1995

Kinetic Analysis of the Non-Phosphorylated, In Vitro Phosphorylated, and Phosphorylation-Site-Mutant (Asp8) Forms of Intact Recombinant C4 Phosphoenolpyruvate Carboxylase From Sorghum

Stephen M. G. Duff
University of Nebraska–Lincoln

Carlos S. Andreo
University of Nebraska–Lincoln

Valérie Pacquit
Institut de Biotechnologie des Plantes, Université de Paris-Sud, Orsay, France Centro de Estudios

Loïc Lepiniec
Institut de Biotechnologie des Plantes, Université de Paris-Sud, Orsay, France Centro de Estudios

Gautam Sarath
University of Nebraska–Lincoln

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/biochemistrysarath

Part of the *Biochemistry, Biophysics, and Structural Biology Commons*

http://digitalcommons.unl.edu/biochemistrysarath/21

This Article is brought to you for free and open access by the Biochemistry, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Gautam Sarath Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Authors
Stephen M. G. Duff, Carlos S. Andreo, Valérie Pacquit, Loïc Lepiniec, Gautam Sarath, Shirley A. Condon, Jean Vidal, Pierre Gadal, and Raymond Chollet
Kinetic analysis of the non-phosphorylated, in vitro phosphorylated, and phosphorylation-site-mutant (Asp8) forms of intact recombinant C4 phosphoenolpyruvate carboxylase from sorghum

Stephen M. G. Duff,1 Carlos S. Andreo,1,3 Valérie Pacquit,2 Loïc Lepiniec,2 Gautam Sarath,1 Shirley A. Condon,1 Jean Vidal,2 Pierre Gadal,2 and Raymond Chollet 1

1 Department of Biochemistry, University of Nebraska–Lincoln, Lincoln, Nebraska, USA
2 Institut de Biotechnologie des Plantes, Université de Paris-Sud, Orsay, France Centro de Estudios Fisiotécnicos y Bioquímicos (Consejo Nacional de Investigaciones Científicas y Técnicas, F. M. Lillo Universidad Nacional de Rosario), Rosario, Argentina

Corresponding author — R. Chollet

Abstract: Steady-state analyses were performed on the non-phosphorylated, in vitro phosphorylated and phosphorylation-site mutant (Ser8→Asp) forms of purified recombinant sorghum C4 phosphoenolpyruvate (P-pyruvate) carboxylase (EC 4.1.1.3 1) containing an intact N-terminus. Significant differences in certain kinetic parameters were observed between these three enzyme forms when activity was assayed at a suboptimal but near-physiological pH (7.3), but not at optimal pH (8.0). Most notably, at pH 7.3 the apparent Ki for the negative allosteric effector t-malate was 0.17 mM, 1.2 mM and 0.45 mM while the apparent Ki for the positive allosteric effector glucose 6-phosphate (Glc6P) at 1mM P-pyruvate was 1.3 mM, 0.28 mM and 0.45 mM for the dephosphorylated, phosphorylated and mutant forms of the enzyme, respectively. These and related kinetic analyses at pH 7.3 show that phosphorylation of C4 P-pyruvate carboxylase near its N-terminus has a relatively minor effect on V and Kh (total P-pyruvate) but has a dramatic effect on the extent of activation by Glc6P, type of inhibition by t-malate and, most especially, Kh (Glc6P) and Kh (t-malate). Thus, regulatory phosphorylation profoundly influences the interactive allosteric properties of this cytosolic C4-photosynthesis enzyme.

Keywords: C4 photosynthesis, phosphoenolpyruvate carboxylase, recombinant enzymes, regulatory protein phosphorylation, sorghum

Abbreviations: CAM, Crassulacean acid metabolism; Glc6P, glucose 6-phosphate; P-pyruvate or PPPv, phosphoenolpyruvate; P-pyruvate carboxylase, phosphoenolpyruvate carboxylase (EC 4.1.1.3 1); PKA, CAMP-dependent protein kinase; SBD and SBC, mutant forms of sorghum P-pyruvate carboxylase in which Ser8 was replaced by Asp and Cys, respectively.

Enzymes: NADH-malate dehydrogenase (EC 1.1.1.37); phosphoenolpyruvate carboxylase (EC 4.1.1.31); cAMP-dependent protein kinase (EC 2.7.1.37); protein-serine/threonine kinase (EC 2.7.1.1–); protein phosphatase type 2A (EC 3.1.3.16).

Phosphoenolpyruvate (P-pyruvate) carboxylase is a cytosolic enzyme in bacteria, cyanobacteria, algae and higher plants [1, 2]. During C4 photosynthesis and Crassulacean acid metabolism (CAM), it plays a cardinal role in the initial fixation of atmospheric CO₂ (as HCO₃⁻) into the C₄ dicarboxylic acids t-malate and aspartate [1–3]. In leaf tissue of C₄ and CAM species, P-pyruvate carboxylase activity is regulated posttranslationally and interactively by allosteric control by positive [glucose 6-P (Glc6P)] and negative (t-malate) effectors [1-3] and a complex regulatory phosphorylation cycle that modulates the enzyme’s sensitivity to t-malate [4–6]. In vitro and in vivo experiments have established the existence of a reversibly light-activated protein-serine/threonine kinase [4–10] and a protein phosphatase type 2A [9] which mediate the interconversion of C₄ P-pyruvate carboxylase from a malate ‘insensitive’ (phosphorylated) light form to a malate ‘sensitive’ (dephosphorylated) dark form. Recently, site-directed mutagenesis of recombinant C₄ P-pyruvate carboxylase from sorghum has demonstrated that the replacement of the phosphorylatable serine (Ser8) by Cys or Asp gives an enzyme which cannot be phosphorylated in vitro but is still fully active [11]. This report, in concert with a subsequent study in which the Cys8 mutant was 5-carboxymethylated by iodoacetic acid [12], demonstrated that phosphorylation mediates its regulatory effect on the malate sensitivity of C₄ P-pyruvate carboxylase through the addition of negative charge to the N-terminal domain of the protein.

In addition to this regulatory phosphorylation, plant P-pyruvate carboxylase can also be altered by limited proteolysis during purification. It has been reported that maize (C₄) or Mesembryanthemum crystallinum (inducible CAM) P-pyruvate carboxylase which had been purified in the absence of the proteinase inhibitor chymostatin had lost a peptide fragment from its N- or C-terminus, in addition to its malate sensitivity and ability to be phosphorylated [13].

Recently, we have observed that a truncated form of maize P-pyruvate carboxylase which was missing the first 22 amino acids from its N-terminus, including the target serine at position 15, was more than 10-fold less sensitive to t-malate than the dephosphorylated maize enzyme containing a completely intact N-terminus (unpublished data described in [11, 15]). Interestingly, however, like the Ser8→Asp (SBD) [11] and S-carboxymethylated Ser8→Cys (SBC) [12] mutant P-pyruvate carboxylases and the in vitro phosphorylated form of the re-
combinant F sorghum Ser8 enzyme [11], no changes in other kinetic parameters were observed at optimal pH [15] (and unpublished data). In addition, there were no differences in the carbon-isotope effects on catalysis by the dephospho, phospho and truncated (Leu23) maize P-pyruvate carboxylase forms (O’Leary, M. H., unpublished data). Thus, limited proteolysis of this N-terminal regulatory domain during enzyme preparation may be responsible for much of the observed variation in malate sensitivity (cf. [4, 13, 14]). Indeed, although many detailed kinetic studies have been performed on C\textsubscript{4} and CAM P-pyruvate carboxylase (e.g. [16–21]), the documented effect of proteolysis during enzyme preparation [11, 13–15] and the relatively low malate sensitivity of P-pyruvate carboxylase often observed in these previous studies [16–19] suggest that the enzyme used in these prior investigations was partially or completely truncated at its N-terminus.

In the present study, we have undertaken the first detailed, steady-state kinetic analysis of non-phosphorylated, in\textit{ vitro} phosphorylated, and phosphorylation-site mutant (SSD) recombinant sorghum P-pyruvate carboxylase at both near-physiological (7.3) and optimal (8.0) pH in which it has been directly documented that the N-terminus of the purified enzyme is intact. Notably, we have shown that the apparent affinity of P-pyruvate carboxylase for both l-malate and its positive allosteric effector, Glc6P, changes dramatically and inversely when the enzyme is phosphorylated and subsequently assayed at pH 7.3. In addition, the use of the recombinant sorghum enzyme, instead of dark-leaf (dephospho) P-pyruvate carboxylase [22], ensures that we are beginning with the completely non-phosphorylated targeted enzyme.

MATERIALS AND METHODS

Purification and N-terminal sequencing of recombinant P-pyruvate carboxylase. Recombinant wild-type (Ser8) sorghum C\textsubscript{4} P-pyruvate carboxylase and the SSD mutant enzyme were purified by FPLC [11] and N-terminally sequenced [11, 12] as previously described.

\textit{In vitro} phosphorylation of recombinant P-pyruvate carboxylase. Purified recombinant wild-type or SSD mutant P-pyruvate carboxylase was dialyzed thoroughly against phosphorylation buffer (20 mM Tris/HCl, pH 8.0, 5 mM MgCl\textsubscript{2}, 1 mM dithiothreitol, 5\%, by vol., glycerol) at 4°C. To a 75-μl aliquot of this preparation, containing 200-400 μg purified P-pyruvate carboxylase, ATP and/or cAMP-dependent protein kinase (PKA; Sigma Chemical Co., P-2645) were added, ATP to 1 mM and PKA powder to a mass equal to that of P-pyruvate carboxylase protein. The reaction was allowed to proceed for up to 75 min at 30°C. Kinetic analysis was immediately performed after the specified time.

\textit{Steady-state enzyme kinetics}. All 1-ml reactions were initiated with 0.5–1.0 μg P-pyruvate carboxylase and initial rates (30–90 s) were determined at 30°C and suboptimal (7.3) or optimal (8.0) pH. P-pyruvate carboxylase activity was assayed by coupling to exogenous malate dehydrogenase and following the oxidation of NADH at 340 nm. All reaction mixtures contained 50 mM Hepes/KOH (pH 7.3 or KO), 0.2 mM NADH, 10 mM MgCl\textsubscript{2}, 1 mM NaHCO\textsubscript{3}, 4 μM (μmol/min) porcine heart mitochondrial malate dehydrogenase (Sigma Chemical Co., M-2634), and the variable concentrations of Glc6P and pH-adjusted P-pyruvate and l-malate necessary to perform the kinetic analyses. One unit of P-pyruvate carboxylase activity (U) corresponds to the amount of enzyme required to catalyze the oxidation of 1 μmol NADH/min by the coupling enzyme. Apparent \(K_\text{m} \) and \(S_{0.5} \) (total P-pyruvate) values were evaluated from Lineweaver-Burk and Hill plots, respectively. Hill coefficients \(h \) were determined from the latter. The concentration range of P-pyruvate used to evaluate \(K_\text{m} \) and \(S_{0.5} \) was 0.4–10 mM. Activation constants for Glc6P \(A_{0.5} \) at 1 mM and 4 mM-P-pyruvate were determined using double-reciprocal plots of \(1/(V-V_0) \) versus 1/[Glc6P], where \(V \) = reaction velocity in the presence of varying concentrations of Glc6P and \(V_0 \) = reaction velocity in the absence of Glc6P. The concentration range of Glc6P used to evaluate \(A_{0.5} \) was 0.2–4 mM, although activities at concentrations above those giving maximal increase in activation (saturating Glc6P) were omitted from the plot. Inhibition constants for l-malate \((K_i) \) were determined from Dixon plots and the pattern of inhibition was evaluated by Lineweaver-Burk analysis. The concentration range of l-malate used to determine \(K_i \) was 0.1–1.6 mM at pH 7.3 and 1.5–12.0 mM at pH 8.0, with P-pyruvate concentrations varying over 1.5–7.5 mM. \(I_{0.5} \) (l-malate) values at pH 7.3 and 2.5 mM P-pyruvate were determined from a Job plot [23] using the same concentration range of l-malate as for the \(K_i \) determinations. All rates arising from activities in which higher than saturating P-pyruvate concentrations were employed were omitted from the \(K_i \) and \(K_m \) determinations. All kinetic parameters presented are the means of duplicate determinations performed on two separate preparations of each purified enzyme (i.e. \(n = 4 \)) and are reproducible to within ± 15% SE (or less). All plots were constructed using GraFit 3.0 by R. J. Leatherbarrow (available from Erithacus Software Ltd., Staines, UK).

RESULTS AND DISCUSSION

The final preparations of recombinant sorghum Ser8 and SSD C\textsubscript{4} P-pyruvate carboxylase were assessed to be homogeneous by SDS/PAGE, had final specific activities of approximately 40 U/mg protein (at pH 8.0, 5 mM P-pyruvate) and possessed intact N-termini as determined by covalent protein microsequencing [11].

Previous studies have documented that the catalytic subunit of mammalian PKA phosphorylates C\textsubscript{4} P-pyruvate carboxylase specifically at the target serine residue near the N-terminus [24, 25]. Figure 1 depicts a time course of the ATP- and PKA-dependent changes in \(I_{0.5} \) (l-malate) and
specific activity of the recombinant wild-type (Ser8) sorghum P-pyruvate carboxylase assayed at pH 7.3 with 2.5 mM total P-pyruvate. The \(V_{0.5} \) (l-malate) and specific activity of P-pyruvate carboxylase increased approximately 10-fold and 2-fold, respectively, in 60 min, after which no further change was observed. When either ATP or PKA was omitted from the \textit{in vitro} phosphorylation mixture no change in \(V_{0.5} \) (l-malate) or specific activity was observed (data not shown). Similarly, no change in either parameter occurred when the recombinant S8D phosphorylation-site mutant enzyme was incubated with ATP and/or PKA (data not shown).

Table 1 summarizes the kinetic analyses of the purified recombinant enzyme forms (Ser8, Ser8-P, Asp8) at pH 7.3 and pH 8.0, which represent the near-physiological and optimal pH values, respectively, of this cytosolic enzyme. It is readily apparent that when P-pyruvate carboxylase is assayed at optimal pH there are no substantial differences in any of the kinetic parameters examined for the three enzyme forms with the exception of the threefold difference in maximal activation by Glc6P between dephospho Ser8 and the S8D mutant at 1 mM P-pyruvate. In any event, however, the maximal activation for all three enzyme forms at pH 8.0 was 3.5-fold or less. These collective results are consistent with those observed previously at pH 8.0 by researchers in our (Lincoln) laboratory [11, 12].

In contrast, when the enzyme is assayed at a suboptimal but near-physiological pH it is clear that there are substantial differences in certain kinetic parameters (Table 1). Figure 2 depicts the Dixon plots used to determine the \(K_i \) (l-malate) values of the dephospho (Figure 2A) and phospho (Figure 2B) forms of recombinant sorghum P-pyruvate carboxylase. Phosphorylation of the Ser8 enzyme causes the \(V_{0.5} \) (l-malate) to increase from 0.15 mM to 1.5 mM at pH 7.3 (Table 1, Figure 1) while the \(K_i \) (l-malate) showed a corresponding increase from 0.17 mM to 1.20 mM (Table 1, Figure 2). The S8D mutant P-pyruvate carboxylase had intermediate \(V_{0.5} \) and \(K_i \) values of about 0.45 mM. The \(V_{0.5} \) (l-malate) values of the S8D mutant and dephospho forms
of P-pyruvate carboxylase at pH 7.3 are consistent with those reported previously [11, 12], although the $I_{0.5}$ value of the present Ser8 enzyme phosphorylated extensively by PKA (rather than maize P-pyruvate carboxylase-kinase [11]) is approximately 2.3-times higher. Inhibition of P-pyruvate carboxylase by l-malate was competitive in all cases except the phosphorylated form assayed at pH 7.3, which showed mixed inhibition (Table 1).

Figure 3 illustrates the double-reciprocal plot used to determine $A_{0.5}$ (Glc6P) for the phospho and dephospho forms of recombinant sorghum P-pyruvate carboxylase at pH 7.3. When the enzyme is assayed at 1mM P-pyruvate, phosphorylation causes the apparent K_a (Glc6P) to decrease from 1.3mM to 0.28 mM (Table 1, Figure 3) and the maximal activation to decrease from 19-fold to 4.0-fold (Table 1). Once again, the S8D mutant enzyme displayed intermediate values when assayed at pH 7.3 and 1mM P-pyruvate. At a P-pyruvate concentration of 4 mM, which approximates the $S_{0.5}$ and K_a of the Ser8 enzyme form at pH 7.3, substantially lower K_a (Glc6P) and maximal activation values were observed for all three enzyme forms (Table 1). We are unaware of other reports that phosphorylation of C_4 P-pyruvate carboxylase results in major changes in its interaction with both positive (Glc6P) and negative (l-malate) allosteric effectors at near-physiological pH (Table 1, Figures 2 and 3). Phosphorylation causes a relatively modest increase in the V of P-pyruvate carboxylase when assayed at pH7.3 (Table 1). The S8D mutant is intermediate between the phosphorylated and non-phosphorylated forms of the enzyme. Phosphorylation also had a relatively minor effect on $S_{0.5}$ (total P-pyruvate) at pH7.3, but not at pH 8.0. As with the other kinetic parameters, the mutant had an $S_{0.5}$ value at pH 7.3 intermediate between the phospho and dephospho forms of the enzyme (Table 1). However, when Lineweaver-Burk plots were used to evaluate K_m (total P-pyruvate) no significant effect of phosphorylation or S8D substitution was seen at either pH (pH 8.0, all values 1.2-1.3 mM; pH 7.3, all values 3.7-4.3 mM; $n = 6$, SE $\pm \%$).

It is evident that phosphorylation of C_4 P-pyruvate carboxylase has a dramatic effect on certain of its kinetic properties when the enzyme is assayed at a near-physiological pH. Since P-pyruvate carboxylase is regulated allosterically in vivo by l-malate and Glc6P [1–6], the changes in K_a (l-malate), K_m (Glc6P), V and possibly $S_{0.5}$ (P-pyruvate) should have a tremendous combined effect on in vivo P-pyruvate carboxylase activity and probably account for the cardinal regulatory role of P-pyruvate carboxylase phosphorylation on the rate of leaf photosynthesis by C_4 plants [26]. Interestingly, the S8D mutant when assayed at pH 7.3 always displayed kinetic properties intermediate between the phospho and dephospho forms of P-pyruvate carboxylase. This may relate to the fact that phosphorylation introduces a diaminoc side chain at position 8, whereas substitution of Asp for Ser8 (or carboxymethylation of the S8C mutant P-pyruvate carboxylase by iodoacetic acid [12]) causes the introduction of a monoanionic residue, thus attenuating the influence of negative charge on this N-terminal regulatory domain [11, 12].

In conclusion, we have performed here a detailed steady-state kinetic analysis of C_4 P-pyruvate carboxylase at near-physiological pH in which the intactness of the N-terminus has been documented. The use of recombinant sorghum P-pyruvate carboxylase has, in addition, enabled us to perform kinetics on the completely non-phosphorylated enzyme since the purified dark-leaf enzyme is not completely dephosphorylated [22]. We have shown that the differences in malate sensitivity between the phospho and dephospho enzyme forms are greater than previously recognized and, more importantly, that regulatory phosphorylation, in addition to desensitizing the enzyme to its negative allosteric effectors, also causes a dramatic increase in its apparent affinity for Glc6P, its major positive allosteric effector. The changes in the kinetic parameters as a result of phosphorylation all favor increased enzyme activity in vivo and should lead to increased flux through the C_4 pathway of photosynthesis.

This work was supported in part by grants 92-37306-7816 from the National Research Initiative Competitive Grants Program/US Department of Agriculture and INT-9115566, DCH-9017726 and MCB-9315928 from the US National Science Foundation (to R.C.). This is Journal Series No. 10762 of the University of Nebraska Agricultural Research Division. S. M. G. D. is a recipient of a Post-Doctoral Fellowship from the Natural Sciences and Engineering Research Council of Canada and C. S. A. is a recipient of a Biotechnology Career Fellowship from the Rockefeller Foundation.

REFERENCES