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of 0.5 g (wet wt) sediment from each section were thene and biphenyl was 75% (SD = 16.6, n = 5) and 
added to preweighed Pyrex extraction tubes and dried 98% (SD = 4.1, n = 5) respectively. 
at 105°C for 20 h and weighed again to obtain dry 
weight. 

The dried sediment sample from each section was RESULTS 
extracted in 2 m1 of hexane. After hexane addition, 
samples were briefly vortexed, sonicated for 10 min, Observations and  microcosm appearance 
and vortexed again for an  additional 30 S before cen- 
trifugation for 10 min at 3000 rpm (2170 X g) ( L .  Kure There was a profound difference in the sediment 
pers. comm.). The extraction procedure was repeated 3 appearance between microcosms with and without 
times and the supernatant was transferred to dark worms. Differences In the color of the sediment 
glass vials. An internal standard of biphenyl (98% GC reflected differences in the redox state of the sediment 
grade, Aldrich) was added in 2 m1 of hexane for the last (Rhoads 1974). The sediment in the microcosms with- 
extraction of each sample. Extracted samples were out worms had a millimeter-thin layer of light brown 
kept dark and cool until measured on a G U M S  with (oxidized) sediment on top of black (anoxic) sediment. 
splitless injection (Hewlett Packard: HP 589011 gas In the microcosms with worms, the light brown (oxi- 
chromatograph, HP 5971A mass spectrometer and HP dized) layer extended to 15 to 20 mm. This layer con- 
data analyzer). A response factor was obtained after all sisted mainly of fecal pellets and the coarser texture 
subsamples within 1 subcore were run. The detection was obvious to the eye (Fig. 2). A distinct separation of 
limit was 10 ppb. The extraction efficiency for fluoran- oxic and anoxic sediment was not a s  apparent as in the 

Flg. 2. Photograph of microcosm inhabited by Capitella sp. 1 showing 1 to 2 cm thick fecal pellet layer at  the sediment-water 
interface. Arrows indicate individual worms in burrows. See text for detailed discussion 
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Glass bead distribution 

uninhabited microcosms, and sediment near worm + FLU - FLU 
burrows often had an intermediate gray color. Burrows Relative frequency of glass beads 
could be observed at  all depths but occurred most fre- 

0.0 0 0 ;l ;l> quently in the vicinity of the redox potential disconti- 
nuity (RPD), which was most distinct at the base of the 

4 
pellet layer (Fig. 2). The burrows tended to be more 6 

vertically oriented within the upper pelletized layer 8 

and more horizontally oriented near the RPD. The tube 1 0  

12 
openings were fairly uniform in distribution at the sed- 

14 

iment surface and often appeared black. The black, 16 16 

protuding tubes constructed of recently defecated 18 18 

20 20 fecal pellets were in sharp contrast to the light brown 
intervening surface sediment consisting predomi- - 0.0 0.1 0.2 0.3 04 

nantly of older, collapsed pellet tubes. E 
E Data on biomass, number of worms, average weight v 4 

per worm and average worm length for each micro- 5 
corm are given in Table 3 There were no differences 

l: 

(ANOVA) in biomass (F1,,, = 0.25, p = 0.63), number of E 1 2  
worms = 2.20, p = 0.17), average weight (F,,,, = aJ l4 

E 16 .- 2.28, p = 0.12) and average length per worm (F,,,, = m 
aJ 18 - 

0.28, p = 0.61) between microcosms with and without v) 2o 20 - 

fluoranthene. 
0.0 0 1 0 2 0.3 0.4 ;F 0 

There were distinct and characteristic vertical distn- 10 

12 
butions of glass beads in microcosms with worms. All 

14 14 

had a similar, non-diffusive profile as indicated by sub- 16  

surface maxima in the upper 2 cm (Fig. 3). The beads 18 

were not counted at depths greater than 2 cm though 20 20 

there might have been a few more beads in some of the Fig. 3. Vertical distribution of glass beads in microcosms with 
profiles. In microcosms without worms the glass beads vmrms and with (+FLU) and without (-FLU) added fluoran- 

remained in the top few millimeters (Fig. A small thene. Numbers in upper right of each profile are the original 
microcosm designations. All profiles except that for Micro- 

of the beads penetrated perhaps cosm 1 are the result of 3 subcores. Error bars are *SE. Y-axis 
due to sediment compaction during the coring proce- bars span the depth interval of sampling Continuous line is a 
dure. We performed nested ANOVA in order to detect spline fit to the data 

an  effect of fluoranthene on the vertical glass bead dis- 
tribution. This allowed effects due to individual micro- 

Q = L X0 
cosms (nested within treatment) as well as effect of the xo+ ( L - X ) ~ - ~ ~  

(1) 

treatment (added fluoranthene) to be tested. Prior to 
the statistical analysis the cumulative frequencies where Q is the cumulative frequency, L is the asymp- 
were calculated for each subcore (typically 3 for each tote (-l), xo is the intercept, k is a constant and X is 
microcosm, Fig. l ) ,  and the curves were fitted to the depth into the sediment. Fig. 5 is an example curve 
logistic equation fit. The first quartile (Q = 0.25), median (Q = 0.50), 3rd 

quartile (Q = 0.751, and the interquar- 
Table 3. CapiteUa sp. 1. Total biomass, total number of worms, and estimated mean tile range (IQR) were determined for 
weight and length of individual worms in treatment microcosms (FLU: fluoran- each subcore, Table 4 presents these 
thene). SD shown in parentheses. n = 6. See text for details regarding calculations values and the ~2 for each subcore 

curve fit. The results of the statistical 
analysis are shown in Table 5. 

There was a significant (p < 0.05) ef- 
fect of fluoranthene on the 1st quartile 
(Q0.25) and the median (Qos0). The ef- 
fect on the 3rd quartile (Q0,75) was very 

Blomass Number Mean weight Mean length 
(mg dry wtl 

-FLU 210.44 (21.086) 152.83 (24.490) 1.39 (0.133) 22.92 (2.735) 
+FLU 205.18 (12.905) 134.17 (18.670) 1.55 (0.186) 22.17 (2.202) 
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where t is time (22 d ) ,  Q O s 0  is the median (mm) in 
microcosms with worms (Table 5 )  and YO5,  = 
1.515 mm. Yo,50 was estimated by fitting each subcore 
profile in microcosms without worms (Fig. 4)  to the 
exponential equation 

+ FLU - FLU 

Relative frequency of glass beads 1 00 - 
0.0 02 04 0.6 0.8 1.0 0.0 0.2 0.4 0 6 0.8 1.0 

5 0.75 - 

D 

10 14 18 12 !!- /r - LL 8 g %' 0.50 

16 
3 

16 

18 E, 0 
20 20 

0.25 - 
O0 O2 O4 O6 l 0  0.0 02 04 06 0.8 1.0 

5 tir;r c n 8  W 10 12 

0.00 0 5 Sediment 10 depth (mm) 15 20 
C 14 

g 16 
.- Fig. 5. Example curve fit for the depth distribution of the glass 
U 'S 18 bead tracer in a worm-inhabited microcosm. Cumulative fre- 2 20 20 quencies were fitted to a logistic equation ( E q .  1). See text for 

0.0 0.2 0.4 06 0.8 1.0 0.0 0.2 0.4 0.6 08 1.0 
de ta~ led  explanation 

Table 4. Cumulative frequency data for a logistic equation 
(Eq. 1) fit for each subcore. = 1st quartile, Qoso = median, 

= 3rd quartile and IQR = interquartile range. All values 
10 14 12 !r /r (except R?) are in mm. out +FLU- fluorant.hene with fluoranthene; -FLU: with- 

calculating the median and taking the mean of all 
medians. The values of medians are shown in Table 6. 

16 16 

18 1.4 

20 20 

Fig. 4. Vertical distribution of glass beads in microcosms with- 
out worms and with (+FLU) and without (-FLU) added fluo- 
ranthene. Numbers in upper right of each profile are the orig- 
inal microcosm designations. All profiles except that for 
Microcosm 16 are the result of 3 subcores. Error bars are 

&SE. Y-axis bars span the depth interval of sampling 

close to significance as well (p = 0.069) and indicates 
that the center of the vertical distribution differed in 
depth location and not in shape. This was confirmed by 
the lack of difference in the IQR. 

A subduction rate (S,) was estimated as 

S, = Q0.50 - Y0 50 (2) 
t 

There was no significant (ANOVA, p = 0.35) difference 
in the medians (Yo between microcosms. Fig. 6 is an 
example curve fit based on Eq. (3).  The subduction rate 
(S,, assumed constant with time) was significantly 
lower in microcosms with added fluoranthene (Table 7, 
ANOVA, p < 0.05). S, was estimated to be 0.30 mm d-' 
and 0.37 mm d-' for microcosms with and without fluo- 
ranthene respectively. 

Microcosm R2 Qo.25 Qo.50 Q0.75 IQR 

+FLU 1 0.982 6.21 10.43 13.69 7.48 
0.996 6.77 9.83 12.58 5.81 

2 0.987 5.54 8.01 10.36 5.54 
0.993 5.04 7.84 10 48 5.45 
0.995 5.24 7.86 l 0  36 5.12 

3 0.995 3.75 6.36 8 89 5.14 
0.982 4.45 6.59 8.67 4.23 
0.991 5.66 8.85 11.73 6.07 

-FLU 7 0.997 6.00 7.88 9.73 3.73 
0.990 6.41 8.60 10.72 4.31 
0.997 6.57 9.78 12.65 6.09 

8 0.986 5.35 10.23 13.83 8.48 
0.993 8.64 11.14 13 37 4.73 
0.988 7.50 10.38 12.91 5.36 

9 0.994 6.78 9.96 12.76 5.98 
0.999 6.47 9.15 11.71 5.24 
0.999 6.52 9.10 11.57 5.05 
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Table 5. Nested ANOVA results (microcosms nested w ~ t h ~ n  fluoranthene treat- 
ment) for tracer distribution measurements (Table 4 ,  n = l ? )  FLU: fluoranthene 
treatment; COSM: microcosm within fluoranthene treatment. ' p  < 0.05, 

"p < 0.01 

Source Qn25 Qo.50 QC 75 

FLU COSM FLU COSM FLU COSM FLU COSM lQR I 

Although the experimental condi- 
tions for each microcosm were de- 
signed to be identical, some variability 
among microcosms appeared to have 
influenced sediment mixing. The 
medians and the Q" 75 values differed 
among microcosms (Table 5). The fact 
that the Q0,75 was influenced by some- 
thing other than fluoranthene may 
partly explain the diminished effect of 
FLU on this parameter. As indicated 
by the data summarized in Table 3, 

there was some variation in worm population parame- 
ters at the end of the experiment, but no relationship 

Table 6. Results from fitting control subcore profiles (Fig. 4) to was found among glass bead profile parameters 
the exponential Eq. (3) and the calculation of the median (Table 4) and total biomass, number of worms, average 
depth of penetration of glass beads below the sediment water 
interface (Y,,50). See text for details. Microcosm numbers refer weight and length of worms. 

to the 3 original designations for control treatments without 
worms or added fluoranthene. Y0.50 values are In mm 

Microcosm R' yn 3, 

16 0.992 1 53 
0.994 152 

17 0.998 1.49 
0.990 1.48 
0.988 1.53 
0.995 1.50 
0.993 1.52 

Particle-bound fluoranthene 

l The vertical distributions of particle-bound fluoran- 
thene in microcosms with added fluoranthene, with 
and without Capitella sp. 1, are shown in Fig. 7. 
Fluoranthene concentrations in control microcosms 
(+worms -FLU: -worms -FLU) were below the detec- 
tion limit of 10 ppb (ng gm') and are not shown. The 
initial concentrations in the upper 3 mm of the fluoran- 

1.53 I thene contaminated subcores without worms ranged 
between 3 and 9 g g-' whereas those from microcosms 
with worms varied between 6 and 10 g g-'. The start- 
ing concentrations of particle-bound fluoranthene 

Sediment depth (mm) 

Fig. 6 .  Example curve fit for the depth distribution of the glass 
bead tracer in a microcosm without worms. Control tracer 
profiles were fitted to an exponential decay equat~on (Eq. 3). 

See text for detailed explanation 

were somewhat lower than expected, as we added a 
slurry with a fluoranthene concentration of 106 g g-l. 
The concentrations of fluoranthene in the deepest lay- 
ers were never below the detection limit (as they were 
in the control cores). This is most likely an artifact 
caused by the coring procedure. The concentration 
of fluoranthene from each depth interval within a 
subcore was then summed to provide an estimate of 
fluoranthene inventory. 

Fluoranthene profiles were very different in micro- 
cosms with and without Capitella sp. 1 at the end of the 
experiment. In the microcosms with worms almost all 
(94%) fluoranthene was lost from the upper 3 mm 

Table 7 Nested ANOVA results for calculated subduction 
rates (S,) (microcosm within fluoranthene treatment). FLU: 
fluoranthene treatment; COSM: microcosm within fluoran- 

thene treatment. 'p  c 0.05, "p < 0.01 

Source df MS F P 

FLU 1 0.011 8 875 0.013' 
COSM 4 0.008 6 282 0 007" 
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+ CAP - CAP 

log [ fluoranthene ] pg g.' 

Fig. 7. Vertical distribution of particle-bound fluoranthene 
(+CAP: with worms; -CAP: without worms). All profiles are 
the result of 2 subcores. (0) Day 0, (U) Day 22. Error bars 

are range 

Table 8. Estimated FLU losses from contaminated microcosms 
with and without Capitella sp. 1. Data tabulated as mean 

percent (SD shown in parentheses) 

Treatment % total FLU loss 
- - - - - - 

No worms (n = 2) 29 (17.0) 1.3 (0.77) 
Added worms ( n  = 3) 63 (4.4) 2.9 (0.2) 

layer. Some of the fluoranthene was transported to 
deeper layers (3 to 4 cm) within the sediment, leading 
to an  integrated loss of fluoranthene throughout the 
entire sediment column of 63 % (Table 8).  In the micro- 
cosms without worms a loss of fluoranthene of 30% 
from the upper 3 mm layer occurred (Fig. 7). A very 
small fraction of the added fluoranthene penetrated 
more deeply, presumably due to sediment compaction 
during the coring procedure. There was a total loss of 
29% of the added fluoranthene in the uninhabited 

microcosms (Table 8) .  Thus the presence of Capitella 
sp. 1 nearly doubled the depth-integrated loss rate of 
fluoranthene. 

DISCUSSION 

Bioadvective processes and feeding mode 
of Capitella sp. 1 

This experiment indicated that Capitella sp.  1 can 
mix sediment in a bioadvective and predominantly 
non-local fashion. This form of mixing is characterized 
by the appearance of distinct subsurface maxima, as 
was the case for the distribution of the glass bead 
tracer (Smith et al. 1986). Two types of feeding modes 
are  responsible for non-local mixing. The first is 
conveyor-belt feeding sensu Rhoads (1974), where 
particles are ingested at  depth and defecated on the 
sediment surface. The second is reverse conveyor-belt 
feeding, in which particles a re  ingested near the sedi- 
ment surface and defecated at  depth (Wheatcroft et  al. 
1994). The surface of microcosms inhabited by worms 
consisted of a layer of accumulated fecal pellets inter- 
spersed with numerous black, protuding tubes con- 
structed of fecal pellets. These visual observations in 
combination with the glass bead tracer profiles 
strongly suggest conveyor-belt feeding as the primary 
mode of particle transport. Some diffusion-like disper- 
sion of the subsurface peaks occurred, but this was 
much less important than bioadvective particle trans- 
port to the final particle distribution. The peak disper- 
sion may be a result of the worms burrowing within the 
tracer layer, and infilling and/or collapse of tubes and 
burrows may be important as well (Boudreau & Imbo- 
den 1987). 

Biological mixing is often considered a s  being analo- 
gous to eddy diffusive mixing in hydrodynamics and is 
dependent upon a sufficient number and variety of 
small-scale mixing events. Models based on the 1- 
dimensional biodiffusion analogy have been widely 
used to characterize and quantify sedimentary mixing 
processes (Guinasso & Schink 1975, Aller 1982, 
DeMaster & Cochran 1982, Wheatcroft 1992). One rea- 
son for this is that complex mechanisms of sediment 
mixing can be conveniently parameterized as a single 
factor, the biodiffusion coefficient (D,). For most sedi- 
m e n t ~ ,  especially in relatively quiet coastal and deep 
sea environments, this coefficient is determined 
largely by bioturbation, although purely physical 
processes may often play an  important role. At the out- 
set of this study, the intention was to compute a bio- 
diffusion coefficient using a diagenetic modelling 
approach for each tracer profile in order to have a com- 
parable parameter of sediment mixing between conta- 
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minated and uncontaminated microcosms which could 
then be used to compare the worm population re- 
sponse to the addition of fluoranthene. 

Small opportunistic, pioneering species such as 
Capitella sp. 1 are thought to feed near the sediment 
surface, creating small-scale mixing events; whereas 
conveyor-belt or bioadvective mixing is thought to be 
more characteristic of larger species comprising mid to 
late successional-stage benthic communities (Rhoads 
& Boyer 1982). Prior to this study the mode of particle 
mixing by Capitella sp. 1 was unknown. Alongi (1985a, 
b) reported that C. capitata feeds on the sediment sur- 
face, and Tsutsumi (1990) stated that Capitella spp. 
were subsurface feeders. The situation of non-local 
mixing fits the biodiffusion analogue poorly, as the 
biodiffusion coefficient is based on a homogeneous, 
random mixing process. Thus to compare the particle 
mixing by Capitella in contaminated and uncontami- 
nated sediments, we have taken a purely empirical 
approach and statistically analyzed the nature and rate 
of bioadvective mixing. The strength of the method is 
largely due to the very good fit of the glass bead cumu- 
lative frequency data to the logistic equation in combi- 
nation with the ability of nested ANOVA to detect an 
effect of fluoranthene in spite of the variation among 
microcosms. The method we employed to obtain the 
cumulative frequencies is restricted to 1 subsurface 
peak per profile. Often multiple peaks can be seen on 
tracer profiles from conveyor-belt feeding; such ref1.e~- 
tions are a transient effect of conveyor belt recycling 
(Robbins 1986). In a study by Robbins et al. (1979), the 
conveyor-belt feeding oligochaete Tubifex tubifex 
created a bimodal tracer profile and with time the pro- 
file tended toward a more uniform distribution. It may 
be possible that Capitella sp. 1 fed more actively at a 
certain depth and that the tracer did not reach that 
depth within the duration of this experiment. Fisher et 
al. (1980) showed that that recycling of tracer most 
often occurred when it reached the depth to which 
conveyor-belt feeding activity of  T. tubifex was con- 
fined. Rice (1986) observed the same phenomenon 
with Scoloplos spp. Here the tracer particles moved 
generally downward until they were returned to the 
sediment surface after entering the feeding zone of the 
worms. Another very plausible explanation of the pat- 
tern of the glass bead profile is that the worms rejected 
the glass bead tracer. The rejection may not have been 
complete as is evidenced by a distributional 'tail' of 
glass beads which was observed in the upper fecal pel- 
let layer of all the tracer profiles (Fig. 3). Particle selec- 
tivity is very common among deposit feeders, may 
occur on the basis of size, shape, specific gravity, sur- 
face texture and chemical composition (Whitlatch 
1974, Hylleberg 1975, Self & Jumars 1978, Taghon 
1982), and affects tracer profiles in a profound way 

(Robbins 1986, Wheatcroft 1992, Wheatcroft et al. 
1994). In a study of the polychaete Scoloplos spp., Rice 
et al. (1986) observed that the worms initially selected 
particles of high organic content probably as a result of 
selection of smaller particles. They suggested that the 
reason was an initially smaller size of the worms. 
Worms of the size used in our experiment are able to 
ingest particles up to approximately 80 pm in diameter 
(Forbes 1984). Our initial aim for quantifying the glass 
beads was to classify bead profiles into 2 size fractions 
(c80 and >80 pm) but the large size fraction (>80 pm) 
turned out to be a very small proportion of the total. 
The use of glass beads as tracers has been criticized by 
Wheatcroft et al. (1994) because of their exotic proper- 
ties, for instance the unnatural shape and surface, and 
glass beads are probably perceived as a poorer food 
source than natural sediment grains (Forbes & Lopez 
1990). Selective conveyor-belt feeding makes rejected 
particles move downward as a front which accumu- 
lates at the base of the feeding zone while selected 
particles are recycled to the sediment-water interface. 

In situations in which particles and associated conta- 
minants are supplied to the sediment surface at a 
constant rate and no loss is allowed, particle-selective 
conveyor-belt feeding can either reduce or enhance 
surface concentrations of particle-bound contami- 
nants, depending on whether or not particles are pref- 
erentially rejected or consumed (Robbins 1986). 
Organic contaminants associate with small organic- 
rich particles that are often selected by deposit feeders 
Selective conveyor-belt feeding may thereby enhance 
surface concentrations of organic contaminants (Kar- 
ickhoff & Morris 1985). On the other hand the potential 
degradation may be enhanced as well, because the 
contaminant will be confined in the oxidized zone (see 
below). If particles with associated PAH are rejected, 
or otherwise become buried, the surface concentration 
will be diluted and the contaminant will build up in 
deeper sedimentary strata. The implications of this are 
that PAH will tend to be preserved by burial, as most 
are quite refractory under reduced conditions. 

Subduction rate and effect of fluoranthene 

Worms buried the glass beads at  a rate of 0.37 mm 
d-' (worm density of 30 000 ind. m-') in the uncontam- 
inated microcosms. The subduction rate was close to 
the 0.5 mm d-' that has been found for another small 
conveyor-belt feeder, Tubifex tubifex (worm density of 
50000 ind. m-', Robbins et al. 1979). The size of the 
animals and population density are of course important 
for the magnitude of the subduction rate, but other 
factors such as temperature and sediment quality may 
be important as well (Rice 1986). Subduction, due to 
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conveyor-belt feeding can appear stratigraphically as 
an apparent sedimentation rate (Rice 1986). Consider- 
ing the importance of burial by conveyor-belt feeding 
relative to sedimentation, the subduction rate of 
0.37 mm d-' gives a rate of 13.5 cm yr-l, and exceeds 
even high sedimentation rates of 1 to 3 cm yr-' found in 
coastal marine environments (Olsen et  al. 1981). Phys- 
ical deposition and resuspension may be important 
and should be considered at a glven time and place. 
The depth of erosion during a given wave resuspen- 
sion event may vary considerably, but a useful refer- 
ence point is to consider particles below the upper 
1 cm thick surface layer to be no longer available for 
resuspension in most environments (Wheatcroft et al. 
1994). 

As pollutant stress can reduce rates of reworking or 
irrigation (Lee & Swartz 1980), a potential effect of 
fluoranthene contamination was an alteration of sub- 
duction rate. In an experiment by Gilbert et al. (1994) 
the burrowing activity by Nereis diversicolor was 
reduced in response to oil (Arabian Llght crude oil), 
resulting in 77 % lower burial of tracer compared with 
uncontaminated sediment after 15 d .  After 45 d the 
difference was about 45%. In this experiment the 
burial of glass beads was reduced by 19% in response 
to fluoranthene after 22 d. 

Thus the decreased subduction rate observed in our 
experiment is likely due  to an  effect of fluoranthene on 
worm feeding rates, res.ulting in reduced pellet pro- 
duction and surface sediment deposition, although we 
could not rule out behavioral changes resulting in a 
changed spatial patterning of defecat~on and burrow- 
ing. Augenfeld (1980) found fecal production was 
reduced by 70% when Abarenicola pacifica was 
exposed to oil-contaminated sediment (Prudhoe Bay 
crude oil). Feeding rate and rates of fecal production 
are  more or less directly proportional to body size 
(Cammen 1980, Rice et al. 1986, Forbes 1989). Average 
worm lengths in the microcoslns where the subduction 
rate was measured were signif~cantly shorter in the 
contaminated microcosms, suggesting that growth 
rates may have been reduced under fluoranthene con- 
tamination (ANOVA, p = 0.04). This could indicate that 
the growth of worms may have been reduced by fluo- 
ranthene, a prospect which requires further study. 
Alternatively, a reduced subduction of the glass bead 
tracer could be due to worms feeding selectively on the 
particle-bound fluoranthene and associated organic 
material within the zone of accumulated fecal pellets. 
As we made no direct measurements or observations of 
Capitella sp 1 feeding depth, this possibility cannot be 
excluded. Nevertheless, given the appearance of the 
surface sediment and bead tracer profiles, it seems 
likely that worms fed predominantly at  depths below 
the accumulated fecal pellet layer. 

Influence of Capitella sp. 1 on the fate of 
particle-bound fluoranthene 

The sediment concentrations of fluoranthene in this 
investigation were typical of those found in polluted 
aquatic environments (Johnson & Larsen 1985, Shiaris 
& Jambard-Sweet 1986). The concentration experi- 
enced by the worms may have been higher than the 
measured concentration in bulk sediment if they selec- 
tively ingested smaller organic and contaminant-rich 
sediment particles (Landrum & Robbins 1990). 

In microcosms with Capitella sp. 1, some of the parti- 
cle-bound fluoranthene was mixed deeper into the 
sediment, but more than half of the fluoranthene was 
lost from the sediment, doubling the loss rates in unin- 
habited sediment. Three possible explanations exist 
for the loss of particle-bound contaminants in the pres- 
ence of macrofauna: (1) enhanced flux to the water- 
phase, (2)  enhanced microbial degradation and miner- 
alization, and (3) uptake and metabolic degradation by 
macrofauna. 

The presence of bioturbating infauna is known to 
increase the flux of contaminants to the water-phase. 
Clements et  al. (1994) showed that the presence of 
Chironon~us riparus increased the release of benz[a]- 
pyrene (BAP) into the water-phase and that increased 
density of C. riparus further increased the release of 
BAP. Enhanced transport of solutes in porewater and 
enhanced fluxes across the sediment-water interface 
are possible due to increased porosity in combination 
with burrow irrigation (Aller 1982). Recycling contam- 
inants to the sediment surface by conveyor-belt feed- 
ing may remobilize sediment contaminants into the 
water-phase. For example, the presence of Tubifex 
tubifex enhanced the discharge of hydrophobic pollu- 
tants from sediment to water by 4 to 6-fold over a 90 d 
period (Karrickhoff & Morris 1985). Given that Capl- 
tella sp. 1 can feed in conveyor-belt fashion and 
increase the porosity of the upper 15 to 20 mm by the 
build-up of a surficial layer of fecal pellets (this study, 
data not shown) and irrigation of burrows, there should 
be  a great potential for increased flux of fluoranthene 
to the water column in the presence of worms. 

The infaunal activities mentioned above may also 
stimulate microbial activity and growth (Yingst & 

Rhoads 1980, Fry 1982, Aller & Aller 1986). Increased 
porosity and deepening of the RPD is expected to 
enhance oxygen-dependent microbial processes such 
as the degradation of PAH (Fry 1982). Oscillating 
redox conditions created by intermittent irrigation or 
displacement of particles may also have a positive 
effect on the mineralization of refractory organic mat- 
ter (Aller 1994). The increased sediment-water inter- 
face will also benefit the microbial processes through 
enhanced exchange of dissolved nutrients into the sed- 
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iment and metabolites or growth inhibitors out of the 
sediment (Yingst & Rhoads 1980). The walls of tube 
and burrow structures have been shown to be sites for 
enhanced microbial activities due to the oxic-anoxic 
boundary and mucus-enriched zone (Aller & Aller 
1986). Alongi (1985a) found enhanced microbial activ- 
ity on tubes produced by Capitella sp. 1. Several 
authors have reported stimulation of microbial activity 
and degradation of PAH/crude oil in sediments in the 
presence of macroinfauna (Gordon et al. 1978, Gard- 
ner et  al. 1979, Bauer et al. 1988, McElroy et al. 1990, 
Gilbert et al. 1994), but the exact mechanisms respon- 
sible for the stimulation could not be determined. 

In the microcosms without Capitella sp. 1, the loss of 
fluoranthene was relatively high (29%), and the loss 
was confined to the oxidized top layer of the sediment, 
indicating that microbial processes may have been 
responsible for some of the loss. Gardner et al. (1979) 
studied the degradation of 4 specific PAH (anthracene, 
fluoranthene, benzo[a]pyrene and benz[a]anthracene) 
in the presence and absence of Capitella capitata. 
They found that the removal of PAH to the overlying 
water was less than 2 %  per week and that the micro- 
bial degradation was stimulated, especially in the sur- 
face sediments, but suggested that degradation by the 
worms could have been an important factor as well. 

Spies et al. (1989) concluded that Capitella spp. were 
able to use petroleum as a carbon source. A recent 
study by Forbes et al. (1996) showed that Capitella 
sp. 1 took up fluoranthene but did not oxidize it to CO2, 
suggesting that fluoranthene was not used as an 
energy source. Instead fluoranthene was excreted as 
DOC, suggesting metabolic degradation. Other poly- 
chaetes have been shown capable of metabolizing 
PAH as well. For example, McElroy (1990) found that 
Nereis virens was capable of metabolizing benzlaj- 
anthracene and benzo[a]pyrene. Holrner et al. (in 
press) found that fluoranthene profiles from sediments 
inhabited by Capitella sp. 1 appeared very similar to 
those of the glass bead distribution in this experiment. 
Fluoranthene was buried and most of the added conta- 
minant was recovered in their experiment. Several 
parameters were different from our experiment and 
could be responsible for the very different fate of fluo- 
ranthene. The time period was shorter (14 d ) ,  the sedi- 
mentary organic carbon content was more than twice 
as high (5%), the concentration of sediment-bound 
fluoranthene was higher (-50 ppm), and the density of 
worms (10 000 m-* ) was less than in our experiment. A 
lower worm density together with a higher sediment 
organic carbon content may result in less mobility of 
the particle-bound fluoranthene. Time may be an 
important factor controlling induction of microbial 
degradation (Cerniglia & Heitkamp 1989). Several 
studies have shown that benthic infauna may try to 

avoid contaminated sediment and that avoidance is 
dependent on the concentration of the contaminant 
(Mohlenberg & Kierrboe 1983, White & Keilty 1988, 
Landrum et al. 1991). If worms are able to avoid parti- 
cles with high concentrations of sedimentary contami- 
nants, this difference in behavior will have serious 
implications for the fate of the contaminants. Sediment 
with associated contaminant would then be subducted 
and accumulate at the base of the feeding zone. This 
would act to preserve and potentially concentrate an 
organic contaminant in the sediment. 
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