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Figure 3.1: Schematic pictures of various geometries employed in first principles studies 

of SrTiO3/LaAlO3. The shaded green regions denote vacuum. Structures (a) and (c) 

represent nonstoichiometric symmetric superlattices for n- and p-type interface, 

respectively. Structures (b) and (d) represent stoichiometric slab with two surfaces and a 

single interface of n or p type, respectively. Structure (e) represents an asymmetric 

superlattice where both films are stoichiometric. Finally structure (f) represents the 

LaAlO3 film embedded between two SrTiO3 films whose other ends have free surfaces. 

The figure is adapted from Ref. [11]. 
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3.2 Polar catastrophe model 

 As discussed in the previous chapter, three different mechanisms for the origin of 

the 2DEG at the SrTiO3/LaAlO3 n-type interface have been proposed: polar catastrophe, 

oxygen vacancies and interface intermixing. The problem is that in experiment all three 

mechanisms may be present simultaneously and therefore it is difficult to determine 

which one is the most important. On the other hand, in the first principles approach one 

can easily separate a particular mechanism and analyze its importance for creation of the 

2DEG. For example, by considering a defect-free interface with stoichiometric SrTiO3 

and LaAlO3 films the polar catastrophe mechanism can be explored. 

 The polar catastrophe mechanism can be better understood by considering the 

idealized (without electronic reconstruction) energy band diagram for the n-type interface 

as shown in Fig. 3.2. On the left side of the interface we have SrTiO3 where fully 

occupied valence bands are composed of the O p-states and empty conduction bands are 

formed by the Ti 3d-states. On the LaAlO3 side the valence band is also composed of the 

O p-states while the conduction band is formed by the La 5d-states. Both films are 

assumed to have free surface so that the system geometry corresponds to Fig. 3.1b. Due 

to the polar nature of LaAlO3 there is an electric field through the stoichiometric LaAlO3 

film so that bands slope up linearly inside LaAlO3 film as seen in Fig. 3.2. The slope is 

upward since for the n-type interface the positively charged (LaO)+ layer is at the 

interface which attracts the electrons. Note that for the p-type interface the slope is 

downward. 
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Figure 3.2: Schematic energy diagram for the n-type SrTiO3/LaAlO3 interface. We use 

the same color coding for atoms as in Fig. 3.1. The shaded areas are filled valence bands. 

The conductions bands are empty and their edges are denoted by the solid lines. The 

figure is adapted from Ref. [11]. 

 

As seen from Fig. 3.2, the energy gap of the entire system is given by the 

difference between the conduction band edge of SrTiO3 and the valence band edge at the 

LaAlO3 surface. As LaAlO3 film becomes thicker, the surface valence band edge 

increases linearly with thickness. Therefore, as LaAlO3 film reaches certain critical 

thickness, the gap closes and system becomes metallic. This is accompanied by the 

electron transfer from LaAlO3 surface to the SrTiO3 film. As now LaAlO3 film is 

positively charged, it attracts these additional electrons localizing them close to the 

interface and leading to the formation of the 2DEG. As the thickness of the LaAlO3 film 

further increases, more electrons are transferred to the interface. This continues until the 

internal electric field in LaAlO3 film is fully compensated. This is achieved when 0.5 

electrons per 2D unit cell is transferred to the interface. 
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 The above analysis was based on idealized energy band diagram of the interface 

structure that was constructed from electronic structure of bulk SrTiO3 and LaAlO3. In 

reality we have substantial electronic and ionic relaxations close to the interface and the 

surfaces that lead to band bending and screening of the internal electric field in the 

LaAlO3 film. These effects can be properly taken into account by first principles 

calculations.  

 First principles calculations for system geometries as in Fig. 3.1b and f have 

confirmed the presence of insulator-metal transition as thickness of the LaAlO3 film 

increases [3, 8, 12, 13]. The quantity that can be directly compared with experiment is the 

critical thickness. From the discussion above, however, it is clear that the critical 

thickness depends on the band gap of SrTiO3. Within LDA or GGA the band gap of 

SrTiO3 ranges between 1.8-1.9 eV [3, 12, 13] which strongly underestimates the 

experimental value of 3.2 eV. Consequently, the critical thickness would be also 

underestimated. In order to correct for the band gap error the critical thickness can be 

estimated as a product of experimental band gap of SrTiO3 and inverse of internal electric 

field obtained from LDA/GGA calculations (the band offset between SrTiO3 and LaAlO3 

is very small ~ 0.1 eV but it can be simply included). Alternatively, one can use LDA+U 

method to obtain correct SrTiO3 band gap [8].  

 Different first principles calculations lead to critical thickness in the range of 4 to 

6 unit cells of LaAlO3. This discrepancy comes from different calculated values of 

internal electric field in LaAlO3. One can understand the spread of values of the internal 

electric field by noting that the internal electric field is inversely proportional to the 
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dielectric constant. It was shown that the dielectric constant in LaAlO3 is very sensitive to 

the in-plane lattice constant and the value of internal electric field [11]. These, in turn are 

very sensitive to the technical parameter of calculations such as pseudopotential, plane 

wave cutoff, etc. which explains different critical thickness obtained by different authors. 

 In general, calculated values of critical thickness seem to overestimate 

experimental values [14-16] that range between 2 and 4 unit cells of LaAlO3 depending 

on the measurement method (see Chapter II). Possibly, this could be explained by 

underestimation of LaAlO3 band gap that leads to overestimation of the dielectric 

constant and consequently underestimation of the internal electric field. 

 Concluding this section we note first principles calculations for the defect-free n-

type SrTiO3/LaAlO3 interface predict insulator-metal transition with increasing thickness 

and taking into account approximations involved, the value of the critical thickness is in a 

reasonable agreement with experiment. This strongly supports polar catastrophe model as 

being an important mechanism responsible for the origin of 2DEG at the SrTiO3/LaAlO3 

n-type interface. 

 

3.3 Interface electronic structure 

 The extra electrons doped from the LaAlO3 film were found to occupy interface 

Ti 3d states. In the bulk SrTiO3 the 3d states are split by octahedral crystal field into t2g 

triplet and eg doublet with t2g lying at lower energies. At the interface the t2g are further 

split into lower lying dxy states and degenerate dxz and dyz states. For 2DEG electron 
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density of 0.5 electron per 2D unit cell all t2g bands were found to be partially occupied 

[3, 12, 17].  

The character of the occupied bands at the interface was used to explain 

discrepancies between experimental and theoretical values of the 2DEG charge density 

[17]. The argument is that some of dxy, dxz  and dyz bands which are strongly bound to the 

interface and have large effective mass can undergo Anderson localization and therefore 

will not appear in transport explaining low 2DEG charge density found in high-quality 

samples  (see Chapter II) [12, 17]. 

 

3.4 Confinement of the two-dimensional electron gas 

 An important characteristic of the 2DEG at the n-type SrTiO3/LaAlO3 interface is 

its spatial extent. It is well known that spatial extent of 2DEG formed at interfaces 

between conventional semiconductors is determined by band bending. As discussed in 

details in Chapter V, the confinement of the 2DEG at SrTiO3/LaAlO3 n-type interface is 

not solely due to bend bending [18]. In fact, the 2DEG extends beyond band bending 

region and decays exponentially with characteristic length of about 2 nm [18]. This 

behavior can be explained as a result of the metal induced gap states (MIGS) which 

decay exponentially into bulk of SrTiO3 with characteristic decay length determined by 

the lowest decay rate of the complex band structure at the Fermi energy of the system 

(see Chapter V for details) [18]. Recently, more accurate calculations by Son et al., [12] 

have shown that at larger distances from the interface the spatial decay of the 2DEG 
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changes from exponential to the one governed by power law. This, however, doesn’t 

contradict the MIGS model as the decay rate of MIGS depends on the energy and 

therefore the MIGS charge density at a given distance from interface is given by an 

integral over energy of the exponential factors with both exponents and prefactors being 

energy dependent. In addition, for SrTiO3 there are two complex bands with comparably 

low decay length and both should be included. Further, the dependence is complicated by 

band bending. These effects can cause non-precise exponential decay of the 2DEG. 

 An alternative mechanism for the confinement of the 2DEG was proposed in 

Chen et al. [3]. They pointed out that at the n-type interface Ti-La distance is 

considerably smaller than Ti-Ti distance. This proximity together with relatively large 

spatial extent of La 5d states leads to strong enhancement of the tight-binding hopping 

parameter between interfacial Ti 3d and La 5d states. This large hopping parameter leads 

to formation of the bonding and antibonding states with the bonding states being mainly 

of the Ti 3d character while antibonding states of the La 5d character. As a result Ti 3d 

states have lower energy at the interface than in the bulk and are therefore occupied by 

extra electrons doped from the LaAlO3 film. This model was supported by first principles 

calculations where the spatial extent of the 2DEG was found to vary as Ti-La bond at the 

interface was changed [3]. 
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3.5 Electronic ordering at the SrTiO3/LaAlO3 interface 

 

 As discussed above, the extra electrons transferred from the LaAlO3 film to the 

interface occupy Ti 3d states. Due to localized nature of these states, the Coulomb 

interaction between those states is expected to be strong and may lead to various 

electronic orderings. Indeed, as discussed in Chapter II, superconductivity and different 

types of magnetic order including ferromagnetism and antiferromagnetism have been 

observed at the SrTiO3/LaAlO3 n-type interface. Since the description of 

superconductivity is typically beyond the capabilities of first principled methods, most 

studies focused on magnetic order. Here the symmetric superlattice geometries from Fig. 

3.1a were used. 

 We showed that for thick SrTiO3 the system is nonmagnetic within LDA but 

application of LDA+U method with U = 5 eV makes 2DEG ferromagnetic [19]. 

Interestingly, for thin SrTiO3 films the 2DEG is ferromagnetic even within LDA and 

addition of Hubbard U leads to half-metalicity [19]. This was explained as a result of 

2DEG confinement that enhances the density of states at the Fermi level so that the 

Stoner criterion is fulfilled (see Chapter VI for details). 

 Pentcheva and Picket studied both unrelaxed [5] and relaxed [9] n-type interfaces 

using c(2 × 2) lateral cell, and applying  LDA+U with U = 8 eV and J = 1 eV. In addition 

to the ferromagnetism they found a checkerboard charge order that makes interface 

insulating. This result was insensitive to inclusion of atomic relaxations. Upon removing 
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Hubbard U, the ferromagnetism and charge order were suppressed and the interface was 

metallic [9]. 

 The finding of insulating charged order state [5, 9] seems to be at odds with 

experiments that clearly find conducting interface. However, as argued by authors of Ref. 

[5, 9], with half the Ti sites empty and strong fluctuations that are pronounced by the 2D 

character of the system, frequent hopping is expected that may explain high interface 

conductivity. 

 Different results were reported by Zhong and Kelly [10]. Using LDA+U with U= 

5 eV and J = 0.64 eV they obtained instead a p(2 × 2) antiferromagnetic insulating state 

with charge ordering. Further, in contrast to Ref. [9], they found atomic relaxations to be 

crucial for stabilization of magnetic ordering. They, however, also found that the 

insulating ferromagnetic state with c(2 × 2) charge order is only 10 meV higher in 

energy. 

 Summarizing this section we note that different types of magnetic and charge 

orderings were reported by first principles calculations. Interestingly, as discussed in 

Chapter II, similarly contradicting experimental results were reported. This seems to 

indicate that different electronic orders compete with each other and depending on 

experimental conditions or computational parameters one can obtain different results. 

This suggests exciting direction for future research aiming to switch between different 

electronic orderings by external means (for example the gate field). 
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3.6 The p-type interface 

  Several ab initio works have been devoted to the SrTiO3/LaAlO3 p-type interface 

[3-5]. The main objective here was to elucidate the observed experimentally insulating 

nature of this interface.  

 Within LDA or GGA it was found that the p-type interface, similarly to the n-type 

interface, becomes metallic with the Fermi surface created from hole electronic states of 

the O 2p character [3-5]. In contrast to the n-type interface, the holes are not confined to 

the interface but instead delocalize into the SrTiO3 substrate [3]. This indicates that the 

electric field originating from the negatively charged LaAlO3 film is not strong enough to 

localize holes to the interface (at least for the SrTiO3 thickness of 11 unit cells; for larger 

thicknesses the electric field is expected to finally localize holes but with rather large 

spatial extent) [3]. This finding supports the idea that for the n-type interface it is the 

enhancement of Ti-La hybridization at the interface that localizes the extra electrons 

close to the interface [3]. As, apparently, there is no such binding force at the p-type 

interface, the holes delocalize over SrTiO3 film. 

 The above finding that the p-type interface is metallic doesn’t agree with 

experiment. Several effects were thus proposed that can restore the insulating nature of 

this interface. In particular, Pentcheva and Picket [5] explored the possibility that the 

strong electronic correlations can induce a self-trapped hole polaron at the p-type 

interface. They showed that using LDA+U and sufficiently large U on O 2p states (larger 

than 7 eV) one may expect ground state to be antiferromagnetic insulator with charge 

order. These findings were however based on unrelaxed atomic positions and it is not 



43 
 
clear how relaxations that are pronounced at such interface would change this result. 

Another open question is what should be the “correct” U parameter for O 2p states. 

 It was proposed that extrinsic effects, such as oxygen vacancies, can restore 

insulating nature of the p-type interface [20]. Indeed, as discussed in Chapter II, from the 

polar catastrophe model it follows that 25% vacancy concentration should accommodate 

extra holes and make the p-type interface insulating. This was confirmed by first 

principles calculations for the unrelaxed interface [5]. When relaxations are included 

higher vacancy concentration (but not higher than 50%) is needed to cause system to be 

insulating [4]. This agrees with experiment where the vacancy concentration of 32% was 

found at the insulating p-type interface [22].  

 The above studies put oxygen vacancies directly at the interface. However, as 

discussed above, the holes are delocalized over rather large distance from the interface. 

Consequently, vacancies away from the interface are also able to trap holes. Within the 

thick SrTiO3 substrate there surely will be enough oxygen vacancies, created either by 

thermal fluctuations or due to growth conditions, to immobilize all holes transferred from 

LaAlO3 [11].  
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Chapter 4 Computational methodology 

 

  In this work we investigate LaAlO3/SrTiO3 interface and related systems using 

first principles electronic structure methods. In this approach one study the properties of 

materials directly by solving the Schrödinger equation for system of electrons and nuclei. 

In this chapter I describe how it is achieved and what approximations are used. 

 

4.1 The Born Oppenheimer approximation 

The nonrelativistic Hamiltonian (in this work relativistic effects are not considered) 

for a system of electrons and nuclei interacting by Coulomb forces is given by: 

 (4.1) 

Here {RI} and {ri} are nuclear and electron coordinates, respectively. The first term is 

the kinetic energy of nuclei, the second term is the kinetic energy of electrons, the third 

term is the electron-nucleus interaction, the fourth term is the electron-electron 

interaction, and the fifth term is the nucleus-nucleus interaction. The corresponding 

Schrödinger equation is given by 

 ,      (4.2) 

where and  are called vibronic wavefunctions and vibronic energies, respectively.  



47 
 

For solid-state systems where the number of electrons and nuclei is very large the 

direct solution of (4.2) is nearly impossible. Fortunately, the nuclear masses (MI) are in 

general much larger than the electron mass (m) which allows us to introduce some 

simplifying approximations. We first introduce an electronic Hamiltonian, by dropping 

the kinetic energy of nuclei from Htot 

   (4.3) 

Note that the nuclear coordinates appear in H merely as parameters. Consequently, the 

eigenfunctions  and eigenvalues  of the electronic Hamiltonian 

also depend on the nuclear coordinates as parameters; the suffix n summarizes the 

electronic quantum numbers. Since the electronic eigenfunctions form a complete basis 

we can write vibronic wavefunctions as  

  ,      (4.4) 

where  can be interpreted as nuclear wavefunctions. Substituting (4.4) into (4.2) 

we obtain an equation for  

 , (4.5) 

where  is called the non-

adiabatic operator (here the bracket notation denotes integration over electronic 

coordinates). It can be shown that  is of the order of m/MI and therefore can be 

neglected leading to 
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  .    (4.6) 

This is called Born-Oppenheimer adiabatic approximation [1]. This is physically a very 

sound approximation as electrons (due to smaller mass) move much faster than nuclei 

and therefore see nuclei as immobile. Nuclei on the other hand move in the potential 

created by electrons. In fact, as seen from (4.6), the electronic eigenvalues thought as a 

function of nuclear coordinates play the role of a potential for nuclear dynamics and for 

this reason there are also called adiabatic potential curves.  In the Born-Oppenheimer 

approximation, the dynamics of the system is confined in the given adiabatic curve (we 

are usually interested in the ground state adiabatic curve ). The mixing between 

different potential curves leads to the electron-phonon interaction that is important for 

resistivity or superconductivity. This can be taken into account using perturbation theory 

that is justified due to smallness of . The only exception is when different 

adiabatic curves cross. In this case Born-Oppenheimer approximation is not valid and the 

mixing must be properly accounted for by solving equation (4.5) in the subspace of 

degenerate potential curves. 

 We can further simplify Eq. (4.6) (or its time-dependent version) by neglecting 

quantum effects. In particular, when we consider ground state adiabatic curve, the 

classical equations of motion for nuclei are 

.       (4.7) 

The forces  can be evaluated with the help of Hellman-Feynman theorem 
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,       (4.8)  

so that simply expectation value of the gradient of the electronic Hamiltonian is needed.  

 By minimizing forces (so that they vanish), we can find the equilibrium nuclear 

configurations. This is called nuclear relaxation. Small displacement from the equilibrium 

can be further studied by expanding  up to second order in the Taylor series 

around equilibrium positions. Then equation of motions can be solved analytically and 

lattice vibration spectra can be obtained. The quantum nature of nuclei can be recovered 

by quantization of lattice vibration leading to phonons. Alternatively, Eq. (4.7) can be 

solved directly by Molecular Dynamics techniques [2] which don’t require assumption 

for small displacements. 

 

4.2 Density functional theory 

 While Born-Oppenheimer approximation allows us to decouple electronic and 

nuclear subsystems, the solution of the problem described by the electronic Hamiltonian 

remains a tremendous task. The reason is the presence of the electron-electron 

interactions that correlates motions of different electrons and prevents us from 

factorization of the wavefunction into product of single-electron wavefunctions. The 

most popular approach to this problem is the density functional theory [3, 4] which is 

used in this work. This approach is based on the fact that the ground state energy of a 

many-particle system can be expressed as a functional of the ground state density [3]. 

The actual ground state density can be found by minimization of that functional [3]. In 
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addition, density functional theory provides a reasonable approximation of the functional. 

This method allows us to study the ground state properties of the many electron system 

by solving a simple one-electron Schrodinger equation with a local effective potential. 

We consider a system of N electrons interacting with themselves by Coulomb 

forces and affected by a single-electron external potential. The Hamiltonian is given by 

,      (4.9) 

where = .  

The first Hohenberg-Kohn theorem [3] states that there is a one-to-one 

correspondence between the ground state electron density, n, and the external potential. 

This theorem together with a trivial observation that the ground state wavefunction, , is 

the functional of the external potential imply that  is the functional of the ground state 

density. Consequently, the ground state energy is a functional of the ground state density 

and can be written as 

 ,              (4.10) 

where T and Eee are ground state expectation values of the kinetic energy and the 

electron-electron interaction, respectively. Note that from the first theorem it follows that 

T and Eee are also functionals of the ground state density. 

The second Hohenberg-Kohn theorem [3] states that for the fixed external 

potential when we vary n(r), the global minimum of the functional (4.10) is equal to the 

exact ground state energy and n(r) that minimizes the functional is equal to the exact 
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ground state density. This stationary property allows us to find the ground state density 

and the ground state energy of the system without solving the Schrödinger equation. 

Following Kohn and Sham [4] we imagine an auxilary system of N non-interacting 

electrons, whose ground state density is equal to the ground state density of the 

interacting system with Hamiltonian (4.9) so that 

,        (4.11) 

where  are single particle orthonormal orbitals of the non-interacting system known as 

Kohn-Sham eigenfunctions and the summation is over N lowest states. Minimization 

with respect to the ground state density can be replaced by minimization with respect 

to . In order to do this it is convenient to rewrite Eq. (4.10) as  

,    (4.12) 

where  is the ground state expectation value of the kinetic 

energy of the non-interacting system,  is called Hartree 

energy, and the exchange-correlation energy is defined as 

. Minimization of (4.12) with respect to  subject to the 

constraint of orthonormality leads to Kohn-Sham Schrödinger-like equation: 

 ,                  (4.13) 

where is the Kohn-Sham Hamiltonian,  is the Hartree 

potential,   is called exchange-correlation potential, and  are Lagrange 



52 
 
multipliers that are called Kohn-Sham eigenvalues. Solving Kohn-Sham equation for 

 and  allows us to find the ground state density from (4.11) and the ground state 

energy from                                                                       

,         (4.14) 

where dr is the so-called double counting 

correction. 

The major problem with the density functional theory is the fact that the 

exchange-correlation energy functional is unknown and for practical calculations it must 

be somehow approximated. Many different forms for  have been proposed but the 

most popular is the local density approximation (LDA) [4] 

 .           (4.15) 

Here  denotes the exchange-correlation energy per electron of a uniform gas of 

interacting electrons of density n(r). Typically, parameterization for  based on 

quantum Monte Carlo calculations [5] is used. 

 LDA can be straightforwardly extended to the magnetic systems leading to the 

local spin density approximations (LSDA). In this case the exchange-correlation energy 

becomes a functional of the ground state densities for electrons with spin up ( ) and 

down ( ) which are allowed to be different 

 .     (4.16) 
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Here  is the exchange-correlation energy per electron of a uniform gas 

of interacting electrons with spin densities  and . As a result the ground state energy 

(4.12) also becomes a functional of  and . The Kohn-Sham equations must be then 

solved for each spin  with the spin-dependent exchange correlation potential, 

. 

 First principles calculations based on LDA were very successful in predicting 

binding energies and equilibrium structures of many solids. However, there are many 

well known failures of LDA. The most serious problem is that LDA consistently 

underestimates band gaps of semiconductors and insulators. In fact, this is not necessarily 

problem of LDA as even for the exact exchange correlation functional the Kohn-Sham 

eigenvalues are not equal to the excitation spectrum of the many-body system of interest.  

 LDA is known to also have a problem with the systems containing localized 

electrons, for example 3d electrons in transition metal ions or 4f electrons in rare-earth 

ions. In this case, one can often improve LDA by adding additional Hubbard-like 

interaction between the localized electrons. This is an essence of LDA+U method where 

the Hubbard term is treated in Hartree-Fock manner [6, 7]. In the full spherically 

symmetric formulation by Liechtenstein et al. [7] the additional contribution to the LDA 

exchange-correlation functional is  

  ,      (4.17) 
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where  is the magnetic quantum number,  is the density matrix, and  is the 

screened Coulomb interaction between the localized electrons. It can be shown that that 

the matrix elements in Eq. (4.17) can be expressed in terms of two parameters U and J 

that can be interpreted as Coulomb and Stoner parameters [7]. Note that, in general, the 

above formulation depends on the choice of the localized basis functions  but this 

ambiguity has no big effect on numerical results. 

 The density functional theory is applicable to the electronic Hamiltonian given by 

Eq. (4.3). Here the electron-nucleus interaction plays the role of the external potential 

 and the nucleus-nucleus interaction is just a constant term that doesn’t depend on 

coordinates of electrons. Nevertheless, the latter should be included when working with 

the electronic Hamiltonian for extended systems as it cancels divergent terms from the 

Hartree energy. In addition, the nucleus-nucleus interaction is important for evaluation of 

the ionic forces (4.7) after the self-consistent ground state electron density is found. 

Using (4.8) the ionic forces are given by 

 ,     (4.18) 

where  and .   
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4.3 Plane waves, pseudopotentials and projector augmented 

wave method  

 

 For each system of interest defined by the external potential the Kohn-

Sham equation (4.13) must be solved selfconsistently. One usually starts with a 

reasonable approximation for the ground state density from which Hartree and the 

exchange-correlation potentials are calculated. The new density can be obtained from the 

solution of the corresponding Kohn-Shame equation according to (4.11). This process is 

repeated until selfconsistency is reached.  

 In order to solve the Kohn-Sham equation, one typically expands the Kohn-Sham 

eigenfunctions in a finite basis and then diagonalizes the Kohn-Sham Hamiltonian matrix 

in this basis to obtain the Kohn-Sham eigenfunctions and eigenvalues.  

 We are concerned here with crystals where  is a lattice periodic function. 

The Blöch theorem is therefore valid and the Kohn-Sham eigenfunctions can be written 

as 

  ,        (4.19) 

where k is a wavevector in the first Brillouin zone, n is a band index and  has a 

periodicity of the lattice. This greatly simplifies the problem and thus even for 

nonperiodic systems like interfaces, it is customary to enforce periodicity using the 

supercell method.  
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For periodic systems plan waves constitute a particularly convenient basis. 

Expanding (4.19) in plane waves leads to [8] 

,      (4.20) 

where Ω is the volume of the crystal and  are reciprocal lattice vectors. Substituting 

(4.20) into (4.13), multiplying by   and integrating over r leads to the matrix 

equation for the expansion coefficients  

,       (4.21) 

where  and for 

external (ionic), Hartree and exchange-correlation potentials we introduced a Fourier 

transform  with  being a unit cell volume.  

In principle, the plane wave basis is infinite, but for large  vectors the diagonal 

kinetic energy term becomes dominant and thus the basis may be truncated to include 

only plane waves with the kinetic energy less than some particular cutoff energy  i.e., 

we only keep  vectors satisfying . The cutoff energy is a convergence 

parameter that must be found for each system (it must be increased until results don’t 

depend on it). In the truncated basis Eq. (4.21) can be solved for each k by diagonalizing 

 to obtain  and .  

 In the plane waves methods the size of the Hamiltonian matrix  is typically 

very large and thus direct diagonalization is very inefficient. Instead, for each k-point one 
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finds Nbands lowest eigenvectors using iterative methods (see Ref. [9] for review). The 

advantage is that Nbands can be much smaller than number of plane waves leading to more 

efficient method. The specific algorithms for the iterative methods are very sophisticated 

but the basic idea [8] is to start with some initial guess for the eigenvectors , where 

the components of vectors are indexed by   vectors and n =1, …, Nbands. Then the 

corresponding approximate eigenvalues are found from 

  ,         (4.22) 

where  is a Hamiltonian matrix with elements . The residual vector 

          (4.23) 

can be then calculated.  represents deviation of initial eigenvectors from the true 

eigenvectors.  It is used to improve the eigenvectors so that they become close to the 

exact ones 

  .       (4.24) 

This procedure is repeated until the residual vector vanishes, within some tolerance. Here 

K is called a preconditioning matrix that can be arbitrarily chosen in order to speed up 

convergence.  

 Despite the efficiency of iterative methods, the plane wave basis would be 

impractical when applied to the actual ionic potentials due to prohibitive size of the 
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Hamiltonian matrix needed to describe strongly oscillating behavior of the wavefunctions 

in the core region. However, the most physical properties of solids are independent on the 

core electrons and only valence electrons are important. This is therefore a good 

approximation to remove core electrons and strong ionic potential and replace them by 

much weaker pseudopotential that acts on the valence electrons. Typically, 

pseudopotential must be nonlocal, i.e. it is different for different angular momenta. 

However, since it can be described by much smaller number of plane waves, it still leads 

to a very efficient electronic structure method. 

 Initially, pseudopotentials were constructed empirically using some general form 

with few adjustable parameters fitted to atomic data. Nowadays, however, ab initio 

pseudopotentials are in use. They are usually constructed for a free atom and are capable 

of describing valence electrons in other environments (like solids or molecules), a 

property referred to as transferability.  

 Generation of a pseudopotential for a given element starts with all-electron 

calculations for a free atom using DFT. Note that for consistency when we use 

pseudopotentials in solids or in molecules, we need to use the same approximation for the 

exchange-correlation potential that was used for construction of the pseudopotential. 

Typically, exchange-correlation potentials retain atomic spherical symmetry so that only 

the radial Schrödinger equation must be solved and each orbital quantum number l can be 

treated separately. The energy for which radial equation must be solved (atomic 

configuration) also needs to be specified. This choice is dictated by valence states for 

which pseudopotential is to be generated but, in general, it doesn’t have to be equal to the 
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atomic eigenvalues. The next step is to specify a core region as a circle around the atom 

of radius Rl. Small values of Rl lead to hard pseudopotentials that have a good 

transferability but are not very smooth and require many plane waves in the basis (larger 

Ecut). Larger values of Rl result in smoother soft pseudopotentials which, however, come 

at the cost of transferability.  

 For each l, the “screened” pseudopotential is found in such a way that it generates 

pseudo wavefunction that satisfy the following properties: i) all-electron and pseudo 

wavefunctions are the same beyond Rl, ii) the logarithmic derivatives of the all-electron 

and pseudo wavefunctions are equal at Rl, iii) inside Rl all-electron and pseudo 

wavefunction differ but the integrated charge inside Rl for both wavefunctions must be 

equal. The last condition, called norm-conservation [10], ensures that the total charge in 

the core region is correct and that the normalized all-electron and pseudo wavefunctions 

agree beyond Rl (first condition ensures agreement up to arbitrary multiplicative 

constant). More importantly, however, the norm conservation condition leads to good 

transferability of pseudopotentials. In fact, it requires that the first energy derivatives of 

the logarithmic derivatives of all-electron and pseudo wavefunctions are equal at Rl. This 

condition, in turn, ensures that the pseudopotential reproduces the changes of eigenvalues 

to linear order due to change in the self-consistent potential (which changes when atom is 

put in a different environment like molecule or solid). 

 Initially “screened” pseudopotentials satisfying above requirements were 

produced by assuming some parameterized form of the pseudopotential and varying 

parameters until the conditions are met. A simpler procedure is to first find pseudo 



60 
 
wavefunction and then generate pseudopotential by inversion of the radial Schrödinger 

equation. Typically, inside Rl pseudo wavefunction is taken to be a linear combination of 

few Bessel functions and coefficients of expansion are chosen such that the above 

conditions are satisfied [11].  

 The “screened” pseudopotential corresponds to the total potential that contains 

Hartree and exchange-correlation potentials. In order to obtain the bare ionic 

pseudopotential which is transferrable to other environments these contributions must be 

subtracted, i.e. the pseudopotential must be “unscreened”. 

 In the pseudopotential approximation, the ionic potential in Kohn-Sham equation 

(4.13) is replaced by 

 .   (4.25) 

Here  are spherical harmonics. In practice, we consider only orbital quantum 

numbers up to  (or  for f-electron systems). We explicitly separated local 

 (l-independent) part of the pseudopotential by  where  

is the total pseudopotential. The freedom in choosing  is usually utilized to make is 

as strong as possible. The nonlocal pseudopotential  equals to zero beyond 

corresponding core region. It is convenient to express the second term in (4.25) using 

Kleinman-Bylander form [12] ,where  are strengths 

of nonlocal pseudopotential and are a projection functions which are nonzero only 

within Rl sphere around each atom.  
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 While norm-conserving pseudopotentials lead to an efficient method to solve 

Kohn-Sham equations, they have a problem treating materials containing certain 

elements which have nodeless valence states, for example 3d electrons in transition metal 

atoms. Such states are localized to the corresponding nucleus and creation of transferable 

norm-conserving pseudopotentials require very small core radii resulting in very hard 

pseudopotentials that are prohibitively expensive for plane wave calculations. 

 To circumvent this problem Vanderbilt [13] introduced a new class of 

pseudopotentials, so-called ultrasoft pseudopotentials, in which norm conservation 

requirement has been relaxed. This allows for much larger values of Rl and consequently 

smoother pseudopotentials that need smaller number of plane waves making plane wave 

calculations faster and applicable to systems with nodeless valence states. On the other 

hand, the transferability of the ultrasoft pseudopotentials is comparable to norm-

conserving pseudopotentials since more reference energies (usually two) are used for 

constructions of pseudopotentials. 

 In order to construct an ultrasoft pseudopotential we first construct a pseudo 

wavefunction  for each reference energy  and orbital quantum number in the same 

way as above but not requiring norm conservation; here . We then construct 

projection functions  that are dual to pseudo wavefunctions, , using  

   ,        (4.26) 
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where  and  with  being an 

arbitrarily chosen local potential. The total pseudopotential is the sum of the  and 

the nonlocal part given by 

  .        (4.27) 

The nonlocal part of the pseudopotential automatically has the Kleinman-Bylander form 

with the strength of the nonlocal pseudopotentials given by  

.         (4.28) 

Here  where  are called 

augmentation functions. The second term in (4.28) represents the fact that all-electron 

 and pseudo wavefunctions have different norms. 

  Note that the relaxation of the norm conservation condition causes that the Blöch 

eigenstates are not orthogonal anymore. This requires introduction of the overlap matrix 

in the eigenvalue problem (4.21). Fortunately, iterative methods 

can also handle such generalized eigenvalue problem. 

  In this work we solved Kohn-Sham equations using projector augmented wave 

(PAW) method [14]. In principle, this is an all-electron method but it strongly related to 

pseudopotential approach and, in particular, ultrasoft pseudopotentials can be derived as a 

limiting case of PAW [15]. In PAW, we adopt a frozen core approximation in which the 

core states are found as for isolated atom and together with nucleons provide the ionic 
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potential  for the valence electrons. We then write Bloch solutions of the Kohn Sham 

equation for the valence electrons as 

 .       (4.29) 

 Here  is a pseudo Bloch function that is smooth and can be represented by a 

reasonable number of plane waves. The index i is shorthand for an atomic site inside the 

unit cell, the angular momentum numbers , and additional index k referring to the 

reference energy  (usually two reference energies are used for each l). Functions , 

, and  are the same as in the ultrasoft pseudopotential method. Using (4.29) the 

ground state density can be written as [14] 

,       (4.30) 

where 

          (4.31) 

is the pseudo charge density  

        \(4.32) 

and 

 .       (4.33) 

 Here  are called the PAW occupancies.  
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 Within the PAW method we derive a modified Kohn-Sham equation by 

minimizing the ground state energy (4.12) with respect to pseudo wavefunction  

subject to the appropriate orthonormality constraint. Using (4.29) and the fact that  

are orthonormal the orthonormality condition can be found to be 

where the overlap matrix is the same as in the ultrasoft pseudopotential method. 

As a result, we obtain a generalized eigenvalue problem very similar as in the ultrasoft 

pseudopotential method but with additional onsite contribution to the potentials, see Refs. 

[14, 15]. Further, the Hellman-Feynman forces can be evaluated from (4.8) [14, 15]. 
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Chapter 5 Quantum nature of the two-dimensional electron gas 

confinement at the SrTiO3/LaAlO3 interface 

 

In this chapter we study the confinement of the two-dimensional electron gas 

(2DEG) formed at the SrTiO3/LaAlO3 n-type interface using first principles electronic 

structure calculations [1]. We show that the 2DEG confinement can be explained by the 

formation of metal –induced gap states (MIGS) [2, 3] in the band gap of SrTiO3. These 

states are formed as a result of quantum-mechanical tunneling of the charge created at the 

interface due to electronic reconstruction. This electronic tunneling occurs through the 

effective confining potential which can be found through band structure calculation. The 

attenuation length of the MIGS into SrTiO3 is governed by the lowest decay rate 

evanescent states of bulk SrTiO3 which are identified through complex band structure 

calculations for bulk SrTiO3. Our calculations predict that the 2DEG is confined in 

SrTiO3 within about 1 nm at the interface.  

 

5.1 Metal-induced gap states  

 Since metal induced gap states (MIGS) [2, 3] play a central role in the physical 

mechanism responsible for the confinement of the 2DEG at the SrTiO3/LaAlO3 interface, 

in this section we review the basic properties of MIGS and their relation to the complex 

band structure. 
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According to the Bloch theorem, eigenfunctions of the bulk crystal Hamiltonian 

are Bloch waves  

   ,       (5.1) 

where k is a wavevector from the first Brillouin zone, n is a band index and  has a 

periodicity of the lattice [4]. For an infinite system only real wavevectors are allowed. 

Indeed Bloch waves with complex wavevectors cannot be normalized as they would 

diverge at infinity. However, when the periodicity is broken by presence of some 

boundary (for example surface or interface), the Bloch waves with nonzero imaginary 

part of the wavevector in the direction normal to the boundary are allowed. Such 

evanescent states decay exponentially as we go away from the boundary into the bulk of 

the crystal and at the boundary they are matched by the wavefunction outside the crystal 

[2, 3]. Note that the boundary induced changes in the charge density and the potential are 

usually confined within first few monolayers from the boundary and beyond this region 

the Hamiltonian of the system is essentially bulk-like. For this reason the evanescent 

states can be studied using the bulk Hamiltonian. 

 Assuming that the boundary is perpendicular to the z axis we can split the 

wavevector into a part parallel to the boundary, k||, and a part perpendicular to the 

boundary, kz. As discussed above, x-y plane periodicity requires k|| to be real but the 

presence of the boundary allows for complex . The imaginary part, κ, is 

called the decay parameter since, according to Eq. 5.1, it corresponds to the evanescent 

Bloch wave that decays as . The eigenvalues of the crystal Schrödinger, or Kohn-

Sham, equation, for a certain k|| and arbitrary complex kz, form complex band structure of 
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the crystal. The complex band structure can be calculated for the bulk system without any 

reference to the nature of the boundary [5, 6]. 

 For a given k||, complex bands form the so-called real lines in the three-

dimensional (q, , E) space where E is energy. The analytic properties of the real lines 

were studied by Kohn [7] and Heine [3, 4] and the topology of the complex bands was 

studied by Chang [5]. The real lines always appear in pairs of ±κ but the physically 

relevant states are those that decay as we go away from the boundary into the bulk of the 

crystal. Real lines depart from the real q axis wherever there is an extremum of the real 

band structure with respect to q. The bands can either extend in energy to -∞, forming 

free-electron-like parabolic solutions, or connect back to other extrema of the real band 

structure forming loops. 

 Consider the case of insulator or semiconductor. In the bulk the electronic band 

structure is characterized by the presence of energy gap that separates occupied valence 

bands from empty conduction bands. No Bloch waves with a real wavevector exist in the 

band gap. However, evanescent states with energies within the band gap can exist. When 

the interface between an insulator and a metal is formed, typically Fermi level of the 

metal lies within the band gap of the insulator. Therefore, the evanescent states within the 

insulator band gap can couple to the metallic states forming so-called metal-induced gap 

states (MIGS) [2, 3] which are occupied by charge coming from the metal.  

 The concept of the complex band structure was often applied to determine the 

electronic structure of solids with planar defects (e.g., surfaces, interfaces, stacking faults, 

grain boundaries or superlattices). The total wavefunction of the system is expanded in 
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terms of Bloch and evanescent waves on both sides of the boundary plane which, in turn, 

are obtained from the complex band structure of the bulk constituents. The coefficients of 

the expansion are then determined by matching at the boundary plane and using 

appropriate boundary conditions. The main disadvantage of the method is that it doesn’t 

take into account the variation of the charge density close to the boundary plane and 

therefore the electronic structure in immediate neighborhood of the boundary plane is not 

correctly described. Nevertheless, this method was very popular in the past when the slab 

calculations were unfeasible due to insufficient computer resources. In particular, this 

approach was utilized to determine the electronic structure of surfaces [2], interfaces [8], 

and superlattices [9]. Nowadays, even though the slab calculations for the systems with 

planar defects can be easily performed, the analysis of the complex band structure is very 

useful in interpreting the results and understanding basic physics that controls the 

electronic structure near the boundary. For example, the concept of MIGS and complex 

band structure has been invoked to understand the Schottky barrier height on the metal 

used in the metal-semiconductor interfaces [3, 10]. Further, the efficiency of the electron 

tunneling in metal/insulator/metal junctions can be understood in terms of MIGS in 

insulator [11]. In particular, the tunneling rate is determined by the evanescent state with 

the lowest decay rate assuming that it is allowed by symmetry to couple to the electronic 

states of the metal at the Fermi level [11]. 
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5.2 Calculation methodology 

We consider (LaAlO3)m/(SrTiO3)n symmetric superlattices with the LaO/TiO2 

interface. Here m and n denote the numbers of atomic layers of   LaAlO3 and SrTiO3, 

respectively. Both n and m are odd numbers as required for symmetric superlattices with 

a single type of interface. As a result both LaAlO3 and SrTiO3 films are 

nonstoichiometric which introduces an extra charge in the system of (in the case of the 

LaO/TiO2 interface) 0.5e per interface. As discussed in Chapter III, this situation 

corresponds to the two-dimensional electron gas (2DEG) formed at the LaO/TiO2 

according to the polar catastrophe model in the limit of thick LaAlO3 film. This geometry 

thus allows us to study the properties of the 2DEG regardless its origin. The 

(LaO)1/(SrTiO3)21 superlattice is shown schematically in Fig. 1. 

 

 

Figure 5.1: Schematic picture of the (LaO)1/(SrTiO3)21 superlattice. Green, gray, red, and 

blue circles correspond to Sr, Ti, O, and La ions, respectively.  
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The atomic and electronic structure of the system were calculated using density 

functional theory [12, 13] within the local density approximation (LDA) [13] for the 

exchange correlation potential. In addition, the effects of electronic correlations were 

studied using LDA+U method [14, 15] with U = 5 eV and J = 0.9 eV on Ti 3d states. 

The Kohn-Sham equations were solved using the projector augmented wave (PAW) 

method [16, 17] as implemented in the Vienna ab-initio simulation package (VASP) [18, 

19].  

The in-plane lattice constant was fixed to the theoretical equilibrium value for 

cubic SrTiO3 within LDA (a = 3.87 Å), while the c/a ratio was optimized for each 

supercell. Ions were fully relaxed so that forces on each atom were smaller than 10 

meV/Å. The energy cutoff for the plane wave expansion was 500 eV and we used 

8�8�max(1,8/N) k-point mesh where N is the number of unit cells perpendicular to the 

interface. 

  

5.3 Results 

For all superlattices we found strong ionic relaxations near the interface. It mainly 

involves substantial buckling distortion of the interfacial TiO2 layer in which negatively 

charged O ions are displaced toward LaAlO3 film while positively charged Ti ions move 

away from the LaAlO3 film. This distortion produces an electric dipole which screens the 

electric field produced by the positively charged nonstoichiometric LaAlO3 film. This 

behavior is similar to the one observed in SrTiO3/LaTiO3 superlattices [20]. 
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Similar to the previous studies and as expected for the nonstoichiometric LaAlO3 

film, we found that the superlattices are metallic with the conduction charge density of 

about 0.5e per interface. For thin SrTiO3 films (i.e., n < 17), however, our calculations 

show that the conduction electrons are nearly uniformly distributed over the SrTiO3 film. 

This spurious behavior results from artificial geometrical confinement within the thin 

SrTiO3 film. In fact, for thicker SrTiO3 films ( n ~ 23) the conduction charge density 

decays as we go away from the interface (see below) demonstrating the presence of the 

2DEG that is confined to the interface. These results are rather independent on the 

thickness of the LaAlO3 film. 

Fig. 5.2 shows the local density of states (DOS) on the TiO2 planes located at 

different distance l (given in monolayers) from the LaO layer in LaO/(SrTiO3)23 

superlattice (m = 1). A substantial band bending is seen resulting, in particular, in the 

change of the valence band maximum (VBM) and the conduction band minimum (CBM) 

as a function of l. This is due to the variation of the electrostatic potential which rigidly 

shifts the bands with respect of the Fermi energy (EF). We obtain the site-dependent 

electrostatic potential using the core-like O-2s states shown in the right panels of Fig. 5.2. 

These states reveal a pronounced peak changing its position with l that we use for the 

analysis of the band bending. This allows us to find the variation of the CBM in the 

SrTiO3 film as follows. We add the value �g = 1.83 eV corresponding to the calculated 

band gap for the bulk SrTiO3 to the VBM obtained for the TiO2 monolayer at l = 11 (i.e., 

the TiO2 monolayer that is the furthest from the interface and its DOS is very much bulk-

like). This determines the CBM at this site, which appears to be approximately 0.18 eV 

above the Fermi energy. This is consistent with the experimental value of 0.25 � 0.07 eV 
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[21]. Then, we obtain the site variation of the CBM by adding the electrostatic potential 

difference from the shift of the core O-2s states. The result is shown by the dashed line in 

Fig. 5.2.  

 

 

Figure 5.2: Layer-resolved DOS on the TiO2 planes in LaO/(SrTiO3)23 superlattice (m = 

1). Index l denotes the TiO2 monolayer position away from the LaO monolayer placed at 

l = 0. Left panels show the DOS in the vicinity of the Fermi energy (EF) denoted by the 

vertical line. The shaded areas indicate the occupied states forming 2DEG. The dashed 

line demonstrates the variation of the conduction band minimum (CBM) in SrTiO3. Right 

panels show the DOS of the O-2s states at energies about 20eV below EF. 
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The important conclusion which follows from this analysis is the presence of the 

substantial valence charge occupying a classically forbidden region. This is seen from the 

relative position of the CBM with respect to the shaded area in Fig. 5.2 that indicates the 

amount of charge forming the 2DEG. For l = 1 and l = 3 almost all the charge resides in 

the region above the CBM. This is consistent with the classical picture of electrons 

confined in a potential well. However, for l = 5, 7, 9, and 11, we see that the charge 

occupies a classically forbidden region below the CBM.  

The physical mechanism responsible for the presence of charge in the classically 

forbidden region is quantum-mechanical tunneling under the potential barrier. In fact, the 

situation here is very similar to the metal/insulator interface. The “metal” is a region 

close to the SrTiO3/LaAlO3 interface where due to the band bending the conduction 

electrons are classically allowed while the “insulator” is the SrTiO3 film beyond this 

region. Note that the thickness of the “metal” is energy dependent but this doesn’t change 

the main physics here. In analogy to the real meta/insulator interfaces, as discussed in 

Section 5.1, the conduction electrons from the “metal” can tunnel into the gap of the 

“insulator” and form metal induced gap states (MIGS) [2, 3]. This is schematically 

illustrated in Fig. 5.3.  
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Figure 5.3: Schematic band diagram of the SrTiO3/LaAlO3 interface and the illustration 

of the formation of the MIGS. Band bending (blue line) at the SrTiO3/LaAlO3 interface 

leads to the notched structure at the SrTiO3 film close to the interface where CBM is 

below the Fermi level. This forms a classically allowed region where extra electrons from 

the LaAlO3 film (dark blue circles) can reside. Due to quantum-mechanical tunneling 

these electrons can tunnel into classically forbidden region forming MIGS (red circles) 

that determine the confinement of the 2DEG. 

 

            Fig. 5.4 shows the charge distribution in the SrTiO3 film, calculated from the 

integrated partial DOS on Ti sites, for (LaAlO3)m/(SrTiO3)23 superlattices with m = 1, 3 

and 5. The total amount of the charge on Ti atoms is about 0.39e. A fraction of this 

charge is confined on the first TiO2 monolayer from where it decays exponentially in the 



76 
 
bulk of SrTiO3 with the characteristic attenuation length δ. We fit the charge distribution 

by , where z is a distance from the interfacial TiO2 monolayer, to obtain 

the attenuation length (see Fig. 5.4). Not unexpectedly, we find that δ is almost 

independent of the number of LaAlO3 monolayers and is equal to 1.03, 1.08 and 1.18 nm 

for m = 1, 3, and 5 respectively.  

 

 

Figure 5.4: Charge on Ti sites (solid symbols) for (LaAlO3)m/(SrTiO3)23  superlattices 

with m = 1 (squares), m = 3 (circles) and m =5 (triangles), and the conduction band 

minimum (open squares) as a function of distance from the interface z. The interfacial 

TiO2 monolayer is placed at z = 0 as a reference. The Fermi energy (EF) is shown by a 

horizontal line and is related to the CBM plot only.   
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Fig. 5.4 also shows the variation of the CBM within the SrTiO3 film obtained from 

the calculation described above. This may be regarded as an effective tunneling potential 

barrier for the conducting electrons residing at the interface. The Fermi level crossing 

separates classically allowed and classically forbidden regions in the insulator. The latter 

is indicated in Fig. 5.4 by the shaded area and contains about 0.42 of the total charge on 

Ti atoms. The presence of such substantial charge within the classically forbidden region 

is the evidence for the presence of MIGS at the SrTiO3/LaAlO3 interface. The classical 

electrostatic confinement potential is short-ranged and extends only up to the second 

TiO2 monolayer; however the charge spills much further due to presence of MIGS. This 

is the manifestation of the quantum nature of the 2DEG confinement which is determined 

by MIGS. We also note that only insignificant amount of charge is induced in LaAlO3. 

In order to obtain further insights into the electronic properties of the 2DEG, in Fig. 

5.5a we have plotted k||-resolved charge density of the 2DEG for the LaO/(SrTiO3)23 

superlattice (m = 1) in the two-dimensional Brillouin zone, integrated in the range of 

energies from EF  – 1 eV to EF, which contains the 2DEG. It is seen that the largest charge 

density is at the Γ point (k|| = 0). In the vicinity of the Γ point the charge distribution is 

reminiscent of a Fermi circle. This implies that free electron is a good starting 

approximation to investigate properties of the 2DEG. The spherical charge distribution 

for small k|| is consistent with the band structure of the system which is shown in Fig. 5.6 

that reveals quadratic dispersion of the conduction bands close to the Γ point. By fitting 

these bands to a parabola we find the average effective mass , which is 

consistent with the calculations performed for bulk SrTiO3 [22]. Such a large value of the 
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effective mass is due to the localized nature of the Ti-3d states resulting in low band 

dispersion and is detrimental to achieving high mobility of the 2DEG.   

 

 

Figure 5.5: k||-resolved charge density (a) and the lowest decay rate of the evanescent 

states in SrTiO3 (b) within the two-dimensional Brillouin zone. The charge density is 

evaluated for the energy range from EF – 1.0 eV to EF. The decay rate (in units of 2π/a) is 

evaluated for bulk SrTiO3 at 0.2 eV below the CBM. 

 

As we go away from the Γ point, the charge distribution pattern exhibits an outer 

region with lower charge density deviating from the circular shape. This is the 

consequence of the decay rate anisotropy in SrTiO3. In order to reveal this anisotropy, we 

have calculated the complex band structure of bulk SrTiO3 [23]. Fig. 5.5b shows the 

lowest decay rate of the evanescent states as a function of k|| evaluated at 0.2 eV below 

the conduction band minimum. In this energy range the lowest decay rate has the Δ5 

symmetry. As seen, the states with the lowest decay rate form a cross pattern along the Γ-

M directions in the two-dimensional Brillouin zone. In the area around the Γ point where 
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the charge density is highest the decay rate is nearly constant and the corresponding 

attenuation length is about � ~ 0.8 nm. This is in good agreement with the results of our 

supercell calculations. Thus, the complex band structure of bulk SrTiO3 correctly 

estimates the attenuation length of the conduction charge density at the LaO/TiO2 

interface which confirms that the confinement of the 2DEG has a quantum nature and is 

governed by the formation of MIGS at the interface. This interpretation allows us also to 

explain the insignificant amount of charge induced in the LaAlO3 film. Indeed, the decay 

rate in the LaAlO3 is much larger due to a larger band gap and the fact that the Fermi 

level of the superlattice lies approximately in the middle of the LaAlO3 band gap where 

the decay rate is maximal. Consequently, MIGS in LaAlO3 decay on much shorter length. 
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Figure 5.6: Band structure along Γ-M direction of the LaO/(SrTiO3)23 superlattice (m = 

1). Close to the Γ point the dispersion of conducting bands is quadratic. 
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According to the MIGS model the k||-dependent decay rate determines the shape of 

the charge density of the 2DEG in the two-dimensional Brillouin zone. Indeed, close to 

the zone center the decay rate is low and weakly dependent on k|| producing a nearly 

spherical part of the charge density. Further away from the Γ point the decay rate sharply 

increases and exhibits strong anisotropy which is seen in Fig. 5.5a from the elongated 

contour of the charge density in the [100] and [010] directions.  

We note that the well-known problem of LDA to underestimate the band gap does not 

affect significantly the predicted confinement width. The latter is determined by the 

conduction band bending due to the electrostatic potential that places the conduction band 

minimum at a certain position above the Fermi energy. Also the inclusion of electron 

correlations through LDA+U method does not change significantly our results. This is 

consistent with the previous work [24]. Electron correlations affect the confinement 

through unequal occupation of the two spin channels which moves slightly the charge 

center of mass further down in energy. Thus, the charge of the interface faces a slightly 

higher decay rate in the SrTiO3 [23]. 

 

5.4 Conclusions 

In conclusion, we find that the 2DEG at the LaO/TiO2 interface of LaAlO3/SrTiO3 

superlattices is confined in SrTiO3 within about 1 nm from the interface. This 2DEG 

confinement is formed by the metal induced gap states (MIGS) in the insulator. The latter 

are the result of quantum-mechanical tunneling of the charge created at the interface due 
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to electronic reconstruction. The MIGS are controlled by the complex band structure of 

the insulator through the decay rate of evanescent states. The predicted quantum nature of 

the 2DEGs at oxide interfaces needs to be taken into account when interpreting 

experimental data.  
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Chapter 6 Magnetism at the SrTiO3/LaAlO3 interface  

 

 In this chapter I describe first principles electronic structure calculations to 

elucidate magnetic properties of the LaAlO3/SrTiO3 n-type interface. We found that in 

(LaAlO3)3/(SrTiO3)3 superlattice the n-type interface is magnetic with a magnetic 

moment on the Ti3+ atom of 0.2µB, as revealed by the spin-polarized calculations within 

the local density approximation. For thicker SrTiO3 layers the magnetic moment 

decreases and eventually disappears because the electron gas spreads over more than one 

unit cell, making the electrons delocalized across the superlattice and violating the Stoner 

criterion for magnetism. Thus, magnetization in these superlattices is due to geometric 

confinement of the electron gas. The inclusion of electron correlations via the LDA+U 

approximation with U = 5 eV on the Ti atoms, makes the two-dimensional electron gas 

half-metallic, enhances and stabilizes the interface magnetization. 

 

6.1 Introduction 

 According to the polar catastrophe model the origin of the two-dimensional 

electron gas (2DEG) at the LaAlO3/SrTiO3 n-type interface is an electronic 

reconstruction in which electrons are transferred from the LaAlO3 film into the interface 

and occupy empty Ti 3d states which form conduction band in bulk SrTiO3. Since Ti 3d 

states are localized close to the Ti ions, the Coulomb interaction between these electrons 

is large which may lead to magnetic ordering. Indeed, as discussed in Chapter II, there 
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are experimental evidences that at low temperatures the 2DEG becomes magnetic [1,2 3]. 

Different experiments, however, reported different types of magnetic order including 

ferromagnetism [1, 2] and antiferromagnetism [3]. On the other hand, Reyren et al. [4] 

observed that the 2DEG is nonmagnetic but instead it becomes superconducting at low 

temperatures. Evidently, different types of magnetic order compete with each other and 

with superconductivity, and depending on sample preparation conditions different 

electronic orderings set in. 

 It is therefore of great importance to understand effects of different factors on 

magnetism of the 2DEG. This knowledge would allow experimentalists to design sample 

preparation conditions in such a way that the 2DEG would become magnetic. This in turn 

would open exciting possibilities for application of the LaAlO3/SrTiO3 interface in 

spintronic technology. Conversely, as the superconductivity likely competes with 

magnetism in this system, by growing samples such as to disfavor magnetism one can 

expect to enhance the superconductivity and therefore to study this exciting state of 

matter in greater depth. 

Several first-principles studies addressed the magnetic properties of the 2DEG at 

the LaAlO3/SrTiO3 n-type interface [5, 6, 7]. In particular, Pentcheva and Pickett [5, 6] 

studied effects of lattice relaxations and electronic correlations on magnetic order. They 

found that lattice relaxations has a minor effect on magnetism but strong electronic 

correlations on Ti 3d states included by LDA+U method lead to a ferromagnetic ground 

state that is accompanied by the c(2 × 2) charge ordering that makes the interface 

insulating. Without Hubbard U the interface is nonmagnetic and metallic.  On the other 
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hand, Zhong and Kelly [7] have shown that relaxations have a profound effects on 

magnetic properties and that ferromagnetic state with c(2×2) charge ordering competes 

with p(2 × 2) antiferromagnetic insulating state with charge ordering.  

In this chapter, we study the effect of the thickness of the SrTiO3 film and the 

electronic correlations on the ferromagnetism of the 2DEG at the LaAlO3/SrTiO3 n-type 

interface using first principles calculations [8]. We found that for thin SrTiO3 film the 

2DEG is magnetic even in the absence of Hubbard U. On the other hand, when electronic 

correlations are included by the GGA+U method, the 2DEG becomes half-metallic. For 

thicker SrTiO3 the 2DEG spreads over the SrTiO3 film making the conduction electrons 

more delocalized. As a result, within GGA, the Stoner criterion is violated and the 2DEG 

is nonmagnetic. Inclusion of the Hubbard U, however, stabilizes ferromagnetic order 

even for thick SrTiO3 films. 

 

6.2 Stoner model 

 In this section I will review the Stoner model for magnetism (see, for example, 

Ref. [9]) which, as shown in this Chapter, is able to capture basic physics of magnetic 

properties of the 2DEG formed at the LaAlO3/SrTiO3 interface. 

 The first theory of magnetism was Weiss’ molecular field theory (see for example 

[9]) which assumes that electrons in magnetic crystals form localized magnetic moments 

that interact with internal molecular field. This picture can be justified in case of 

insulators. Here one can assume that the electronic structure can be represented by a 
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collection of weakly interacting ions which according to Hund’s rules often have 

magnetic moments. In case of metals however, the existence of local magnetic moments 

cannot be easily justified. Therefore, in order to explain magnetism in metals, (like Fe, 

Co or Ni) Stoner has proposed an alternative approach [10]. 

 In the Stoner model we take into account that electrons in metals are delocalized 

and form electronic bands. The electronic structure can be described in terms of density 

of states (DOS). Knowledge of DOS for each spin direction allows us to find number of 

electrons with spin up and down using 

,         (6.1) 

where  and  are, respectively, a number of electrons and DOS with spin 

 (here “+” denotes spin up and “–“ denotes spin down). We chose zero energy to be 

well below the bottom of the valence band and  is the Fermi energy. Fig. 6.1 shows an 

example of DOS for each spin direction. In this case DOSs for each spin direction are 

exactly the same so that  (here n is the total number of electrons) and the 

system is nonmagnetic. 
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Figure 6.1: Example of a nonmagnetic DOS. Only occupied part (below Fermi level, εF) 

is shown. The figure is adapted from Ref. [9]. 

 

 Let’s imagine now that we apply a small external magnetic field, , so that the 

DOS is split between the two spins by  (see Fig. 6.2). Consequently, numbers of 

electrons with spin up and down are different, and we have nonzero magnetization given 

by 

  .  (6.2) 
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Here we used the fact that DOSs for each spin direction are simply shifted versions of the 

nonmagnetic DOS per spin, . 

 The band energy (i.e. the total energy minus the exchange-correlation energy) of 

the system is given by 

  ,      (6.3) 

which can be written as 

  ,    (6.4) 

where  is the band energy of the nonmagnetic system.  

 

Figure 6.2: Spin-splitting of DOS. Only occupied part (below Fermi level, εF) is shown. 

The figure is adapted from Ref. [9]. 
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Since  is small (because  is small), we can assume that  is constant in 

the range  and equal to . From Eq. (6.2) we then obtain 

  ,         (6.5) 

and from Eq. (6.4) we  then obtain 

  .     (6.6) 

Note that the last term is positive and therefore band energy disfavors magnetism. 

 In addition to the band energy Stoner considered the exchange contribution to the 

energy. The exchange energy is a result of the fact that electrons that interact with 

themselves by Coulomb forces are fermions and therefore must satisfy Pauli exclusion 

principle. This contribution to energy favors parallel spins as Pauli exclusion principle 

requires them to avoid each other which minimizes the Coulomb interaction. In analogy 

to the Weiss model, Stoner introduced a molecular field that represents exchange 

interaction. The molecular field is assumed to be proportional to magnetization and given 

by  where  is a Stoner parameter. The exchange energy is then given by 

  .       (6.7) 

The total energy is then a sum of band energy, exchange energy and the Zeeman energy 

 .     (6.8) 
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Here  is the Bohr magneton. The ground state magnetization can be found by 

minimizing the total energy with respect  

  .         (6.9) 

It follows that magnetic susceptibility is given by 

  .        (6.10) 

Note that when the Stoner condition 

  .         (6.11) 

is satisfied the susceptibility is negative indicating that the paramagnetic state is unstable 

with respect to creation of nonzero magnetization and therefore the system is 

ferromagnetic. 

 The Stoner criterion is more likely to be satisfied in the materials with large DOS 

at the Fermi level. This requires partially filled nondispersive bands which usually have d 

or f characters. Indeed, most of known metallic magnets, like Fe or Gd, have partially 

filed d or f states at the Fermi level. 

 The Stoner parameter represents the strength of the effective interaction between 

electrons. This can be shown explicitly if we represent electronic correlations by the 

Hubbard term [11] 

 .         (6.12) 
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Here index i represents quantum numbers of some localized atomic-like basis and U is an 

on-site effective (screened) Coulomb interaction parameter. Applying Hartree-Fock 

approximation we obtain [11] 

 .         (6.13) 

The second term in Eq. (6.13) is similar to the exchange energy given by Eq. (6.7). 

Therefore the electron correlation U is additive to the Stoner parameter I.   

When the Stoner criterion is satisfied, one can find the equilibrium magnetization 

by minimizing the total energy which is a sum of the exchange energy given by Eq. (6.7) 

and the band energy given by Eq. (6.4). In contrast to the above description, however, 

one needs evaluate (6.4) by taking into account the energy dependence of the 

paramagnetic DOS in the neighborhood of the Fermi energy [9]. One can then show the 

following relation [9] 

  .          (6.14) 

Here m is an equilibrium magnetization and  is the corresponding (exchange) splitting 

of the DOS between two spin states. Eq. (6.14) can be used to find the Stoner parameter 

from the results of spin polarized ab initio calculations.  

Alternatively, the Stoner parameter can be calculated directly from first principles 

[12]. Using such calculated values of the Stoner parameter as well as paramagnetic DOS 

it was found that the Stoner criterion (6.11) correctly predicts presence or absence of 

magnetism in most of metals [12]. 
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6.3 Calculation methodology 

We consider (SrTiO3)n /(LaAlO3)m superlattices (here n and m are the numbers of 

monolayers of SrTiO3 and  LaAlO3 films, respectively) with m = 3 and n = 3, 5, 7, 9. The 

odd values of n and m cause that both SrTiO3 and LaAlO3 films are nonstoichiometric 

and that resulting superlattices are symmetric, i.e., they have a mirror symmetry plane 

perpendicular to the “growth” direction. This requires both interfaces to be identical and 

here we consider the LaO/TiO2 n-type interface. On the other hand, nonstoichiometricity 

of the LaAlO3 film introduces extra electron in the system which allows us to study the 

magnetic properties of the 2DEG gas regardless of its origin (see Chapter III for 

discussion of this approach). 

We study the atomic and electronic structure of the superlattices using density 

functional theory [13, 14] within the Perdew-Burke-Ernzerhof (PBE) generalized 

gradient approximation (GGA) [15] for the exchange correlation potential. Further, 

electronic correlations were included using GGA+U method [16, 17] with U = 5eV and J 

= 0.9eV. We solve the Kohn-Sham equations using the projector augmented wave 

method [18, 19] implemented in the Vienna Ab-Initio Simulation Package (VASP) [20, 

21]. The in-plane lattice constant was fixed to the average value of the experimental 

lattice constants of LaAlO3 (3.789 Å) and SrTiO3 (3.905 Å). The resulting supercell is 

tetragonal with a = b = 3.847 Å and the c/a ration was set to (n + m)/2. The ionic 

positions within such supercell were fully relaxed. The energy cutoff for the plane wave 

expansion was set to 500 eV. We used k-point mesh of 8�8�max(1,8/N) and 

12�12�max(1,12/N) for relaxation and density of states (DOS) calculations, respectively. 
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Here N is the number of unit cells perpendicular to the interface. Forces on each atom 

were converged to < 20 meV/Å.  

 

6.4 Results 

Both for GGA and GGA+U strong ionic relaxations were found near the interface 

for all considered superlattices in agreement with earlier calculations [22]. Mainly, they 

have a form of buckling distortion of the interfacial TiO2 layer in which negatively 

charged O ions are displaced toward LaAlO3 film while positively charged Ti ions move 

away from the LaAlO3 film. As it produces an electric dipole that screens electric field 

produced by the positively charged LaAlO3 film, this distortion originates mainly from 

electrostatic interactions. 

First, we consider the electronic structure of the paramagnetic 2DEG at the LaO/TiO2 

interface as a function of the SrTiO3 thickness using GGA. We find that the conduction 

band is partially occupied and that the number of the conduction electrons is 0.5 electrons 

per interface, as obtained from the integrated density of states. This agrees with the fact 

that we used nonstoichiometric film of LaAlO3. In agreement with previous works [22-

24], the conduction electrons occupy Ti-3d conduction states. We find that, as thickness 

of SrTiO3 increases, the conduction electrons are distributed to all Ti atoms inside the 

SrTiO3 slab, rather than being confined only to the Ti atoms at interfaces. This behavior 

is different from that in (LaTiO3)m/(SrTiO3)n superlattices where the electron gas was 

found to be localized within a couple of monolayers near the interface [25]. The 2DEG 
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remains also delocalized over the SrTiO3 film even when electronic correlations are 

included by GGA+U method.  

 

Table 6.1: Magnetic moments on the interface Ti atom (mTi), magnetization of the unit 

cell (m), the exchange splitting (�E), and the parameter 2N(εF)I entering the Stoner 

criterion (6.11) for (LaAlO3)3/ (SrTiO3)n superlattices with different SrTiO3 layer 

thickness (n) calculated within PBE (U =0). 

 

n mTi [μB] m [μB] ΔE [eV] 2N(εF)I 

3 0.21 0.53 0.29 1.17 

5 0.07 0.22 0.10 0.53 

7 0.023 0.10 0.03 0.34 

9 0.016 0.07 0.02 0.35 

 

As discussed in the Introduction, some experiments [1] suggest that the Ti-3d 

electrons localized at the LaAlO3/SrTiO3 interfaces align ferromagnetically leading to 

magnetic behavior at low temperatures. In order to understand the origin of the 

magnetism we perform spin-polarized calculations of the electronic structure of 

(LaAlO3)m/(SrTiO3)n superlattices having LaO/TiO2 interfaces. For n=3 SrTiO3 film, we 
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find within GGA that the 2DEG becomes magnetic, with a magnetic moment of 0.2 �B 

on Ti atoms. However, as is evident from Table 6.1, with increasing the SrTiO3 thickness 

this magnetic moment decreases and disappears.  

Fig. 6.3a shows the majority- and minority-spin density of states (DOS) for the Ti 

atom at the interface for different thicknesses of SrTiO3. As is seen, the exchange 

splitting �E decreases rapidly with SrTiO3 thickness: it has a maximum �E=0.29 eV for 

3 monolayers (ML) and practically vanishes for 7 MLs of SrTiO3 (see Table 6.1). In 

order to understand this behavior we employ the Stoner model introduced in Section 6.2.  
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Figure 6.3: Density of states for majority- and minority-spin electrons on the Ti atom at 

the interface for (LaAlO3)3/ (SrTiO3)n superlattices. a) U=0, b) U=5 eV. The Fermi 

energy is denoted by the vertical solid line. 

 

Using Eq. (6.14) and values of �E and m obtained from the first-principles 

calculation for the (LaAlO3)3/(SrTiO3)3 superlattice we find 0.725I � eV. Assuming that 

this value is independent of SrTiO3 thickness in the superlattice, the parameter 2N(εF)I 

entering the Stoner criterion (6.11) can then be calculated for each thickness of SrTiO3. 

The results are shown in Table 6.1. It is seen that the decay of magnetism in the system is 
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associated with the violation of the Stoner criterion. Thus, the disappearance of the 

magnetic moment on the Ti atoms, with the increasing SrTiO3 thickness, is caused by the 

delocalization of the electron gas that is spread over all the Ti atoms in the SrTiO3, 

resulting in the decrease of N(εF). 

 

Table 6.2: Magnetic moments on the interface Ti atom (mTi), magnetization of the unit 

cell (m), the exchange splitting (�E), and the parameter 2N(εF)I entering the Stoner 

criterion (6.11) for (LaAlO3)3/ (SrTiO3)n superlattices with different SrTiO3 layer 

thickness (n) calculated within GGA+U with U = 5 eV. 

 

n mTi [μB] m [μB] ΔE [eV] 2N(εF)I 

3 0.41 0.996 1.17 7.56 

5 0.26 0.999 0.87 3.44 

7 0.17 0.995 0.75 2.24 

9 0.16 1.006 0.57 2.31 

 

The Ti-3d bands play an essential role in the conducting and magnetic properties of 

LaAlO3/SrTiO3 superlattices. Due to the localized nature of the 3d states, a proper 

treatment of the on-site Coulomb interaction between electrons is required. Using the 
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GGA+U approximation, we find that the inclusion of the on-site Coulomb interaction 

with a moderate value of U=5eV leads to half-metallicity of the 2DEG in the 

heterostructures. This is evident from Fig. 6.3b which shows the spin-dependent DOS on 

the interface Ti atom for different thicknesses of SrTiO3, indicating a zero minority-spin 

DOS at the Fermi energy. In addition, the on-site Coulomb interaction stabilizes 

magnetism. As is seen from Table 6.2, for all SrTiO3 thicknesses the calculated GGA+U 

magnetic moment of the unit cell is about 1 �B. The enhancement of magnetism by the 

GGA+U magnetism is a result of the fact that addition of Hubbard U increases the onsite 

Coulomb interaction which, as discussed in Section 6.2, increases the Stoner parameter.  

 

6.5 Conclusions 

In conclusion, we have studied magnetism and conducting properties of 

nonstoichiometric LaAlO3/SrTiO3 (001) superlattices for different thickness of SrTiO3. 

We found that nonstoichiometricity of the LaAlO3 film causes a partial occupation of the 

Ti-3d conduction band in SrTiO3.  For the smallest SrTiO3 thickness the system becomes 

magnetic, however, the magnetism disappears as the thickness of SrTiO3 increases. The 

Stoner model predicts that the delocalization of the electron gas over the SrTiO3 thickness 

reduces the magnetic moment. Taking into account electron-electron correlations within 

the GGA+U method, we found that the on-site Coulomb interaction stabilizes the 

magnetization and make the 2DEG half-metallic.  
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Chapter 7 Effect of polar interfaces and two-dimensional electron 

gas on thin-film ferroelectricity.   

 

In this chapter we apply the first principles and model calculations to investigate 

the ferroelectric stability of thin-film ferroelectrics that form polar interfaces at which a 

two-dimensional electron gas (2DEG) is present [1]. As a representative model, we 

consider a TiO2-terminated BaTiO3 film with LaO monolayers at the two interfaces. We 

find that the polar interfaces create an intrinsic electric field that is screened by the 2DEG 

that decays into the BaTiO3 film. Three types of heterostructures were considered 

(Vacuum/LaO/BaTiO3/LaO, LaO/BaTiO3, and SrRuO3/LaO/BaTiO3/LaO) in which 

different boundary conditions lead to different 2DEG density. 

We find that the intrinsic electric field forces ionic displacements in BaTiO3 to 

produce the electric polarization directed into the interior of the BaTiO3 layer. This 

creates a ferroelectric dead layer near the interfaces that is non-switchable and thus 

detrimental to ferroelectricity. We show that the effect is stronger for a larger effective 

ionic charge at the interface and longer screening length due to a stronger intrinsic 

electric field that penetrates deeper into the ferroelectric. The predicted mechanism for a 

ferroelectric dead layer at the interface controls the critical thickness for ferroelectricity 

in systems with polar interfaces.     

 



103 
 

7.1 Introduction 

According to the polar catastrophe model the 2DEG at the SrTiO3/LaAlO3 

interface is a result of electronic reconstruction in the form of charge transfer from the 

LaAlO3 surface to the interface. This electronic reconstruction removes the polar 

catastrophe caused by alternating charged layers of the polar LaAlO3 film that 

accumulate diverging electrostatic potential. These electrostatic arguments suggest that 

there is nothing special about SrTiO3 and LaAlO3 and that, in principle, we can expect 

2DEG to form at any interface between polar and nonpolar systems as long as the band 

gap of the nonpolar system is not too large so that the energy cost for electronic 

reconstruction is relatively small. In particular, 2DEG was predicted to form at the 

interfaces involving ferroelectric materials [2, 3].  

Ferroelectric materials that are characterized by a switchable macroscopic 

spontaneous polarization have attracted significant interest due to their technological 

applications in ferroelectric field-effect transistors and nonvolatile random access 

memories [4-6]. To increase the capacity of the storage media, it becomes essential to 

bring ferroelectricity into the nanometer scale. Much experimental and theoretical effort 

has been devoted to determine the critical thickness of ferroelectric thin films and 

elucidate its origin. Based on early experiments it was believed that the ferroelectricity 

vanishes below a critical thickness of a few tens of nm [7] due to the depolarizing field 

produced by polarization charges on the two surfaces of the ferroelectric film [8]. There 

is a depolarizing field in a ferroelectric film placed between two metal electrodes due to 

incomplete screening which is inversely proportional to the thickness of the ferroelectric. 
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As a result, there is a critical thickness for a ferroelectric below which depolarizing field 

becomes too large resulting in the suppression of ferroelectricity.  Recent experimental 

and theoretical findings demonstrate, however, that ferroelectricity persists down to a 

nanometer scale [9]. In particular, it was discovered that in organic ferroelectrics 

ferroelectricity can be sustained in thin films of monolayer thickness [10]. In perovskite 

ferroelectric oxides ferroelectricity was observed in nm-thick films [11-16]. These 

experimental results are consistent with first-principles calculations that predict that the 

critical thickness for ferroelectricity in perovskite films can be as small as a few lattice 

parameters [17-22]. The existence of ferroelectricity in ultrathin films opens possibilities 

for novel nanoscale devices, such as ferroelectric [23-29] and multiferroic [30-33] tunnel 

junctions.   

Ferroelectric properties of thin films placed between two metal electrodes to form 

a ferroelectric capacitor or a ferroelectric tunnel junction are affected by a number of 

factors.  It was demonstrated that in addition to the screening associated with free charges 

in the metal electrodes [8] there is an important contribution resulting from ionic 

screening if electrodes are oxide metals, such as SrRuO3 [20]. It was also predicted that 

the interface bonding at the ferroelectric-metal interfaces influences strongly the 

ferroelectric state through the formation of intrinsic dipole moments at the interfaces, as 

determined by the chemical constituents and interfacial metal-oxide bonds [19]. For some 

interfaces, these dipole moments are switchable and may enhance the ferroelectric 

instability of the thin film, which is interesting for engineering the electrical properties of 

thin-film devices [34]. For other interfaces, however the effect of interface bonding is 
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detrimental and leads to the “freezing” of polar displacements in the interfacial region, 

thus resulting in a ferroelectrically inactive layer near the interface [19].   

Using a ferroelectric material to form a 2DEG is interesting due to a new 

functionality that allows controlling 2DEG properties. In particular, it was demonstrated 

that the switching of spontaneous ferroelectric polarization allows modulations of the 

carrier density and consequently the conductivity of the 2DEG [2, 3]. This effect occurs 

due to the screening charge at the interface that counteracts the depolarizing electric field 

and depends on polarization orientation. A necessary condition for such a new 

functionality is the ability of a ferroelectric polarization to switch involving a nm-thick 

region adjacent to the interface where the 2DEG is formed. However, the polar interface 

which is required for producing a 2DEG [35] may affect the ferroelectric stability due to 

the electric field associated with the polar interface. This intrinsic electric field is 

determined by the electron charge distributed near the interface to screen the ionic charge 

of the interfacial plane and penetrates into the ferroelectric. The intrinsic electric field is 

detrimental to ferroelectricity due to pinning ionic displacements near the interface that 

prevents their switching. These arguments indicate the important role of polar interfaces 

in ferroelectric stability and serve as the motivation for the present study. The importance 

of this issue also follows from the fact that polar interfaces may occur in ferroelectric 

capacitors and tunnel junctions. For example, A1+B5+O3 perovskite ferroelectrics (such as 

KNbO3) have alternating charged monolayers of (AO)	 and (BO2)
 along the [001] 

direction so that the (001) surface is expected to be polar. In addition, metal oxide 

electrodes may have charge uncompensated atomic planes along the growth direction 
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(such as La2/3Sr1/3MnO3(001)), so that epitaxially grown films may produce polar 

interfaces.  

 

7.2 Computational methodology 

We consider three types of heterostructures: Vacuum/LaO/(BaTiO3)m/LaO, 

LaO/(BaTiO3)n, and (SrRuO3)5.5/LaO/(BaTiO3)m/LaO, where m = 8.5 and n = 8.5, 14.5 or 

21.5. Here the growth direction is along (001) direction which we choose to be z axis. We 

impose periodic boundary conditions and assume that BaTiO3 is TiO2-terminated at both 

interfaces. For all heterostructures we set the in-plane lattice constant to be equal to the 

theoretical bulk lattice constant of SrTiO3, i.e. a = 3.871 Å. This choice is motivated by 

the fact that typically oxide heterostructures are grown on a SrTiO3 substrate. 

We perform first principles electronic structure calculations based on the density 

functional theory [35, 36] within the local density approximation (LDA) [37]. We use the 

projected augmented wave (PAW) method [38] as implemented in the Vienna Ab-Initio 

Simulation Package (VASP) [39]. The plane-wave energy cutoff is set to 500eV and we 

use 8×8×1 Monkhorst-Pack k-point mesh [40]. Ferroelectric states of the superlattices are 

obtained by starting from the displacement pattern according to the tetragonal soft mode 

of bulk BaTiO3 with polarization pointing along the growth direction and relaxing all the 

ions until the forces on the ions are less 20 meV/Å.  

The ferroelectric polarization of the whole system is calculated using the Berry’s 

phase method [41] while the local polarization distribution is estimated using the model 
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based on the Born effective charges [42]. In the latter case we compute the local 

polarization P(z) by averaging over the z-dependent displacements in the BaTiO3 

primitive unit cell using equation *

1
( )

N

m m
m

eP z Z u�
�

�
�� . Here N is the number of atoms in 

the primitive unit cell, mu� is the change of the position vector of the m-th atom, and � is 

the volume of the unit cell. We use the Born effective charges *
mZ  as 2.77, 7.25, -2.15, -

5.71 for Ba, Ti, O  and O|| ions respectively [43]. Using this approach the polarization of 

the strained (with an in-plane lattice parameter of 3.871 Å as in the considered 

heterostructures) bulk BaTiO3 is calculated to be 0.27/m2, which is in excellent 

agreement with the rigorous result of the Berry phase method, i.e. 0.26 C/m2. We note 

that the method based on the Born effective charges calculated for bulk ferroelectrics 

cannot provide a quantitatively accurate description of the local polarization distribution 

in heterostructures due to the effects of interfaces and local fields which do not exist in 

the bulk. Nevertheless, we find this approach valuable for a semi-quantitative estimate of 

the polarization behavior and comparison with our phenomenological model (see Section 

7.5).   

 

7.3 Electronic structure 

We find that in all the structures the presence of the interfacial LaO donor 

monolayer produces an extra valence charge that resides near the interface, partly or fully 

leaking into the BaTiO3 layer. The latter fact is evident from Fig. 7.1, which shows the 

density of states (DOS) projected onto the 3d-orbitals of Ti atoms located at the left and 
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right interfaces (solid lines) and in the middle of the BaTiO3 layer (shaded area) for the 

three heterostructures. There are occupied states at and below the Fermi level (placed at 

zero energy in Fig. 7.1), the density of which decreases with the distance from the 

interface in the interior of BaTiO3. The attenuation length depends on the state energy in 

the band gap.  Typically the shortest decay length corresponds to energies close to the 

middle of the gap while at the band gap edges, adjacent to the conduction band minimum 

or the valence band maximum, the decay length diverges due to the imaginary part of the 

complex wave vector tending to zero [44]. The average decay length is about 1nm for all 

the three heterostructures similar as for the LaAlO3/SrTiO3 system [45]. We note the 

DOS at the Fermi energy decays at a larger scale and involves metal-induced gap states 

[45], so that a much larger thickness of BaTiO3 is required to approach a zero DOS. This 

is discussed in detail in Appendix 7A, where we analyze the band alignment for the 

LaO/(BaTiO3)21.5 system. The total leakage charge can be calculated by integrating the 

total DOS lying within the band gap of BaTiO3 up to the Fermi energy. We find for the 

Vacuum/LaO/(BaTiO3)8.5/LaO, LaO/(BaTiO3)8.5, and (SrRuO3)5.5/LaO/(BaTiO3)8.5/LaO 

heterostructures that this charge is equal to -1e, -0.5e, and -0.26e  per unit cell area 

respectively.  
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Figure 7.1: Density of states (DOS) projected onto the 3d states of Ti atoms located at 

the left and right interfaces (solid lines) and in the middle of the BaTiO3 layer (shaded 

area) for (a) Vacuum/LaO/(BaTiO3)8.5/LaO, (b) LaO/(BaTiO3)8.5, and (c) 

(SrRuO3)5.5/LaO/(BaTiO3)8.5/LaO heterostructures. The Fermi level lies at zero energy 

and denoted by the dashed line. The insets show the valence band maximum (VBM) with 

respect to the Fermi energy within the BaTiO3 layer as a function of z.  

 

As is evident from the DOS plotted in Fig. 7.1a, for a 

Vacuum/LaO/(BaTiO3)8.5/LaO heterostructure, there is a significant shift of the valence 
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band maximum (VBM)  in the middle of BaTiO3 layer as compared to the interfaces. 

This is an indication of the electrostatic potential change in the insulator and hence an 

intrinsic electric field. We show the variation of the electrostatic potential energy across 

the BaTiO3 layer in the inset of Fig. 7.1a by plotting the VBM energy as a function of 

position z (measured in unit cells) within BaTiO3. Note that almost symmetric variation 

of the electrostatic potential is the indication of the absence of ferroelectric polarization 

in BaTiO3 which is expected to break the symmetry. A significant increase in the 

electrostatic potential energy at the two interfaces that is seen from the inset indicates the 

presence of the intrinsic electric field pointing away from the interfaces. This field 

originates from the positively charged LaO layer. The magnitude of the field close to the 

interfaces is about 0.5 V/nm and as we go away from the interface the field is screened by 

the conduction electrons within the screening length of about 1 nm. This intrinsic electric 

field is shown schematically in Fig. 7.2. 

A similar behavior is present in a LaO/(BaTiO3)8.5 heterostructure. In this case, 

however, as seen from the inset in Fig. 7.1b, the electric field is reduced by a factor of 

two, as compared to the Vacuum/LaO/(BaTiO3)8.5/LaO system. This reduction is a 

consequence of the fact that the positive charge at the (LaO)+ layer is partially 

compensated by negative charge of -0.5e per unit interface residing on the other side of 

the interface. The electric field is still sufficiently large to not allow for ferroelectric 

polarization to develop for the 8.5 unit cell thick BaTiO3 layer, as follows from the almost 

symmetric energy profile seen in the inset of Fig. 7.1b. 
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Figure 7.2: Schematic illustration of the charge distribution and the intrinsic electric field 

in a BaTiO3 film terminated with positively charged (LaO)+ monolayers at the left and 

right interfaces. A gradient shadow region indicates the screening charge penetrating into 

BaTiO3. Blue arrows indicate the direction of the intrinsic electric field that has a 

tendency to pin the local polarization along the field direction.   

 

The situation changes for a (SrRuO3)5.5/LaO/(BaTiO3)8.5/LaO heterostructure. 

Here most of electrons are transferred to the SrRuO3 film and only -0.26e per interface 

leaks into BaTiO3. Consequently, the charge of -0.74e per interface residing at the 

SrRuO3 film strongly compensates the positive charge at the (LaO)+ layer and 

significantly reduces the intrinsic electric field in the BaTiO3 layer allowing ferroelectric 

polarization to develop in the system, as we will see below. An indirect indication of this 

fact is a complex electrostatic energy profile across the BaTiO3 layer (see the inset in Fig. 

7.1c) which in addition to the intrinsic electric field includes contributions from the 

depolarizing field created by a non-uniform polarization and the associated screening 

charge. 
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We note that the amount and the penetration depth of the electron charge into 

BaTiO3 are largely determined by the position of the Fermi energy with respect to the 

bottom of the conduction band of BaTiO3. The latter is controlled by the conduction band 

bending due to the electrostatic potential associated with the screening charge that places 

the conduction band minimum at a certain position above the Fermi energy. Therefore, 

the well-known problem of LDA to underestimate the band gap of insulator and predict 

an incorrect band offset between metal and insulators does not affect significantly the 

predicted results. 

 

7.4 Atomic structure and polarization 

The effect of the intrinsic electric field at the interface on ferroelectric 

polarization is evident from polar atomic displacements in the studied systems which are 

correlated with a ferroelectric instability. Figs. 7.3a,b,c show the displacements of cations 

(Ba and Ti) with respect to oxygen anions in the BaTiO3 layer for 

Vacuum/LaO/(BaTiO3)8.5/LaO, LaO/(BaTiO3)8.5, and (SrRuO3)5.5/LaO/(BaTiO3)8.5/LaO 

heterostructures respectively. As seen from Fig. 7.3a, the displacements profile is nearly 

inversion-symmetric and, although the displacements are very large (about 0.2 Å) close 

to the interfaces, they have opposite sign. This behavior is the consequence of the 

intrinsic electric field pointing away from the interfaces that forces the polarization to be 

pinned in the same direction. The LaO/(BaTiO3)8.5 system exhibits a similar 

displacements profile, although the magnitude of the displacements is somewhat reduced 

at the interface due to reduces value of the intrinsic electric field (Fig. 7.3b). For the 
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(SrRuO3)5.5/LaO/(BaTiO3)8.5/LaO system the intrinsic electric field is further reduced that 

allows a ferroelectric polarization to develop. This follows from the asymmetric 

polarization profile in Fig. 7.3c with a larger portion of electric dipoles pointing in the 

positive direction along the z axis (i.e. from left to right interface). 

Using the model based on Born effective charges we evaluated the local 

polarization distribution within the BaTiO3 layer for all considered heterostructures. The 

results are displayed in Figs. 7.3d-f (squares). It is seen that for 

Vacuum/LaO/(BaTiO3)8.5/LaO (Fig. 7.3d) and LaO/(BaTiO3)8.5 (Fig. 7.3e) 

heterostructures the polarization profiles are nearly inversion-symmetric resulting in very 

low average polarization values: 0.029 and 0.037 C/m2 for the two systems respectively. 

For the (SrRuO3)5.5/LaO/(BaTiO3)8.5/LaO heterostructure (Fig. 7.3f)  the ferroelectric 

polarization is more pronounced (the average value is 0.09 C/m2) due to the screening of 

the depolarizing field in the SrRuO3 electrodes. Nevertheless, even in this case the 

presence of the intrinsic electric field associated with the polar interfaces force the dipole 

moments in BaTiO3 to be pointed away from the interfaces, resulting in a ferroelectric 

dead layer as discussed below.  

 



114 
 

 

Figure 7.3: Displacements (D) of cations (Ba and Ti) with respect to oxygen anions (a, b, 

c) and local polarizations (P) (d, e, f) across a BaTiO3 layer in 

Vacuum/LaO/(BaTiO3)8/LaO (a, d),  LaO/(BaTiO3)8.5 (b, e) and 

(SrRuO3)5.5/LaO/(BaTiO3)8.5/LaO (c, f) heterostructures. Solid squares and open circles 

in (a-c) denote Ba-O and Ti-O displacements respectively. In figures (d-f) the local 

polarizations are obtained using the displacements calculated from first-principles in 

conjunctions with the Born effective charges (squares) and from the phenomenological 

model (solid lines). 
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The presence of a ferroelectric dead layer, i.e. the BaTiO3 region near the 

interface that does not switch upon ferroelectric polarization reversal, can be seen from 

the dependence of polar displacements and local polarization distribution as a function of 

BaTiO3 thickness. To study this dependence we have performed calculations for 

LaO/(BaTiO3)n heterostructures containing n = 8.5, 14.5 or 21.5 unit cells of BaTiO3 that 

correspond to BaTiO3 thicknesses t = 3.2, 5.6, 8.4 nm. Since the boundary conditions at 

the two interfaces are identical, the intrinsic electric field is independent of BaTiO3 

thickness. The results are displayed in Figs. 7.4a-f. It is seen that as the BaTiO3 thickness 

increases, the ferroelectric polarization becomes more stable involving a larger thickness 

of the BaTiO3 layer. The average polarization of BaTiO3 increases from P = 0.029 C/m2 

for t = 3.2 nm to P = 0.095 C/m2 and 0.12C/m2 for t = 5.6 and 8.4 nm respectively. It is 

notable, however, that even at a relatively large thickness of 8.4 nm the ferroelectric 

polarization in the middle of the BaTiO3 layer is 0.21 C/m2, i.e. it does not reach the 

respective strained bulk value of 0.27 C/m2. 
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Figure 7.4: Displacements (D) of cations (Ba and Ti) with respect to oxygen anions (a, b, 

c) and local polarizations (P) (d, e, f) across the BaTiO3 layer in LaO/(BaTiO3)n 

heterostructures containing n = 8.5 (a, d), 14.5 (b, e) or 21.5 (c, f) unit cells of BaTiO3. 

Solid squares and open circles in (a-c) denote Ba-O and Ti-O displacements respectively. 

In figures (d-f) the local polarizations are obtained using the displacements calculated 

from first-principles in conjunctions with the Born effective charges (squares) and from 

the phenomenological model (solid lines). 

The enhancement of polarization at large BaTiO3 thickness does not affect 

significantly the BaTiO3 region adjacent to the right interface where the polar 

displacements remain opposite to the spontaneous polarization displacements. From 

comparison of Figs. 7.4d-f it is seen that the region where the polar displacements are 
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reversing is almost independent of BaTiO3 thickness and cover about 3 nm thicknesses 

near the interface. This may be regarded as a ferroelectric dead layer and determines the 

critical thickness for ferroelectricity in this system. 

We note that in the previous calculation of critical thickness for ferroelectricity of 

a KNbO3 film placed between two metal electrodes [19]  the effect of the polar interfaces 

may also play a role due to the KNbO3(001) layer being comprised of the charged (KO)– 

and (NbO2)+ planes along the [001] direction. The predicted ferroelectric domain wall 

occurring in the SrRuO3/KNbO3 heterostructure may partly be caused by an intrinsic 

electric field occurring at the polar interface in this system.  

 

7.5 Phenomenological model  

In order to further investigate the effect of the intrinsic electric field on 

ferroelectric polarization of the BaTiO3 film we introduced a phenomenological model 

based on the Landau-Ginzburg-Devonshire theory [46, 47]. For this purpose it is 

convenient to introduce the notion of effective ionic charge which is a sum of the positive 

charge at the LaO monolayer and a negative electron charge distributed on the other side 

of the interface. As discussed above, the first principles calculations find ionic charges 

equal to +e, +0.5e, and +0.26e per lateral unit cell area for Vacuum/LaO/(BaTiO3)m/LaO, 

LaO/(BaTiO3)n, and (SrRuO3)5.5/LaO/(BaTiO3)m/LaO ,respectively. These effective ionic 

charge creates an intrinsic electric field in the BaTiO3 film pointing away from the 

interface as shown in Fig. 7.2. According to the first principles calculations this field is 



118 
 
screened by the conduction electrons within the screening length of about 1 nm from the 

interface.  

The free energy of a ferroelectric film can be written as [48, 49] 

 �2 4 2 2 21( ( ) ) [ (0) ] [ ( ) ]
2 4 2 2 2i ds i i
A B C CF P P P E P E P dV P P P d P dS

�
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 �� 	 	 
 
 
 	� �  

      (7.1)
    

Here P(z) is a ferroelectric polarization, which is assumed to be homogeneous in the x-y 

plane of the film, iP  is the interface polarization, and iE  is the intrinsic electric field not 

related to the polarization. The last term in the volume integral represents the self-energy 

of the depolarizing field dsE  that includes screening (see Appendix 7B). Constant A is 

given by Curie-Weiss law
0 0

CT TA
C �
	

� , where C0 and TC are the Curie constant and 

temperature, and 0�  is the permittivity of free space. Constant B is given by 2
0/B A P� 	

, where 0P  is the polarization at zero temperature. Constant C is related to A as follows: 

2
0C Aa� 	 , where 0a is of the order of lattice spacing [48]. The extrapolation length δ is a 

phenomenological parameter associated with the derivatives of the P(z) at the interface.  

We obtain the intrinsic electric field iE  and depolarizing field dsE , as  described 

in the Appendix 7B, assuming that the free charge that screens the effective ionic charge 

at the interfaces decays exponentially into the ferroelectric layer with decay length λ and 

is redistributed between the interfaces to screen the depolarizing field. Variation of the 
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free energy functional given by Eq. (7.1) over the polarization yields the Euler–Lagrange 

equation for polarization  

2
3
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f
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              (7.2) 

subject to boundary conditions 

0,
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z d
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dz
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�
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iPi
�dPdP� dP
��d

� . (7.3) 

In Eq. (7.2) P  and RP  are the average polarization P(z) and the average function 

R(z)P(z) over film thickness, where R(z) is given by Eq. (7B.8). Eq. (7.2) can be solved 

numerically using an iterative procedure. Numerical calculations suggest that the last 

term in Eq. (7.2) can be replaced, with reasonable accuracy, by  
f

P RP
�
	

 which simplifies 

the convergence to a self-consistent solution. In particular calculations, we use a set of 

parameters appropriate for BaTiO3: 403CT K� , 2
0 0.27 /P C m� , 

5
0 1.7 10C � � , [50] and 

0 0.8a nm�  [51, 52]. The dielectric permittivity εf originates from the non-ferroelectric 

lattice modes [53] and for BaTiO3 is assumed to be εf = 90ε0 [28]. This value describes 

adequately the depolarizing field in BaTiO3 obtained from first-principles calculations for 

a SrRuO3/BaTiO3/SrRuO3 ferroelectric tunnel junction [32]. In the calculations we use 

different effective ionic charges i�  at the BaTiO3 surfaces which enter Eq. (7B.2) for the 

intrinsic electric field. For the Vacuum/LaO/BaTiO3/LaO system, the effective interface 

charge i�  is assumed to be +e per lateral unit cell area, while for LaO/BaTiO3 and 
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SrRuO3/LaO/BaTiO3/LaO systems lattices they are assumed to be +0.5e and +0.26e 

respectively. Other parameters, i.e.  λ, δ and Pi, are  the adjustable  parameters of the 

model.  

 The local polarization obtained by numerical solution of the Eq. (7.2) is fitted to 

the results of the first principles calculations and the model based on Born effective 

charges. To reduce the number of fitting parameters we fixed λ = 1nm consistent with our 

first principles results and δ = 1.2nm. The value of Pi = –0.45C/m2 was fitted and was 

assumed to be the same for all the structures considered. Different effective ionic charges 

i�  at the BaTiO3 surfaces corresponding to different heterostructures were used. Figs. 

7.3e-f and 4e-f  show results of the fitting by solid lines, demonstrating that the 

phenomenological model is capable of describing all the major features in the 

distributions of the local polarization that are obtained from the first-principles 

displacements combined with the Born effective charges. In particular, the model clearly 

indicates that the intrinsic electric field associated with polar interfaces pins the atomic 

displacements near the interfaces and thus is detrimental to ferroelectricity.  For a given 

decay length λ inside the ferroelectric, the larger effective ionic charge at the interface 

creates a wider ferroelectric dead layer near the interface and thus produces a stronger 

destructive effect on ferroelectricity.  

To obtain a further insight into the effect of the intrinsic electric field on 

ferroelectricity we have modeled the average polarization of a ferroelectric layer 

terminated by a polar interface allowing the decay length λ to be a variable parameter. In 

the simulation we kept all the other parameters to be the same as those for the 
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LaO/(BaTiO3)n heterostructure. Fig. 7.5a shows the resulting average polarization P  as a 

function of λ for films of different thicknesses t. It is seen that with increasing decay 

length the average polarization of the film decreases and at some value of λ it vanishes 

even for a very thick BaTiO3 layer. This detrimental effect on ferroelectricity originates 

from the increasing penetration depth of the intrinsic electric field into the ferroelectric 

layer that broadens a ferroelectrically dead region near the interfaces.  On the other hand, 

when λ tends to zero the pinning electric field near the interfaces vanishes and the 

average polarization approaches its bulk value as the thickness of BaTiO3 is increasing. 

 

Figure 7.5: Average polarization  P  of a BaTiO3 film (a) as a function of the decay 

length λ for three film thicknesses t  and (b) as a function of the film thickness t  for two 

values of  λ calculated within the phenomenological model (solid symbols) and using 

first-principles calculations and the Born charge model (open symbols). The inset in (a) 

shows P  for Ei = 0.  
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The stability of ferroelectric polarization strongly depends on the screening length 

λ. The latter determines the penetration depth of the screening charge and consequently 

the electric field into the ferroelectric layer. Increasing the screening length leads to the 

increase of the critical thickness for ferroelectricity. This statement is confirmed in our 

model calculations displayed in Fig. 7.5b that show the average polarization as a function 

of ferroelectric layer thickness t for different λ. In this calculation the magnitude of the 

charge that screens polarization is kept fixed so that only the penetration depth of the 

charge that screens the intrinsic electric field is varied. It is seen that the increase of the 

screening length from λ = 0 to λ = 1nm leads to the increase in the critical thickness from 

about 1 nm to about 5 nm. The latter is qualitatively consistent with our first-principles 

calculations combined with the model based on the effective Born charges.   

We would like to emphasize that the predicted suppression of polarization in our 

systems is entirely caused by the polar interfaces and the associated intrinsic electric field 

resulting in a ferroelectric dead layer. Other possible mechanisms detrimental to 

ferroelectricity such as insufficient screening of polarization charge and the interface 

bonding do not play a decisive role. The polarization screening due to the redistribution 

of the free charge between interfaces (see Appendix 7B) is sufficient to maintain the 

polarization. This fact follows from the calculation we performed within the 

phenomenological model in which the intrinsic electric field was artificially set equal to 

zero, i.e. Ei = 0, in the free energy given by Eq. (7.1), but other parameters of the model 

were kept fixed. The calculation of the average polarization with respect to film thickness 

t predicts no decay of polarization with λ (see the inset in Fig. 7.5a) and the critical 

thickness for ferroelectricity of about 1 nm (see Fig. 7.5b) consistent with previous first-
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principles results [17-20]. We can also rule out the effect of interface bonding as a 

possible mechanism of suppression of ferroelectricity. If it were due to the interface 

bonding, then the ferroelectric polarization in the three structures considered would be 

similar due to the same LaO monolayers terminating BaTiO3. However, the results of our 

first-principles calculations suggest a very different behavior for the three systems.   

Our results are consistent with the stability of ferroelectric KNbO3 in the presence 

of 2DEG at the KNbO3/SrTiO3 interfaces predicted earlier [2, 3]. In this case the positive 

charge at the polar interface is screened by a free electron charge penetrating almost 

equally both to the KNbO3 and SrTiO3 layers. As follows from symmetry, this implies 

that only 0.25e per interface leak into the KNbO3 with decay length of about 1nm. Due to 

the same leakage charge and the decay length, the local polarization distribution is 

expected to be qualitatively similar to that found for the SrRuO3/LaO/BaTiO3/LaO 

heterostructure. This fact is evident from the similarity between displacements shown in 

Fig. 7.3c and those in Fig. 7.4a of Ref. [3].    

 

7.6 Summary 

Based on first-principles calculations and a phenomenological model we have 

investigated the effect of polar interfaces on the ferroelectric stability of thin-film 

ferroelectrics using Vacuum/LaO/BaTiO3/LaO, LaO/BaTiO3, and 

SrRuO3/LaO/BaTiO3/LaO heterostructures as representative systems. In all the three 

systems a LaO monolayer at the interface with a TiO2-terminated BaTiO3 produces a 
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polar interface and serves as a doping layer donating an electron at the interface that 

compensates the ionic charge of the positively charged (LaO)+ monolayer. This interface 

ionic charge creates an intrinsic electric field at the interface which is screened by the 

screening electron charge leaking into the BaTiO3 layer within the screening length of 

about 1 nm from the interface. The three systems considered are different by the amount 

of the screening charge changing from –e per a lateral unit cell to –0.5e and –0.26e and 

thus effective ionic charge for the Vacuum/LaO/BaTiO3/LaO, LaO/BaTiO3, and 

SrRuO3/LaO/BaTiO3/LaO systems respectively. Within the screening region the intrinsic 

electric field forces ionic displacements in BaTiO3 to produce the dipole moments 

pointing into the interior of the BaTiO3 layer and thus pins the polarization near the 

interface. This creates a ferroelectric dead layer near the interfaces that is non-switchable 

and thus detrimental to ferroelectricity. Our first-principles and model calculations 

demonstrate that the effect is stronger for a system, in which the effective ionic charge at 

the interface is larger and the screening length is longer resulting in a stronger intrinsic 

electric field that penetrates deeper into the ferroelectric. The predicted mechanism for a 

ferroelectric dead layer at the interface controls the critical thickness for ferroelectricity 

in systems with polar interfaces.  

 

Appendix 7A: Band alignment in LaO/(BaTiO3)21.5 system  

Here we analyze the band alignment in LaO/(BaTiO3)21.5 system.  Fig. 7.6a shows 

the calculated density of states (DOS) on the TiO2 monolayers located at different 

distances from the LaO monolayers at the interface. A substantial band bending is seen 
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resulting in the change of the valence band maximum (VBM) and the conduction band 

minimum (CBM) as a function of l. This is due to the variation of the macroscopic 

electrostatic potential which rigidly shifts the bands with respect to the Fermi energy. The 

macroscopic electrostatic potential is obtained by performing the macroscopic averaging 

of the microscopic potential obtained from the supercell calculation that allows filtering 

out microscopic periodic oscillations in the original data [54, 55]. Fig. 7.6b shows the 

result of this averaging for the LaO/(BaTiO3)21.5 superlattice, where the planer-averaged 

electrostatic potential (thin line) and the potential additionally averaged over the BaTiO3 

c-lattice constant (i.e. macroscopically averaged) (thick line) are shown as a function of 

the position z within the BaTiO3 layer. We find that the variation of the macroscopic 

electrostatic potential is consistent with the change in the VBM seen in Fig. 7.6a, as is 

evident from the respective solid curve plotted in accordance to Fig. 7.6b. This allows us 

to find the variation of the conduction band minimum (CBM) in BaTiO3 as follows. We 

add the calculated band gap of the bulk BaTiO3 with the same lattice constant of 2.2eV to 

the VBM obtained for the TiO2 monolayer in the middle of BaTiO3 layer. This 

determines the CBM at this site, which appears to be approximately 0.2 eV above the 

Fermi energy. Then, we obtain the site variation of the CBM by adding the electrostatic 

potential difference as shown by the solid curve in the conduction band in Fig. 7.6a. It is 

clearly seen that CBM below the Fermi energy are confined close to the interface layers.  

The approach used here is similar to that applied in Ref. [45], to prove the 

importance of evanescent states in controlling the confinement width of 2DEG. As seen 

from Fig. 7.6c the variation in the electrostatic potential shown in Fig. 7.6b is consistent 
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with the position of the core-like O-2s states. This justifies the method used in Ref. [45] 

to analyze the variation of the electrostatic potential based on the O-2s states. 

 

 

Figure 7.6: Band alignment in LaO/(BaTiO3)21.5 system. (a) Local DOS on TiO2 

monolayers (l) as a function of the energy. The curved line to the left (right) indicates the 

position of the valence band maxima (conduction band minima) and the vertical solid line 

denotes the Fermi energy EF; (b) Planar-averaged electrostatic potential across BaTiO3 

(thin line) and the macroscopic electrostatic potential (thick line); (c) Position of the core-

like O-2s states for different TiO2 layers (squares) and the macroscopic electrostatic 

potential shifted by -18.2 eV (solid line).    
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Appendix 7B: Intrinsic and depolarizing fields  

Here we calculate the intrinsic electric field iE  associated with the surface ionic 

charge screened by the free electron charge penetrating into the interior of a BaTiO3 layer 

(see Fig. 7.2) and the depolarizing electric field dsE  associated with ferroelectric 

polarization. We consider a ferroelectric thin film of thickness d and polarization P(z) and 

assume that there is an effective ionic (positive) charge density i�  deposited on each of 

the two interfaces. As was discuss in Section 7.3, this effective ionic charge is different 

depending on a particular interface. We assume that there is no polarization and field 

outside the film. Consistent with the Thomas-Fermi model, we assume that a free 

electron (negative) charge that screens the ionic charge decays exponentially into the 

BaTiO3 layer with decay length λ. Due to charge conservation the resulting volume 

charge density   is given by  

1

z z d

i
i d

e e

e

� �

�

��
�

	 	

	



� 	

	
  .        (7B.1) 

The resulting electric field produced by both the interface ionic charge and the screening 

charge is given by:  

( )
1

z z d

i
i d

f

e eE z
e

� �

�

�
�

	 	

	

	
�

	
 ,        (7B.2) 

where εf is the dielectric constant of the ferroelectric at saturation.   
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The ferroelectric polarization of the film produces the volume polarization charge 

density 
( )

p
dP z

dz
� � 	  and surface polarization charge density at the two interfaces, 

(0) (0)p P� � 	  and  ( ) ( )p d P d� � 	 . The associated (unscreened) depolarizing field is 

given by  

( )( )d
f

P zE z
�

� 	 ,        (7B.3) 

where the dielectric permittivity εf  originates from the non-ferroelectric lattice modes 

[53]. This field is partly screened by the redistribution of the free charge density between 

the two interfaces.  Note that this screening of the depolarizing field is different from the 

screening of the ionic charge located at the interfaces. For simplicity we assume that the 

screening charge density do not change the shape of the free charge density distribution, 

but rather adds charge at one interface and removes it at the other interface. Thus the 

volume screening charge density can be written in the following form:  

1

z z d

s
s d

e e
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  ,        (7B.4) 

where s�  is the surface screening charge density and the total screening charge (i.e. the 

integral of (7B.4) over film thickness) is equal to zero. The associated screening field is 

1

1

d z z d
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In order to obtain the value of s� , we use the short-circuit boundary condition 

which follow from the periodic boundary condition of the supercell geometry. This 

condition implies that the electrostatic potential must be equal at the two interfaces, i.e. 

(0) ( )d� �� . Using this condition we find    

1
2 21

d

s d d
eP

e e
d d

�

� �

�
� �

	

	 	

	
� 	


 	 

  ,        (7B.6) 

where 
0

1 ( )
d

P P z dz
d

� �  is the average polarization.   

Thus, the net depolarizing field that takes into account the effect of screening is 

given by   

( ) ( )
ds d s

f

PR z P zE E E
�
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 �   ,        (7B.7) 

where  
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This depolarizing field enters the free energy functional given by Eq. (7.1). 
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