, empirical inves-
tigation of the relationship between statement- and branch-
coverage-based prioritization techniques is necessary.

Fig. 1 (right) depicts the branch coverage achieved on the
code depicted in the figure by the same three test cases used
in the illustration of statement coverage prioritization.
Applied to this example, total branch coverage prioritiza-
tion outputs test case order (3, 2, 1).

My: Additional branch coverage prioritization. Additional
branch coverage prioritization is the same as additional
statement coverage prioritization, except that it uses test
coverage measured in terms of program branches rather
than statements. With this technique, too, we require a
method for prioritizing the remaining test cases after
complete coverage has been achieved and, in this work,
we do this by resetting coverage vectors to their initial
values and reapplying additional branch coverage prior-
itization to the remaining test cases.

3. This latter possibility was suggested by one of the anonymous
reviewers.
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Applied to the example and branch coverage informa-
tion depicted in Fig. 1, total branch coverage prioritization
outputs test case order (3, 2, 1). In this case, unlike the case
with statement coverage prioritization, total and additional
branch coverage prioritizations output identical test case
orders.

Mg: Total fault-exposing-potential (FEP) prioritization.
Statement and branch coverage prioritization consider only
whether a statement or branch has been exercised by some
test case. These techniques thus ignore a fact about test
cases and faults: Some faults are more easily exposed than
other faults, and some test cases are more adept at revealing
particular faults than other test cases. More formally, the
ability of a test case to expose a fault—that test case’s fault
exposing potential (FEP)—depends not only on whether the
test case covers (executes) a faulty statement, but also on the
probability that a fault in that statement will cause a failure
for that test case [12], [14], [32], [33]. Although any practical
determination of this probability must be an approximation,
we wished to determine whether the use of such an
approximation could yield a prioritization technique super-
ior in terms of rate of fault detection than techniques based
on simple code coverage.

Voas [33] provides one method for obtaining such
approximations, in the form of PIE (propagation, infec-
tion, and execution) analysis. PIE analysis assesses the
probability that, under a given input distribution, if a
fault exists in a statement s, it will result in a failure. This
probability, termed the sensitivity of s, is estimated by
combining independent estimates of three probabilities:
1) the probability that s is executed (execution probability),
2) the probability that a change in s can cause a change in
program state (infection probability), and 3) the probability
that a change in state propagates to output (propagation
probability). PIE analysis uses various methods to obtain
these estimates: 1) simple code instrumentation to
estimate execution probability, 2) a variant of weak
mutation [18] in which syntactic changes are applied to s
and then the state after s is examined for effects to
estimate infection probability, and 3) state perturbation, in
which the data state following s is altered and then
program output is examined for differences to estimate
propagation probability.

One approach to incorporating estimates of fault-expos-
ing-potential would involve obtaining sensitivity estimates
of the form suggested by Voas, and associating these
estimates with test cases using test coverage information.
For the purpose of test case prioritization, however, this
approach has two disadvantages.

First, by factoring in execution probabilities, sensitivity
measures the probability that a fault will cause a failure
relative to an input distribution. When prioritizing test
cases for regression testing based on existing coverage
information, however, we are interested in the probability
that, if a test case executes a statement s containing a fault,
that fault will propagate to output. It is possible for s to
have very high [low] infection and propagation probabil-
ities with respect to the inputs that execute it, even though it
has a very low [high] execution probability relative to an
input distribution. Thus, the incorporation of execution

probabilities into sensitivity estimates distorts the measure
of the likelihood that a given test case that reaches s will
expose a fault in s. For the application and approach that we
consider, a more appropriate measure would consider only
infection and propagation.

A second drawback of sensitivity in this context involves
its treatment of propagation and infection estimates.
Sensitivity analysis separately calculates these estimates
and uses a conservative approach to combine them. This
conservative approach is designed to reflect the worst case
in which the set of data state errors that produce the
infection estimate is exactly the set of data state errors that
do not propagate to output, although, in general, this case
may be unlikely to occur. This approach can result in low
estimates of fault exposing potential, with a large number of
statements receiving estimates of zero; these zero estimates
may compromise the ability of test case prioritization
techniques to create useful test case orderings.

Thus, in this work, to obtain an approximation of the
fault-exposing-potential of a test case, we adopt an
approach that uses mutation analysis [9], [13] to produce
a combined estimate of propagation-and-infection that does
not incorporate independent execution probabilities. (Mu-
tation analysis creates a large number of faulty versions
(“mutants”) of a program by altering program statements,
and uses these to assess the quality of test suites by
measuring whether those test suites can detect those faults
(“kill” those mutants).)

The approach works as follows: Given program P and
test suite 7, we first create a set of mutants N =
{n1,n9,...,ny} for P, noting which statement s; in P
contains each mutant. Next, for each test case t; € T, we
execute each mutant version n; of P on t;, noting whether ¢;
kills that mutant. Having collected this information for
every test case and mutant, we consider each test case ¢; and
each statement s; in P, and calculate the fault-exposing-
potential FEP(s,t) of t; on s; as the ratio of mutants of s;
killed by ¢; to the total number of mutants of s;. Note that if
t; does not execute s, this ratio is zero.

To perform total FEP prioritization, given these
FEP(s,t) values, we next calculate, for each test case
t; € T, an award value, by summing the FEP(s;,t;) values
for all statements s; in P. Given these award values, we then
prioritize test cases by sorting them in order of descending
award value (resolving ties by random selection).

To illustrate, Fig. 2 depicts the procedure P considered in
our earlier discussion of coverage-based prioritization
techniques and a table listing fault-exposing-potential
estimates that might be calculated for the three test cases
and the statements in that procedure. In this case, the award
value for test case t1 is 2.3, the award value for test case t2 is
2.41, the award value for test case t3 is 2.2, and total
FEP prioritization outputs test case order (2, 1, 3).

Total FEP prioritization may appear, like statement- and
branch-coverage-based prioritization, to ignore multiple
statement executions caused by looping. However, because
the mutation scores with which we obtain FEP values are
obtained through actual test executions, they have captured
at least some of the effects of looping on fault detection.
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procedure P

1. sl
2. while (cl) do
3. if (c¢2) then
4. exit

else
5. s3

endif
6. s4

endwhile

7. s5
8. s6
9. s7

Fig. 2. Procedure P and F'EP(s,t) values for three test cases.

One issue to consider with respect to the use of program
mutation to approximate FEP values involves the “equiva-
lent mutant” problem: The problem of determining
whether a mutant version of a program is semantically
equivalent to the original program. A semantically equiva-
lent mutant can never be killed by any test case. The
problem of identifying equivalent mutants is undecidable
in general and, in practice, can involve considerable human
effort. It was not feasible in our empirical studies to
identify these mutants given the enormous numbers of
mutants involved (over 160,000 mutants). Therefore, we
considered two approaches for coping with the possible
presence of these mutants.

The first approach is to consider mutants not killed by
any test case used in the empirical studies to be
semantically equivalent mutants, and ignore these mutants
in our FEP calculations. (The number of test cases used in
our empirical studies is also enormous, as we report in
Section 3.4.) This approach, however, may overestimate the
number of semantically equivalent mutants, and cause us
to overestimate FEP values. Such overestimates may cause
us to assign an inordinately high award value to any test
case that executes statements containing such mutants—an
award value that proclaims the test case more powerful
than it is.

The second approach is to treat all mutants not killed by
any test case as possibly nonequivalent and consider those
mutants in our FEP calculations. This approach may
underestimate the number of semantically equivalent
mutants and cause us to underestimate FEP values. Such
underestimates may cause us to assign an inordinately low
award value to any test case that executes statements
containing such mutants—an award value that proclaims
the test case less powerful than it is.

We chose the second approach due to its conservatism.

Given the FEP(s,t) values for a test suite containing
m test cases and a program containing n statements, total
FEP prioritization can be accomplished in time O(mn
+ mlogm). In general, n is greater than m, in which
case, the cost of this prioritization is O(m n), a worst-case
time analogous to that for total statement coverage
prioritization.

statement
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FEP(s,t) wvalues

testcase 1 | testcase 2 | testcase 3
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The cost of obtaining FEP(s,t) values could, however,
be quite high: Certainly, if these values are obtained
through mutation analysis, this cost may be excessive.
Thus, whereas our investigation of coverage-based prior-
itization techniques involves techniques that are potentially
practical and applicable as presented, our investigation of
FEP-based techniques should be considered exploratory.
Such an exploration, however, is easily motivated: If
FEP prioritization shows promise, this would justify a
search for more cost-effective techniques for approximating
fault-exposing potential, such as techniques that use
constrained mutation [23], or techniques that use static
measures of the likelihood of fault exposure [22].

My: Additional fault-exposing-potential (FEP) prioritiza-
tion. Analogous to the extensions made to total statement
and branch coverage prioritization to yield additional
statement and branch coverage prioritization, we extend
total FEP prioritization to create additional fault-exposing-
potential (FEP) prioritization. This lets us account for the
fact that additional executions of a statement may be less
valuable than initial executions.

To describe this technique more precisely, we require a
mechanism for measuring the value of an execution of a
statement, that can be related to FEP values. For this, we use
the term confidence. We say that the confidence in
statement s, C(s), is an estimate of the probability that s is
correct. (C(s) is a value between 0 and 1, inclusive.) If we
execute a test case ¢ that exercises s and does not reveal a
fault in s, C(s) should increase. Assume that, prior to
execution of ¢, the confidence in statement s is C(s), and the
fault-exposing potential of ¢ for s is FEP(s,t). Then, after
execution of ¢ and if ¢ exposes no fault in s, our new
confidence in s, C'(s), is

C'(s)=1—(1—-C(s))- (1 - FEP(s,t)).
Simplifying this equation, we obtain

C'(s)

C(s)+ (1 =C(s)) - FEP(s,t).

So, the additional confidence in statement s that we gain by
executing test case ¢ through s is

Coadi(8) = C'(s) = C(s) = (1 — C(s)) - FEP(s,t).
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Calculation 1:

C_addi(s) values per test case

Calculation 2:

C(s) after execution of test case 2
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Calculation 3:

C_addi(s) values per test case

testcase 1 | testcase2 | testcase3
1
1 . .5 .3
2
2 .5 .9 .4 3
3 .01 .4 -
4 1.0 4
= =
= 5]
o 5
g 5 .4 E
s 8
"6 1 6
7 .2 7
8 .3
9 3 .1 9

testcase 1 | testcase 2 | testcase 3

-3 ! .2 .15
2 2 .05 .04
01 3 .40
0 4

§
0 g5 4

8

g
0 6 1
0 7 5 2
0 8 .6 3
0 .3 1

Fig. 3. Values calculated during additional FEP prioritization for the program and test cases of Fig. 2.

We define C,q4(t), the additional confidence gained from
executing test case ¢ on program P, as the sum of the
Codgai(s) for all statements s covered by t¢. Thus, if

51,82, -, s are statements covered by ¢, then

Coddi(t) = Cadai(51) + Cadai(s2) + - - + Caqai (s)-

Additional FEP prioritization iteratively selects a test case ¢
that yields the greatest C,qq;(t) value given the current
Cladi(s) values, then updates the C(s) values for statements
covered by ¢ and recalculates the C,uq(s) values of
remaining statements for remaining test cases based on
the updated C(s) values and then repeats this process until
all test cases have been prioritized.

Although, in practice, the initial values of C(s) could be
set differently for different statements, we initialize all C'(s)
to a fixed value. The fixed value we chose is 0, which
implies that we have no confidence in any statement prior
to running the test suite. (We could choose other initial
values. For example, 0.5 could be used to indicate that the
probabilities of a statement being correct and containing a
fault are equal.)

As an example of the application of additional
FEP prioritization, again consider Fig. 2. We initialize
C(s) to 0 for all statements. In this case, the C,q4:(s) values
that would result from executing each test case are shown
in Fig. 3 (Calculation 1) and are (for each test case)
equivalent to the original FEP(s,t) values. Thus, we have
Caddi(tl) = 2.3, Caddi(tZ) = 2.41, and Caddi(t3) = 2.2, and
additional FEP prioritization, like total FEP prioritization,
selects test case 2 as the first test case.

Having chosen this test case, additional FEP prioritiza-
tion now calculates, for each statement s, C’(s), the new
confidence in that statement. Because test case 2 executes
only statements 1, 2, 3, and 4, their confidence values
increase while the confidence values of other statements
remain 0. Fig. 3 (Calculation 2) shows the resulting values.
Next, Cyq4i(s) values are recalculated for each remaining
test case as shown in the figure (Calculation 3); only the
values for statements 1, 2, and 3 are altered. From these, we
calculate Clu4i(t1) = 1.65 and Ciau(t3) = 1.69. Additional
FEP prioritization selects test case 3 next because it yields

the greatest gain in confidence. The technique outputs test
case order (2, 3, 1), in which the order of the second and
third test cases is the reverse of the order output by total
FEP prioritization.

One difference between additional FEP prioritization
and additional statement or branch coverage prioritization
is that, in the additional FEP prioritization algorithm, we
are not likely to need to check whether “full confidence” has
been achieved: It is not likely that we will reach a point at
which no additional confidence can be gained for all
remaining test cases. The reason for this is that, for a test
case t's Cugq;(t) to be 0, the C(s) for each statement covered
by t must be 1, and for the C(s) for a statement to be 1, there
must exist some test case ¢ for which FEP(s,t') is 1.
FEP(s,t) may be estimated to be 1 in some cases, but it is
unlikely that it will be estimated to be 1 for each statement
covered by t. If this unlikely event did occur, we could
proceed as with other “additional” coverage prioritization
techniques, resetting C(s) and Clqq;(t) values to their initial
states for those test cases not yet prioritized and reapplying
the algorithm to those test cases; however, in our empirical
studies, this event did not occur.

Like additional statement coverage prioritization, addi-
tional FEP prioritization requires coverage information for
each unprioritized test case to be updated following the
choice of each test case. Therefore, its cost, for a test suite of
m test cases and a program containing n statements, is
O(m?n), a factor of m more expensive than total FEP
prioritization. Also, like total FEP prioritization, however,
additional FEP prioritization requires a method for estimat-
ing FEP values, a potentially expensive requirement.

2.2 Related Work

In [1], Avritzer and Weyuker present techniques for
generating test cases that apply to software that can be
modeled by Markov chains, provided that operational
profile data is available. Although the authors do not use
the term “prioritization,” their techniques generate test
cases in an order that can cover a larger proportion of the
probability mass earlier in testing, essentially, prioritizing
the test cases in an order that increases the likelihood that
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Fig. 4. Example illustrating the APFD measure. (a) Test suite and faults exposed. (b) APFD for Prioitized Suite T1. (c) APFD for Prioritized Suite T2.

(d) APFD for Prioritized Suite T3.

faults more likely to be encountered in the field will be
uncovered earlier in testing. The approach provides an
example of the application of prioritization to the initial
testing of software, when test suites are not yet available.

In [36], Wong et al. suggest prioritizing test cases
according to the criterion of “increasing cost per additional
coverage.” Although not explicitly stated by the authors,
one possible goal of this prioritization is to reveal faults
earlier in the testing process. The authors restrict their
attention, however, to prioritization of test cases for
execution on a specific modified version of a program
(what we have termed “version-specific prioritization”) and
to prioritization of only the subset of test cases selected by a
safe regression test selection technique from the test suite
for the program. The authors do not specify a mechanism
for prioritizing the remaining test cases after full coverage
has been achieved. The authors describe a case study in
which they applied their technique to a program of over
6,000 lines of executable code (the same program, space,
that we use in two of the empirical studies reported in this
paper), and evaluated the resulting test suites against 10
faulty versions of that program. They conclude that the
technique was cost-effective in that application.

3 EMPIRICAL STUDIES OF TEST CASE
PRIORITIZATION TECHNIQUES

To investigate test case prioritization and to compare and
evaluate the test case prioritization techniques described in
Section 2, we performed several empirical studies.* This
section describes those studies, including design, measures,
subjects, results, and threats to validity.

3.1 Research Questions
We are interested in the following research questions.

e [0Q1:] Can test case prioritization improve the rate of
fault detection of test suites?
e [0Q2:] How do the various test case prioritization

techniques presented in Section 2 compare to one
another in terms of effects on rate of fault detection?

4. The subjects (programs, program versions, test cases, and test suites)
used in these studies and the data sets collected can be obtained by
contacting the first author.

3.2 Effectiveness Measure

To address our research questions, we require a measure
with which to assess and compare the effectiveness of
various test case prioritization techniques. (In terms of
Definition 1, this measure plays the role of the function f.)
As a measure of how rapidly a prioritized test suite detects
faults, we use a weighted average of the percentage of faults
detected, or APFD, during the execution of the test suite.
These values range from 0 to 100; higher APFD numbers
mean faster (better) fault detection rates.

To illustrate this measure, consider an example program
with 10 faults and a test suite of five test cases, A through E,
with fault detecting abilities, as shown in Fig. 4a.

Suppose we place the test cases in order A-B—C-D-E to
form a prioritized test suite T'1. Fig. 4b shows the
percentage of detected faults versus the fraction of the test
suite 7'1 used. After running test case A, two of the 10 faults
are detected; thus, 20 percent of the faults have been
detected after 0.2 of test suite 7'1 has been used. After
running test case B, two more faults are detected and, thus,
40 perent of the faults have been detected after 0.4 of the test
suite has been used. In Fig. 4b, the area inside the inscribed
rectangles (dashed boxes) represents the weighted percen-
tage of faults detected over the corresponding fraction of
the test suite. The solid lines connecting the corners of the
inscribed rectangles interpolate the gain in the percentage of
detected faults.” The area under the curve thus represents
the weighted average of the percentage of faults detected
over the life of the test suite. This area is the prioritized test
suite’s average percentage faults detected measure (APFD);
the APFD is 50 percent in this example.

Fig. 4c reflects what happens when the order of test
cases is changed to E-D-C-B-A, yielding test suite 72, a
“faster detecting” suite than 71 with an APFD of
64 percent. Fig. 4d shows the effects of using a prioritized
test suite 7'3 whose test case ordering is C-E-B-A-D. By
inspection, it is clear that this ordering results in the
earliest detection of the most faults and illustrates an
optimal ordering with an APFD of 84 percent.

5. This interpolation is a granularity adjustment when only a small
number of test cases comprise a test suite (the larger the test suite the
smaller this adjustment). The interpolation also corresponds to an
interpretation under which, as each test case in the test suite executes,
progress is considered to be made toward detecting the faults that are
detected by that test case.
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TABLE 3
Experiment Subjects
Lines of Number | Number | Test Average
Executable of of Pool | Test Suite
Program Code Versions | Mutants | Size Size
print_tokens 402 7 4030 4130 16
print_tokens2 483 10 4346 4115 12
replace 516 32 9622 5542 19
schedule 299 9 2153 2650 8
schedule2 297 10 2822 2710 8
tcas 138 41 2876 1608 6
tot_info 346 23 5898 1052 7
space 6218 35 132163 | 13585 155

Note that our measure of effectiveness, APFD, does not
incorporate factors of the cost of performing prioritization,
and we do not measure such factors in our experiments.
There are reasons for this. Our implementations of
techniques were not built for efficiency, and our studies
required us to run processes continuously on several
machines over several weeks, during which time we were
unable to control for other processes using the hardware
and, thereby, altering timings. It is not clear that perfor-
mance-cost measurements obtained from such tools run
under such conditions would be meaningful.

Moreover, any cost-benefits trade-offs involving test case
prioritization depend upon the testing process in use, and
how test case prioritization fits into that process. With
general test case prioritization (the variety of prioritization
that we are investigating), prioritization can be performed
“offline,” following a release of a system, at a time when
resource usage may be noncritical (provided it falls below a
certain threshold). The cost of performing this prioritization
can then be amortized over successive releases of the
software. The cost-benefit trade-offs of using such prior-
itization techniques will vary with the process used and the
resources available, and a single measure incorporating
both costs and benefits could obscure cost-effectiveness
analyses that might apply under particular processes.

Thus, instead of measuring and reporting run-time costs,
we have provided overall complexity analyses of test case
prioritization techniques, and we use these in Section 4
when we discuss practical implications of our results.

3.3 Prioritization and Analysis Tools

To perform our empirical studies, we required several tools.
To obtain test coverage and control-flow graph information,
we used the Aristotle program analysis system [16]. To
obtain mutation scores for use with FEP prioritization, we
used the Proteum mutation system [8]. We created
prioritization tools that implement the techniques outlined
in Section 2.

3.4 Subjects

We used eight C programs as subjects (see Table 3). The first
seven programs with faulty versions and test cases were
assembled by researchers at Siemens Corporate Research
for a study of the fault detection capabilities of control-flow
and data-flow coverage criteria [19]. We refer to these as the

Siemens programs. The eighth program is a program
developed for the European Space Agency. We refer to this
program as space. We further discuss the Siemens
programs and space in the following sections.

3.4.1 Siemens Programs, Versions, and Test Suites

The Siemens programs perform a variety of tasks: tcas is
an aircraft collision avoidance system, schedule2 and
schedule are priority schedulers, tot_info computes
statistics given input data print_tokens and print_
tokens2 are lexical analyzers, and replace performs
pattern matching and substitution.

The researchers at Siemens sought to study the fault
detecting effectiveness of coverage criteria. Therefore, they
created faulty versions of the seven base programs by
manually seeding those programs with faults, usually by
modifying a single line of code in the program. Their goal
was to introduce faults that were as realistic as possible,
based on their experience with real programs. Ten people
performed the fault seeding, working “mostly without
knowledge of each other’s work” [19, p. 196]. The result of
this effort was between seven and 41 versions of each base
program (see Table 3), each containing a single fault.

In this context, the use of single-fault versions is an
important experiment design choice that allows experi-
menters to precisely determine whether a test case reveals
a particular fault simply by determining whether the
version containing that fault fails. In the absence of this
methodology, it may be difficult or impossible to associate
test cases with particular faults. This choice does,
however, pose a potential threat to validity; we discuss
this further in Section 3.6.

For each base program, the researchers at Siemens
created a large test pool containing possible test cases for
the program. To populate these test pools, they first created
an initial suite of black-box test cases “according to good
testing practices, based on the tester’s understanding of the
program’s functionality and knowledge of special values
and boundary points that are easily observable in the code”
[19, p. 194], using the category partition method and the
Siemens Test Specification Language tool [2], [25]. They
then augmented this suite with manually-created white-box
test cases to ensure that each executable statement, edge,
and definition-use pair in the base program or its control-
flow graph was exercised by at least 30 test cases. To obtain
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meaningful results with the seeded versions of the
programs, the researchers retained only faults that were
“neither too easy nor too hard to detect” [19, p. 196], which
they defined as being detectable by at most 350 and at least
three test cases in the test pool associated with each
program.

To obtain sample test suites for these programs, we used
the test pools for the base programs and test-coverage
information about the test cases in those pools to generate
1,000 branch-coverage-adequate test suites for each pro-
gram. More precisely, to generate a test suite T for base
program P from test pool 7,, we used the C pseudo-
random-number generator rand, seeded initially with the
output of the C time system call, to obtain integers that we
treated as indexes into 7, (modulo |T,]). We used these
indexes to select test cases from T),; we added a selected test
case t to T only if ¢ added to the cumulative branch
coverage of P achieved by the test cases added to T thus far.
We continued to add test cases to 7" until 7' contained at
least one test case that would exercise each executable
branch in the base program. Table 3 lists the average sizes of
the branch-coverage-adequate test suites generated by this
procedure for the subject programs.

Using Proteum, we generated mutants for the Siemens
programs. Table 3 reports the numbers of mutant programs
thus created.

3.4.2 Space, Versions, and Test Suites

Space consists of 9,564 lines of C code (6,218 executable),
and functions as an interpreter for an array definition
language (ADL). The program reads a file that contains
several ADL statements, and checks the contents of the file
for adherence to the ADL grammar and to specific
consistency rules. If the ADL file is correct, space outputs
an array data file containing a list of array elements,
positions, and excitations; otherwise, the program outputs
error messages.

Space has 33 associated versions, each containing a
single fault that had been discovered during the program’s
development. (We adopt the single-fault-version approach
used with the Siemens programs for space, for the same
reasons.) Through working with this program, we discov-
ered five additional faults, and created versions containing
just those faults. We also discovered that three of the “faulty
versions” originally supplied were actually semantically
equivalent to the base version. We excluded these from our
study; therefore, we ultimately used 35 faulty versions.

We constructed a test pool for space in two stages. We
obtained an initial pool of 10,000 test cases from Vokolos
and Frankl; they had created this pool for another study by
randomly generating test cases [35]. Beginning with this
initial pool, we instrumented the program for coverage and
then added additional test cases to the pool until it
contained, for each executable statement or edge (though
unlike the Siemens programs, not for each definition-use
pair) in the program or its control flow graph, at least 30 test
cases that exercised that statement or edge.® This process
yielded a test pool of 13,585 test cases.

6. We treated the statements and edges executable only on failure of one
of the seventeen malloc calls found in the program as nonexecutable.

We used space’s test pools to obtain branch-coverage-
adequate test suites for the program, following the same
process used for the Siemens programs. The resultant test
suites ranged in size from 141 to 169 test cases, averaging
155 test cases. Initially, we generated 1,000 such test suites.
Due to the time required to exercise the mutants of space
on all of the test cases contained in these 1,000 test suites,
we randomly sampled these 1,000 test suites, selecting
50 test suites to use in our studies. This selection allowed us
to restrict our mutation analysis to the 4,898 test cases
contained in the selected suites.

As with the Siemens programs, we used Proteum to
generate mutants for space; the tool produced 132,163
mutants.

3.5 Empirical Studies and Results

We performed four empirical studies, in which we varied
the subject programs and the faults used. We next discuss
each of these studies in turn, presenting their results and
initial analysis. We provide further discussion of the results
and their practical implications in Section 4.

3.5.1 Study 1: Siemens Programs with APFD Measured
Relative to Siemens Faults

In our first study, we investigated the application of
prioritization techniques to the Siemens programs, measur-
ing APFD relative to the set of faults provided with those
programs.

For each subject program P, we applied prioritization
techniques M, through My to each of the 1,000 sample test
suites, thus obtaining 8,000 prioritized test suites. We
retained the original 1,000 test suites (untreated) as controls;
for analysis, we considered these “prioritized” by technique
M. We calculated the APFD values of these 9,000 prioritized
test suites, relative to the faults provided with the programs,
and used these as the statistical data sets.

An initial indication of how each prioritization technique
affected a test suite’s rate of detection in this study can be
determined from Fig. 5, which presents boxplots’ of the
APFD values of the nine categories of prioritized test suites
for each program and an all-program total. M, is the control
group. M, is the random prioritization group. Mj is the
optimal prioritization group. Comparing the boxplots of M;
to those of M; and M, it is readily apparent that optimal
prioritization greatly improved the rate of fault detection
(i.e., increased APFD values) of the test suites in comparison
to no prioritization and random prioritization. Examining
the boxplots of the other prioritization techniques, M,
through My, it seems that all produce some improvement.
However the overlap in APFD values mandates formal
statistical analysis.

Using the SAS statistical package [10] to perform an
ANOVA analysis,” we were able to reject the null hypoth-
esis that the APFD means for the various techniques were
equal (a=.05), confirming our boxplot observations.
However, the ANOVA analysis indicated statistically

7. Boxplots provide a concise display of a distribution. The central line in
each box marks the median value. The edges of the box mark the first and
third quartiles. The whiskers extend from the quartiles to the farthest
observation lying within 1.5 times the distance between the quartiles.
Individual markers beyond the whiskers are outliers.

8. ANOVA is an acronym for ANalysis Of VAriance, a standard
statistical technique that is used to study the variability of experimental
data [17].
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Fig. 5. APFD boxplots for Study 1 (vertical axis is APFD score): By program and by technique. The techniques are: M;: untreated, M>: random,
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significant cross-factor interactions: programs have an effect
on APFD values. Thus, general statements about technique

effects must be qualified.

While rejection of the null hypothesis tells us that some
techniques produce statistically different APFD means, to
determine which techniques differ from each other requires




ROTHERMEL ET AL.: PRIORITIZING TEST CASES FOR REGRESSION TESTING

TABLE 4
Bonferroni Means Separation Tests for Study 1

print_tokens
Grouping Mean Technique
A 92.5461 optimal
B 80.8842 brch-addtl
C 78.2727 FEP-addtl
D C 76.8573 brch-total
D E 76.4770 FEP-total
D E 76.4647 stmt-total
E 74.8199 stmt-addtl
F 57.2829 random
G 42.6163 untreated
df= 8991 MSE= 155.0369 Critical Value of T= 3.20
Minimum Significant Difference= 1.7808 (a=.05)

print_tokens2

Grouping Mean Technique
A 90.5152 optimal
B 78.3211 FEP-addtl
C 76.1678 brch-addtl
C 75.8848 stmt-total
C 75.7985 FEP-total
C 75.5995 stmt-addtl
C 74.8830 brch-total
D 55.9729 random
E 49.3272 untreated

df= 8991 MSE= 124.203 Critical Value of T=3.20
Minimum Significant Difference= 1.5939 («a=.05)

replace

Grouping Mean Technique
A 91.6901 optimal
B 80.0171 FEP-total
B 79.6959 FEP-addtl
C 77.1355 stmt-total
C 76.8482 brch-total
D 66.5639 brch-addtl
E 62.3795 stmt-addtl
F 54.4460 untreated
F 54.0668 random

df= 8991 MSE= 110.782 Critical Value of T=3.20
Minimum Significant Difference= 1.5053 (a=.05)

schedule
Grouping Mean Technique
A 85.7074 optimal
B 60.6765 brch-addtl
B 59.8694 stmt-total
B 59.8484 FEP-addtl
B 59.6161 brch-total
B 59.4430 FEP-total
C 51.4087 random
C 50.4418 stmt-addtl
D 41.9670 untreated
df= 8991 MSE= 222.3662 Critical Value of T= 3.20
Minimum Significant Difference= 2.1327 («=.05)

running a multiple-comparison procedure [26]. Of the
commonly used means separation tests, we elected to use
the Bonferroni method [17]—for its conservatism and

generality.
Using Bonferroni, we calculated the minimum statisti-

cally significant difference between APFD means for each
program. These are given in Table 4. The techniques are
listed within each program subtable by their APFD mean
values, from higher (better) to lower (worse). Grouping
letters partition the techniques; techniques that are not
significantly different share the same grouping letter.
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schedule2
Grouping Mean Technique
A 90.1794 optimal
B 72.0518 FEP-addtl
B 70.6432 brch-total
C B 70.2513 brch-addtl
C D 68.0438 FEP-total
D 67.5409 stmt-total
E 63.7391 stmt-addtl
F 51.3077 random
G 47.0302 untreated
df= 8127 MSE= 280.635 Critical Value of T=3.20
Minimum Significant Difference= 2.5199 (a=.05)

tcas

Grouping Mean Technique
A 83.8845 optimal
B 78.9253 stmt-total
B 78.7998 FEP-total
B 78.5781 brch-total
C 75.1880 FEP-addtl
D 73.3552 brch-addtl
E 68.5357 stmt-addtl
F 50.1038 random
F 494311 untreated

df= 8973 MSE= 148.5302 Critical Value of T= 3.20
Minimum Significant Difference= 1.7447 (a=.05)

tot_info
Grouping Mean Technique
A 85.4258 optimal
B 77.5442 FEP-addtl
C B 76.8218 FEP-total
C D 75.8798 brch-addtl
E D 74.8807 breh-total
E 73.9979 stmt-total
F 71.4503 stmt-addtl
G 60.0587 random
H 53.1124 untreated

df= 8991 MSE= 110.4918 Critical Value of T= 3.20
Minimum Significant Difference= 1.5033 (a=.05)

All Programs
Grouping Mean Technique
A 88.5430 optimal
B 74.4501 FEP-addtl
C 73.7049 FEP-total
D C 73.2205 brch-total
D 72.9030 stmt-total
E 71.9919 brch-addtl
F 66.7502 stmt-addtl
G 54.3575 random
H 48.2927 untreated
df= 62055 MSE= 162.9666 Critical Value of T= 3.20
Minimum Significant Difference= 0.6948 (a=.05)

Examination of these subtables affirms what the boxplots
indicate: All of the noncontrol techniques provided some
significant improvement in rate of fault detection in
comparison to no prioritization and random prioritization.

Although the relative improvement provided by each
technique is dependent on the program, the All Programs
subtable does show that additional FEP prioritization
performed better overall than other techniques, and that
total FEP prioritization performed better than all but
branch-total prioritization (and no worse than branch-total).
Also, the All Programs subtable suggests that branch-
coverage-based techniques performed as well as or better
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than their corresponding statement-coverage-based techni-
ques (e.g., branch-total performed as well as statement-total,
and branch-additional outperformed statement-additional).

It is also interesting that, in all but one case
(print_tokens), total branch coverage prioritization
performed as well as or outperformed additional branch
coverage prioritization and, in all cases, total statement
coverage prioritization performed as well as or out-
performed additional statement coverage prioritization.
Another effect worth noting is that on five of the seven
programs and, overall, randomly prioritized test suites
outperformed untreated test suites. We comment further
on these effects in Section 4.

3.5.2 Study 2: Siemens Programs with APFD Measured
Relative to Mutants

One of the threats to external validity of our first empirical
study is that the faulty versions provided with the Siemens
programs represent only a small subset of the faults that
might occur in practice in those programs. (We further
discuss threats to the validity of our studies in Section 3.6.)
This threat can be addressed only by performing additional
studies using additional varieties of faults. As a first step in
this direction, in our second study, we investigated the
application of prioritization techniques to the Siemens
programs, measuring APFD relative to the set of mutant
versions of those programs.

The study used the same design as Study 1. For each
subject program P, we applied the prioritization techni-
ques M, through Mg to each of the 1,000 sample test
suites, obtaining 8,000 prioritized test suites. Again, we
retained the 1,000 original test suites (untreated) as
controls; for analysis, we considered these “prioritized”
by technique M;. We then calculated the APFD values of
these 9,000 prioritized test suites relative to the mutant
versions of those programs and used these as the statistical
data sets.” Note that each mutant version consisted of the
base version with a single mutation applied. Thus, the
column entitled “Number of Mutants” in Table 3 indicates
the number of mutant versions considered: this number
ranged from 2,153 on schedule to 9,622 on replace.

Fig. 6 presents boxplots of the APFD values of the nine
categories of prioritized test suites for each program and an
all-program total. The figure is similar to Fig. 5, but its
APFD values are calculated based on different faulty
versions for each base program (i.e., the mutant versions
of the program). Table 5 presents the results of applying
Bonferroni means separation tests to the data.

Examining Fig. 6 and Table 5, it is again apparent that
all of the noncontrol techniques produce improvements
in APFD values of test suites in comparison to no
prioritization and random prioritization. Also, similar to
Study 1, considering overall results, additional and total
FEP prioritization outperformed all prioritization techni-
ques other than optimal, but these results did vary
somewhat across individual programs. Further, similar to

9. A reader familiar with mutation analysis may wonder whether the
presence of equivalent mutants among the mutant versions of the Siemens
programs would affect our APFD calculations. In fact, equivalent mutants
have no effect on APFD calculations, because APFD calculations measure
only the rate at which detectable faults are revealed by a test suite.
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Study 1, branch-coverage-based techniques almost always
performed as well as or better than their corresponding
statement-coverage-based techniques (the one exception
being on tcas, where total statement prioritization
outperformed total branch prioritization).

Again, as in Study 1, total statement coverage prior-
itization performed as well as or better than additional
statement coverage overall. However, this relationship did
not hold for branch coverage prioritization, where
additional-branch coverage outperformed total-branch
coverage overall. Finally, in this study, unlike Study 1,
randomly prioritized test suites did not outperform
untreated test suites.

3.5.3 Study 3: Space with APFD Measured Relative to
Actual Faults

In our third empirical study, we investigated the applica-
tion of prioritization techniques to space, measuring
APFD relative to the set of actual faults provided with
that program. We applied each of the prioritization
techniques M, through My to each of the 50 sample test
suites, yielding 400 prioritized test suites. We again
retained the original (untreated) 50 test suites as controls;
for analysis, we considered these “prioritized” by technique
M. We calculated the APFD values of these 450 prioritized
test suites—relative to the actual faults provided with
space—and used these as the statistical data sets.

Fig. 7 presents the boxplots of the APFD values for the
nine categories of prioritized test suites for space. As in
the earlier studies, we analyzed the differences between
APFD means for the program: the results are given in
Table 6.

Examining Fig. 7 and Table 6, it is again apparent that
prioritization techniques M; through My produced im-
provements in APFD values of test suites compared to
random and no prioritization. Among the techniques,
additional FEP prioritization outperformed the other tech-
niques. There was no significant difference, however, among
the four coverage-based techniques and total FEP prioritiza-
tion. Also, in this study, as in Study 2, randomly prioritized
test suites and untreated test suites were indistinguishable.
However, unlike earlier studies, no distinctions can be made
between statement-coverage-based and branch-coverage-
based techniques, or among them, between total and
additional-coverage-based variants.

3.5.4 Study 4: Space with APFD Measured Relative to
Mutants

In our final study, we investigated the application of
prioritization techniques to space, measuring APFD rela-
tive to the set of mutants of that program. Again, we applied
the prioritization techniques M through M, to each of the
50 sample test suites, obtaining 400 prioritized test suites.
Again, we retained the original (untreated) 50 test suites as
controls; for analysis, we considered these “prioritized” by
technique M;. We then calculated the APFD values of these
450 prioritized test suites relative to the mutant versions of
space (132,163 versions—one for each mutant) and used
these as the statistical data sets.

Examining Fig. 8 and Table 7, it is again apparent that
prioritization techniques Mj; through My produced im-
provements in APFD values of test suites. Again, additional
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Fig. 6. APFD boxplots for Study 2 (vertical axis is APFD score): By program and by technique. The techniques are: M;: untreated, Ms: random,
Mj: optimal, M,: stmt-total, M;: stmt-addtl, Mg: branch-total, M;: branch-addtl, Ms: FEP-total, and M,: FEP-addtl.

first two studies, here additional-coverage-based techniques
always outperform total-coverage-based techniques and by
a relatively large margin.
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TABLE 5
Bonferroni Means Separation Tests for Study 2

print_tokens

Grouping Mean Technique
A 94.5726 optimal
B 94.1552 brch-addtl
B 94.0983 FEP-addtl
C 93.4522 stmt-addtl
D 92.9773 brch-total
D 92.9769 FEP-total
D 92.9676 stmt-total
E 86.3318 random
F 83.0611 untreated

df= 8991 MSE= 4.08951 Critical Value of T=3.20
Minimum Significant Difference= 0.2892 (a=.05)
print_tokens2

Grouping Mean Technique
A 91.8595 optimal
B 91.3132 FEP-addtl
B 91.2169 brch-addtl
B 91.1878 stmt-addtl
C 89.9208 stmt-total
C 89.9189 FEP-total
C 89.8104 brch-total
D 80.9336 random
E 80.3819 untreated

df= 8991 MSE= 8.62951 Critical Value of T= 3.20
Minimum Significant Difference= 0.4201 («=.05)

replace
Grouping Mean Technique
A 92.0247 optimal
B 90.4726 FEP-addtl
C 88.8712 FEP-total
D C 88.5446 brch-addtl
D E 88.1150 stmt-addtl
E 88.1000 stmt-total
E 88.0152 brch-total
F 80.0455 untreated
F 78.6597 random

df= 8991 MSE= 9.03445 Critical Value of T=3.20
Minimum Significant Difference= 0.4299 (a=.05)

schedule
Grouping Mean Technique
A 92.6215 optimal
B A 92.3722 FEP-addtl
B C 92.1101 stmt-addtl
C 92.0307 brch-addtl
D 91.6136 FEP-total
D 91.5112 stmt-total
D 91.4804 brch-total
E 90.0178 untreated
F 88.2226 random

df= 8991 MSE= 3.91423 Critical Value of T=3.20
Minimum Significant Difference= 0.283 («=.05)

3.6 Threats to Validity

In this section, we discuss some of the potential threats to
the validity of our studies. There are three types of threats
to consider:

e threats to comstruct wvalidity, which concern our
measurements of the constructs of interest (i.e., the
phenomena underlying the independent and depen-
dent variables),

e threats to internal wvalidity, which concern our
supposition of a causal relation between the phe-
nomena underlying the independent and dependent
variables, and

schedule2
Grouping Mean Technique
A 91.4701 optimal
B A 90.9788 FEP-addtl
B C 90.7122 FEP-total
C D 90.5303 stmt-total
C D 90.3959 breh-total
C D 90.2108 stmt-addtl
D 90.0740 brch-addtl
E 85.7386 untreated
F 80.3034 random

df= 8991 MSE= 12.9149 Critical Value of T= 3.20
Minimum Significant Difference= 0.514 (a=.05)

tcas

Grouping Mean Technique
A 78.3102 optimal
A 78.1003 FEP-addtl
B 77.2512 FEP-total
C 72.9459 stmt-total
C 72.2930 brch-addtl
D 71.5644 brch-total
E 69.2863 stmt-addtl
F 60.6226 random
G 56.7793 untreated

df= 8991 MSE= 24.0915 Critical Value of T= 3.20
Minimum Significant Difference= 0.702 (a=.05)

tot_info
Grouping Mean Technique
A 89.6274 optimal
B A 89.2970 FEP-addtl
B C 88.7839 brch-addtl
C 88.6767 FEP-total
D C 88.3099 breh-total
D 87.9411 stmt-addtl
D 87.9338 stmt-total
E 79.8922 random
F 78.1495 untreated

df= 8991 MSE= 15.7992 Critical Value of T= 3.20
Minimum Significant Difference= 0.56851 (a=.05)

All Programs

Grouping Mean Technique
A 90.0694 optimal
B 89.5189 FEP-addtl
C 88.5744 FEP-total
D 88.1569 brch-addtl
E 87.7013 brch-total
F 87.5076 stmt-total
F 87.4719 stmt-addtl
G 79.2808 random
G 79.1676 untreated

df= 62055 MSE= 11.2104 Critical Value of T= 3.20
Minimum Significant Difference= 0.1809 (a=.05)

e threats to external validity, which concern our ability
to generalize our results.

3.6.1 Construct Validity

Construct validity deals with the issue of whether or not
we are measuring what we purport to be measuring. In
these studies, our measurements for the rate of fault
detection and the APFD values based on them are highly
accurate, but APFD is not the only possible measure of rate
of fault detection. For example, our measures assign no
value to subsequent test cases that detect a fault already
detected; such inputs may, however, help debuggers
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Fig. 7. APFD boxplot for Study 3. The techniques are: M;: untreated,
Ms: random, Mj: optimal, M,: stmt-total, Ms5: stmt-addtl, Ms: branch-
total, M7: branch-addtl, My: FEP-total, and M,: FEP-addil.

isolate the fault and for that reason might be worth
measuring. Further, our APFD measures do not account for
the possibility that faults and test cases may have different
costs. One might not even want to measure the rafe of
detection; one might instead measure the percentage of the
test cases in a prioritized test suite that must be run before
all faults have been detected. Ultimately, because APFD
only partially captures the aspects of the effectiveness of
prioritization, we will need to consider other measures for
purposes of assessing effectiveness.

Another threat to construct validity where FEP-based
prioritization techniques are concerned involves our
FEP calculations. FEP values are intended to capture the
probability for each test case and each statement that, if the
statement contains a fault, the test case will expose that
fault. We use mutation analysis to provide an estimate of
these FEP values; however, other estimates might be more
precise and might increase the effectiveness of FEP-based
techniques.

Finally, our empirical measurements have focused on
measures of effectiveness of prioritization techniques, with-
out measuring their cost. There are arguments in favor of
this approach, as we have stated, and our worst-case
analyses provide information useful in assessing relative

TABLE 6
Bonferroni Means Separation Tests for Study 3
space
Grouping | Mean Technique
A 98.2718 optimal
B 94.2316 FEP-addtl
C 92.3115 stmt-total
C 92.2944 FEP-total
C 92.2564 branch-total
C 92.0828 branch-addtl
C 91.8104 stmt-addtl
D 83.4450 random
D 83.3274 untreated
df= 7091 MSE= 6.0074 Critical Value of T= 3.20
Minimum Significant Difference= 0.8011 (a=.05)
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Fig. 8. APFD boxplot for Study 4. The techniques are: M;: untreated,
Ms: random, Ms: optimal, M,: stmt-total, Ms: stmt-addtl, Ms: branch-
total, M7: branch-addil, My: FEP-total, and M,: FEP-addil.

costs; nevertheless, there may be other situations (e.g.,
version-specific prioritization) in which more explicit cost
information would be helpful. Empirical studies of such
costs would be useful for assessing cost-benefit trade-offs in
those situations.

3.6.2 Internal Validity

Our greatest concern with respect to internal validity in
these studies is instrumentation effects that can bias our
results. One source of such effects are faults in the
prioritization and APFD measurement tools used. To
reduce the likelihood of such effects, we performed code
reviews on all tools and validated tool outputs on a small
but tractable program (130 lines, 12 versions, 15 test suites)
and on several of the Siemens test suites.

Instrumentation effects can also be caused by differences
in the test process inputs: the code to be tested, the locality
of program changes, or the composition of the test suite. At
this time, we do not control for effects related to types of
test suites, nor for the structure of the subject programs or
for the locality of program changes. To limit problems
related to this, we applied each prioritization algorithm to
each test suite and each subject program.

TABLE 7
Bonferroni Means Separation Tests for Study 4
space

Grouping Mean Technique

A 93.0357 optimal

B 92.0893 FEP-addtl

C 91.3140 branch-addtl

C 90.9310 stmt-addtl

D 85.2791 FEP-total

D 84.9914 branch-total

D 84.9898 stmt-total

E 82.2537 random

F 81.1423 untreated
df= 441 MSE= 0.726194 Critical Value of T= 3.22
Minimum Significant Difference= 0.5484 (a=.05)
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3.6.3 External Validity

The threats to external validity of our studies are centered
around the issue of how representative the subjects of our
studies are.

The Siemens programs, although nontrivial, are small,
and larger programs may be subject to different cost-benefit
trade-offs. Space is a “real” program; however, it is only
one such program.

Several threats to validity concern the faults and faulty
versions of programs used in our study. The faults placed in
the Siemens programs were synthetic (seeded). The faults in
space were real faults, reportedly discovered during its
development, but faults found in development may differ
from faults found later in independent test; moreover, these
faults represent only one set of faults found by one
development team in one program. Our studies using
mutants as faults let us consider a wider set of types of
faults, and mutants do represent a class of faults that occur
in practice, however, they represent only a certain class of
such faults. Another source of threats involves our decision
to use single-fault versions; this decision facilitated the
experimentation and measurements but, in practice, faults
may occur in many different distributions.

Other threats involve our test cases and test suites. Our
branch-coverage-adequate test suites represent only one
variety of test suites and, although they are constructed, for
the Siemens programs from a mix of functional and code-
coverage-based test cases, they may not represent a
distribution of those test cases that would occur in practice.
A similar statement applies to the test suites for space
constructed from a mix of randomly generated and code-
coverage-based test cases.

In general, however, such threats to external validity as
these can be addressed only by additional studies on
additional subjects. The studies in this paper begin this
process and future work must continue it.

4 ADDITIONAL DISCUSSION AND PRACTICAL
IMPLICATIONS

Keeping the threats to validity for these empirical studies in
mind, our data and analysis provide insights into the
effectiveness of test case prioritization generally and into
the relative effectiveness of the prioritization techniques
that we examined. We now discuss these insights and their
possible implications for the practical application of test
case prioritization and for further research on prioritization.

Of greatest practical significance, our data and analysis
indicates that test case prioritization can substantially
improve the rate of fault detection of test suites. All of the
heuristics that we examined produced such improvements
overall and in only one case (schedule in Study 1) did test
suites produced by any heuristic not outperform the
untreated or randomly prioritized test suites. These results
extended to the larger space program, as well.

Also, in our study, in almost every case—including on
space—additional FEP prioritization outperformed prior-
itization techniques based on coverage overall. However,
there were a few cases in which specific coverage-based
techniques outperformed additional FEP prioritization and,

in the cases in which additional FEP prioritization was the
top performer, the total gain in APFD was not large. These
results run contrary to our initial intuitions and suggest
that, given their expense and depending upon the testing
process used, additional FEP prioritization may not be as
cost-effective as coverage-based techniques.

Again, considering overall results on the Siemens
programs, branch-coverage-based techniques almost al-
ways performed as well as or better than their correspond-
ing statement-coverage-based techniques. This suggested
that, if cost factors for using such coverages are equal,
branch-coverage-based techniques are a better choice. On
space, however, this difference did not occur.

Considering differences between total and additional
branch and statement-coverage-based techniques, there was
no clear “winner” overall. Total coverage techniques did
often outperform additional coverage techniques on the
Siemens programs. Since the worst-case costs of total
branch and statement coverage prioritization are a factor
of test suite size less than the worst-case costs of additional
branch and statement coverage prioritization; these results
suggest that, in cases like these, the less expensive total-
coverage prioritization schemes may be more cost-effective
than additional-coverage schemes. This result did not
extend fully to the larger and more realistic program
space, however; in fact, on space in Study 3 additional
and total coverage techniques were not significantly
different and, in Study 4, additional coverage techniques
outperformed total coverage techniques by a wide margin.

Initial investigation of space suggests that this differ-
ence may be due to the fact that a relatively high
percentage of the original faults in space occur on
relatively frequently executed (“mainline”) paths, whereas
the mutants for space are (by construction) relatively
evenly distributed among code statements. On average,
total coverage prioritization tends to reexecute mainline
paths many times prior to attempting to reach more
obscure paths. This increases the probability that total
coverage prioritization will reveal faults on the mainline
paths earlier in testing than will additional coverage
prioritization, driving up the APFD score for total cover-
age prioritization.

Finally, in Study 1, we observed that randomly prior-
itized test suites typically outperformed untreated test
suites. We conjecture that this difference is due to the type
of test suites and faults used in Study 1. As described in
Section 3.4, the test suites for the Siemens programs were
generated by greedily selecting test cases from test pools.
The order in which test cases were added to suites during
this process constitutes their untreated order. We suspect
that this process caused test cases added to the “ends” of
the test suites to cover (on average) harder to reach
statements than test cases added to the “beginnings” of
the test suites. The faults provided with the Siemens
programs are relatively hard to detect. A disproportionate
number reside in harder-to-reach statements and are
detected (more often) by test cases that are added later to
the test suites than those added earlier. Random prioritiza-
tion essentially redistributes test cases that reach and
expose these faults throughout the test suites and, thus,
could cause the faults to be detected more quickly.

The different results obtained in the other studies
support this conjecture. The faults used in our second and
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fourth studies are more widely distributed among program
statements than the faults used in the first study, and the
faults used in the second, third, and fourth studies include a
mix of faults that are relatively easy to detect and faults that
are relatively difficult to detect. Thus, we do not expect
these faults to be detected more frequently by test cases at
the ends of the untreated test suites such that randomizing
the suites would redistribute the fault-revealing test cases
more evenly.

These experiences with “untreated” test suites are
noteworthy for the implications they raise for further
empirical studies: Empiricists need to be aware of these
implications in conducting such studies.

5 CoNCLUSIONS AND FUTURE WORK

In this paper, we have described several techniques for
prioritizing test cases for regression testing and empirically
examined their relative abilities to improve how quickly
faults can be detected during regression testing. Our results
suggest that these techniques can improve the rate of fault
detection of test suites and that this result occurs even for
the least sophisticated (and least expensive) techniques.

Our studies of FEP-based techniques, due to the expense
of those techniques, at present are primarily of significance
to researchers and further study of these techniques is
necessary to determine whether they can be cost-effective.
Our results with respect to code-coverage-based techniques,
however, have immediate practical implications, suggesting
that, if code coverage techniques are used in testing, they
can be leveraged for additional gains through prioritization.

The results of our studies suggest several avenues for
future work. First, we intend to perform additional studies
using other programs and types of test suites, and a wider
range and distribution of faults. Also, our APFD measure
provides one benchmark with which to compare prioritiza-
tion techniques, but other measures are possible, and we
intend to empirically investigate some of those measures.

Second, because our analysis revealed a sizable perfor-
mance gap between prioritization heuristics and optimal
prioritization, and our FEP-based techniques did not bridge
this gap, we are investigating alternative techniques. One
such alternative involves a simpler use of mutation, in
which we prioritize test cases based on their total mutation
score, or the number of additional mutants they expose.
Another possibility involves employing alternative esti-
mates of fault-exposing potential, such as a measure based
on static and dynamic dependencies in the code [12].
Prioritization techniques such as those we have investigated
could also be extended to incorporate other forms of
information. For instance, prioritization techniques could
consider information on probabilities of modifications.
Techniques that incorporate static measures of fault-prone-
ness [22] may also be useful. Techniques that account for
differing test case and fault costs could more accurately
reflect practical trade-offs.

Third, differences in the performance of the various
prioritization techniques we investigated, such as differ-
ences between the performance of total statement coverage
and total branch coverage, mandate further study of the
factors that underlie the relative effectiveness of various
techniques. A desirable outcome of such a study would be
procedures for predicting which prioritization techniques

would be most effective for particular programs, types of
test suites, and classes of modifications.

Finally, the test case prioritization problem, in general,
has many more facets than we have investigated here. For
example, we have considered only one possible prioritiza-
tion objective; other objectives, such as those listed in
Section 2, are also of interest. Further, we have examined
only general prioritization techniques; version-specific
techniques are also of interest. Processes that combine
regression test selection and minimization with prioritiza-
tion may be cost-effective. Moreover, our investigation has
been confined to prioritization for regression testing, but it
may also be beneficial to order tests during their initial
creation, for use in the initial testing of software.

Through the results reported in this paper and future
work in these areas, we hope to provide software practi-
tioners with cost-effective techniques for improving testing
and regression testing processes through prioritization of
test cases.
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