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Introduction

The most fundamental question in considering deliber-
ate introductions of exotic species against invasive spe-
cies is whether the outcomes can be predicted precisely
enough a priori to know with some certainty that the
benefits will outweigh the environmental costs. This is-
sue is obscured by reiteration of an overly simplistic de-
scription of the ecology underlying biological control.
Classical biological control is not a simple exercise in
“community re-assemblage” (Hoddle 2004[this issue]);
it involves the introduction of alien organisms into new
species assemblages, in new physical environments, and
without the rest of their foodweb. Predicting the out-
come of such introductions is infinitely more complex
than implied by the idea of “reestablishing natural en-
emies” of an invasive species. Direct ecological inter-
actions are difficult enough to predict, but indirect in-
teractions —those mediated through a third species or
foodwebs—are even harder to predict (Strauss 1991;
Paine 1992, Wooton 1994; Menge 1997). In suggesting
that biocontrol efforts are “restoring balance” by “using
exotic species to control invasive exotic species,” Hoddle
(2004 [this issue]) skirts the essential ecological issue:
predicting the magnitude of the outcome of the full set
of new interactions in a new environment.

Our aim is to review more, highly relevant evidence
and to outline an alternative, ecological perspective on
the use of “exotics to control invasive exotics” (Hod-
dle 2004). We summarize data on nontarget effects that
were ignored or that challenge Hoddle’s interpreta-
tions and then briefly address the points he raised on
classical biological control. This synopsis highlights
important reasons for increased caution and continu-
ing development of improved ecological risk assess-
ment, especially for conservation and restoration. In
these contexts in particular, we think that the overarch-
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ing guideline, as in medicine, should be, first, do no
harm (Simberloff & Stiling 1996).

More Evidence on Nontarget Effects

Recent quantitative studies show unexpected levels of
nontarget feeding and impact by some biological con-
trol insects (Howarth 1991; Follett & Duan 2000; Wajn-
berg et al. 2001). Several studies not cited, or dismissed,
by Hoddle provide additional strong, quantitative evi-
dence that biological control efforts can have more far
reaching and complicated outcomes than expected. To
predict the interaction outcomes observed, adequate risk
assessment prior to release would have required more
ecological data to supplement the behavioral and phys-
iological data from host-specificity tests ( Louda 1999;
Louda et al. 2003a; 2003b).

Johnson and Stiling (1996) reported significant feed-
ing by the moth Cactoblastis cactorum on native cacti in
southern Florida, which is within hitch-hiking or island-
hopping distance of the Caribbean islands onto which
the moth was introduced as a biocontrol agent (Stiling
2002). In Florida the moth now threatens the already en-
dangered native O. corallicola with extinction (Stiling et
al. 2000). This moth is a specialist on the genus Opuntia,
so the case highlights the fact that narrow host specific-
ity per se does not guarantee safety (Louda et al. 2003b).
The case also suggests the need to expand quantitative
assessments of potential ecological risks to adjacent re-
gions within potential dispersal distance.

Louda and colleagues (1997; 1998) reported that Rhi-
nocyllus conicus, a thistle specialist introduced to control
exotic species, is both widespread and reducing seed
production by multiple native thistles in nature reserves
and three national parks in the central United States.
Prior data (Louda & Potvin 1995) make it clear that the
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further decreases in seed production threaten popula-
tions of Cirsium canescens in its habitat, one without the
targeted exotic thistle (Louda 1999). The weevil also in-
terferes with native floral insects dependent on native
thistles (Louda & Arnett 2000). This weevil is a special-
ist on thistles, so this case highlights the fact that a “nar-
rowly specific host range” is relative to the species com-
position of the recipient region. The case also suggests
the need to add insect population response under vari-
ous conditions in assessments of ecological risk ( Louda
et al. 2003a; 2003b).

Callaway and colleagues (1999) reported that feed-
ing by two specialized tephritid flies (Urophora affinis, U.
quadrifaciata) introduced against exotic knapweeds (Cen-
taurea maculosa, C. diffusa) indirectly facilitates knap-
weed growth. Furthermore, Pearson and colleagues
(2000) found that when the flies failed to control knap-
weed, the abundant fly larvae subsidized populations of
deer mice (Peromyscus maniculatus), a generalist preda-
tor, and mouse populations increased two- to three-fold.
As a result, other small mammals have declined, and
the native plant community has been altered. This case
highlights the need for evidence of a high probability of
control, prior to release of putative biocontrol agents. It
also illustrates the complexity of outcomes possible with
the insertion of exotic species into new communities.
Evaluation of such outcomes is not a part of contempo-
rary ecological risk assessment.

Henneman and Memmott (2001) found that insects
released as biological control agents in agroecosystems
at low elevations on Kauai, Hawaii, have penetrated
the high-elevation native forest to the point that an un-
expected 83% of the parasitoids reared from native cat-
erpillars are biocontrol agents. This case highlights the
probability of dispersal away from the targeted areas
into adjacent natural communities. It also illustrates the
potential consequences for the community foodweb of
introduced exotic species.

Louda and O’Brien (2002) reported large nontarget ef-
fects of Larinus planus on the sparse native Cirsium undu-
latum var. tracyi in Colorado. This Eurasian weevil was
tested in Europe, first observed as an adventive in a bio-
logical control test field in the northeastern United States
(White 1972), and released officially in Colorado as a bio-
control agent against C. arvense (Canada thistle). Release
in Colorado occurred even after contemporary host-spec-
ificity tests showed that native species were acceptable,
but not preferred, hosts (McClay 1990). Unfortunately,
however, seed destruction by L. planus is greater on the
native species than on the targeted weed. This case il-
lustrates three key points: a discrepancy between pre-
dicted host use, based on host-preference tests, and ob-
served host use in the field; the dangers of redistribution
of potential “natural enemies” between ecosystems; and
shortcomings in the oversight process for movement of
“beneficial” exotic species within the country.

In sum, these data augment the cases listed by Hod-
dle (2004) and document both unexpected interactions
and unpredicted intensities of interaction with native
species by insects used as biological control agents.
Much of the recent evidence emerged serendipitously
in the midst of basic ecological studies. Thus, given the
general lack of follow-up monitoring in biological con-
trol and the serendipity of much of the quantitative data
on nontarget effects, the evidence now available may
represent only the tip of the iceberg. The current state of
knowledge argues for more studies and increased cau-
tion in deliberate introductions of exotic species.

Reasons for Caution and Better Development of Risk
Assessment

The issue is not whether biological control is an option
in invasive species management. Given the evidence on
the unexpected range and magnitude of nontarget ef-
fects, the real question is when biocontrol is likely to be
both effective and environmentally safe. Long-standing
arguments underlying advocacy of classical biological
control efforts, reiterated by Hoddle, are (1) economic
and environmental benefits, (2) rarity of nontarget ef-
fects by specialist insects, (3) regulatory “safety net,”
and (4) value to conservation. Each of these points has
counterpoints that merit repetition, to increase aware-
ness of the questions underlying the assertions and to
stimulate further science-based dialogue to resolve the
real issues.

First, we concur that biocontrol can be beneficial, when
it works. The key phrase, however, is when it works. The
probability of control, and thus the likelihood of bene-
fit, is not evaluated quantitatively in pre-release stud-
ies. Yet ineffective releases do nothing about the pest
and have multiple ecological risks. Hoddle claims that
“science-based biological control programs are deliber-
ate and carefully orchestrated ....” Usually, however,
as many relatively specific biocontrol agents as can be
identified are released in hopes that one will limit the
targeted pest, without assessment of the likely outcome
or even probability of unwanted interactions among
agents (McEvoy & Coombs 1999, 2000). Moreover, the
statistics on success are not encouraging. Based on quan-
titative criteria, only 20% of weed-control projects ( Wil-
liamson & Fitter 1996) and 3% of insect-control projects
(Lynch & Thomas 2000) exhibit successful control. Lack
of control not only entails unnecessary costs, it can lead
to new problems (e.g., Pearson et al. 2000). It also leaves
the 34-50% of the exotic insects that become established
in the new environment, without controlling their tar-
geted pest (Greathead & Greathead 1992). More precise
economic analyses, and more accurate representations
of the likelihood of success are needed to put the poten-
tial ecological costs into a more realistic perspective.
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Second, although use of specialist insects reduces the
chance of direct nontarget use (Pemberton 2000), it is not
foolproof (Louda et al. 2003b). Hoddle argues that “Nat-
ural enemies that exhibit high levels of host and habitat
fidelity ensure strong links and maximal impact on the
target species, while ensuring weak links and minimal
impacts to nontarget species.” The problem, of course,
is defining “high” in this context. The cases above, and
others (Louda et al. 2003b), show that nontarget effects
can be imposed by relative “specialists,” species whose
diet is limited to a set of closely related hosts. Further-
more, most insects released against insect pests do not
narrowly specialize; 62% of parasitoids released are po-
lyphagous (Stiling 1990). At least 23.6% of the 313 para-
sitoids released against insect pests in the United States
attack nontarget species (Hawkins & Marino 1997). Also,
despite claims to the contrary (Hoddle), host-range ex-
pansion by specialized natural enemies occurs: at least
20 cases have been identified (Secord & Kareiva 1996).
Further, nontarget effects are not as rare as suggested;
direct, indirect, and cascading effects have been re-
ported (above). Together, these results undermine con-
fidence in relative specialization and host preference as
completely adequate criteria for estimation of ecological
risks.

Third, although the strict regulatory oversight legis-
lation enacted by New Zealand and Australia provide
models for other countries, this safety net is not univer-
sal. Voluntary codes are just that, voluntary. Regula-
tors are under political pressure to minimize oversight
and are under financial constraints that have a compa-
rable effect. Expediency can overwhelm good intention.
Finally, once an exotic species is established, few if any
countries have comprehensive, science-based guidelines
for internal movement of “beneficial” insect enemies be-
tween regions and ecosystems. In sum, we are not per-
suaded that voluntary restraints and current regulatory
oversight protect sensitive natural resources of conser-
vation value in most countries.

Fourth, evidence now suggests that biocontrol may
not be as risk-free an option for conservation and res-
toration as is assumed. We still do not know enough to
predict the ecological outcomes of new biological inter-
actions, including deliberate introduction of exotic spe-
cies. Evaluation procedures in biological control, which
rely heavily on host-specificity tests, are not designed to
quantitatively predict population impacts on either tar-
geted or nontargeted species or to quantitatively predict
alternative outcomes in complex assemblages of species.
Why is this important? The magnitude of potential ben-
efits and costs are not well quantified prior to introduc-
tion, so trade-off analyses are much more hypothetical
than generally thought. This realization is crucial in con-
servation contexts, where the overarching mandate is to
protect native species. Increasing caution, ever-increas-
ing scientific rigor, and a careful reexamination of the

assumptions underlying current protocols are needed to
improve the prediction of ecological dynamics and out-
comes among newly associated species in new environ-
ments. Advising increased caution in the application of
biocontrol is not to advocate a do-nothing policy. Me-
chanical and localized chemical control methods exist
and, although they take time and resources, may repre-
sent less harmful containment strategies in the long run
than introducing self-replicating, self-dispersing, irre-
trievable biological “natural enemies” with unexpected
ecological side effects.

Conclusion

Biological control is a potential tool in the fight to control
invasive exotic species, but it is clearly a double-edged
sword. Given the evidence available, we think the focus
now should be on when biocontrol will be both effec-
tive and ecologically safe. Although Hoddle acknowl-
edges some of the problems, his basic message could
be construed as a generalized recommendation for bio-
control in sensitive natural areas. Yet it is important to
avoid using classical biocontrol as the reflexive response
to invasive species (Michaud 2002). The evidence now
contradicts the simplistic, optimistic perspective that the
practice of introducing and redistributing exotic species
is so carefully targeted, so adequately analyzed, and so
well regulated that—done according to current proto-
cols—it poses no credible ecological risk to natural sys-
tems. We disagree and conclude that better quantifica-
tion of both likely benefits and possible ecological costs
are required before applying the dramatic and poten-
tially risky strategy of introducing exotic spcies against
exotic species in a conservation context.
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