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VOLUME 52, NUMBER 2

15 JANUARY 1970

Projected Hartree Product Wavefunctions. V. Density Matrices and
Operators Containing Spin*

G. A. GaLLur
Department of Chemisiry, University of Nebraska, Lincoln, Nebraska 68508
(Received 7 April 1969)

Formulas are given to allow the calculation of the various spin components of the first-order density and
transition density matrices from one spatial component of a pure spin-state wavefunction and certain
reduced operators. Similar expressions are given for the second-order density for singlet and doublet systems.
These results are useful for the calculation of matrix elements of operators containing the spin.

I. INTRODUCTION

In two recent papers, I' and TI? of this series, the
author has given a discussion of the use of the sym-
metric groups in determining eigenfunctions of the spin
angular momentum operator for an application to the
projected Hartree-Fock problem. These papers may be
consulted for general references.

It is shown in I and II that matrix elements of spin-
free operators may be evaluated without knowledge of
the complete wavefunction, but knowing only the part
associated with one primitive idempotent from the
group algebra of the appropriate symmetric group.
This idempotent E® (y) depends on the Hamiltonian
operator, H (which in our approximation is considered
spin free) through the numbers, v, which must be
adjusted to minimize

W=(|HEW (v) | ¢)/ @ | E¥(v)|¢). (1)

The « also depend, of course, on the choice for ¢. That
only E®(y)¢ is necessary for determination of the
energy has also been emphasized in the work of Matsen
et al® ‘

The analysis which allows the energy to be calculated
from Eq. (1) depends essentially on the spin-free
nature of the Hamiltonian used and can be applied
unchanged to the determination of the matrix elements
of any spin-free operator. However, the method breaks
down for the operator of a quantity depending on the
spin. This type of operator is by no means unimportant,
and we led to its consideration for an analysis of various
magnetic phenomena, spin—orbit coupling, etc.

The problem of determining the matrix elements of
operators can be transformed to the problem of deter-
mining certain reduced density and transition density
matrices.t The pth-order reduced density matrix for an

- * Based in part on work done while the author was on leave
from the University of Nebraska at the Quantum Theory Project,
University of Florida, Gainegville, Fla. The leave was made
possible by the University of Nebraska Research Council and the
National Science Foundation.
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n-electron system is usually defined as

PP(xl; Xgy ** "y Xp l xlly x‘lla *tt xp,)
n 1! 7 *
= » B (2 %0+ + 220y Tpy1t 2 %)

><':I)(g"/'l' ¢ Xpy Xpy1°® '*'xﬂ)dxﬁl' * 'dxm (2)

where ® is the complete antisymmetric wavefunction
for the state in question. The transition density is
similarly defined.

In order to apply Eq. (2) it is necessary to use the
complete wavefunction. This is a purely group theoretic
problem once E® (y)¢ is known. If we consider E® (y)
(which is a primitive Hermitian idempotent of the
appropriate symmetric group algebra) to be ey® of the
matric basis corresponding to the irreducible repre-
sentation determined by the partition (u), the shifting
operators ex®, i=1, 2, «--, f,, exist® and may be
determined, if no other method is available, by a sort
of Schmidt orthogonalization procedure. Corresponding
to ea® there is a set ex® for the conjugate partition
(@). If w is a product of spin functions

w=0102"* *AnBnts1** *Bn 3)
such that en®w does not vanish,
fu -
=3 (ea®) (ea®w) “)
=1

gives the complete (unnormalized) antisymmetric
wavefunction for Eq. (2). However, the determination
of the e ® is far from a trivial problem in general, and
we wish to circumvent it if possible. So we shall in-
vestigate the possibility of determining I'® from
E®(y)¢ alone, and we shall restrict the discussion to
the cases p=1, 2. It is not @ priori obvious, of course,
that our program is possible, but we shall see that
E® (y)¢ is sufficient for the case p=1, and can give for
the case p=2 a form of the density matrix which is
sufficient for a certain restricted class of two particle

s D. E. Littlewood, Theory of Group Characters (Oxford Uni-
versity Press, London, 1940).
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operators involving the spin. We shall discuss the
restriction later.

Matsen and Cantu® have made progress in the
solution of this problem by giving a method for deter-
mining what is essentially the spin density for spin-free
wavefunctions. We shall take a different approach to

the problem, one which appears more easily gen-
eralizable.

II. DENSITY OPERATORS AND THEIR
ALGEBRAIC PROPERTIES

We shall discuss only the density matrices since the
transition densities are obtained by an easy gen-
eralization.

McWeeny” and McWeeny and Mizuno® have given a
careful discussion of density matrices and show that
they have the forms

I'® ( ‘ )=y (x i %) =P (p, I o e ™®

+P% (o1 | 01" )B181"™,

T® (210 | 2% ) =T (230 | 21/%")
= Pa%a (5105 | o1’ ectsctr ¥ ™*
+ P28 (p105 | o1 po’ )orBacts *Bor*
+ PP (p1py | pi/py” )BrowBy o™
-} PBB (ppg J p1'p2" )B1BaB B
+ P (p1py | pr/ oy’ YouBaBr ¥ o™
+ PP (p1ps | p1p2 )Bronon "B (S)

when the wavefunctions are eigenfunctions of the z
component of the total spin operator. We need sym-
melric operators which will give us the various spatial
components shown in Eq. (5). McWeeny and Mizuno
have shown this may be accomplished with the use of
an integral operator. We take an alternative approach
and define a translation operator 7' (p) with the proper-
ties

T;’(p)u(ﬁ, ¥ay 00, Tn)=U<1'1, RS o o BEEER rn)) (6)

where U is any square integrable function of # sets of
spatial coordinates. Such an operator is unitary. Using
T:(p) and the Dirac delta function we see that

Pyee= Z 8(ri—p ) Ti(pr—p1") G+ S24)

=1

=3 Q:G+5.0) )

=1
gives

(@ Pop= | @)/(® | ®y=P(p1| p1)- 8)

6§ F. A. Matsen and A. A, Cantu, J. Phys. Chem. 72, 21 (1968).

7R. McWeeny, Proc. Roy. Soc. (London) A253, 242 (1959).

8R. McWeeny and Y. Mizuno, Proc. Roy. Soc. (London)
A254, 554 (1960).

A. GALLUP

The last factor in the terms on the right of Eq. (7) isin
the form given by McWeeny and Mizuno. It is ob-
served that the binominal coefficient in the definition
Eq. (2) is produced by P.,** since there are (7) terms
in Eq. (7). The operator P, is given by

Popﬂp= Z Qi %_Sz'i)-

=1

©)

For the second-order densities we have several forms
to consider. Thus one obtains

Popaaaa — % Z Qi;+ (%_,— Sz1) (%"I" Szj)’

i<
P f8=13 0t (A—S.:) (3—S.5),
i<j
Pt +— % Z Qij+ (i— Sz-iSzj):
i<j
Put ¥ =1 X 0t (S5 S7 S,
i<y
Poym =313 Qi (S:i— S25),
i<j
Po =13 Qi (SSr—S7Si*), (10
i<y
where
Qi =0(ri~—p1" )8 (rj—p2" )T s (pr—p1" ) T (p2—p2’)
+8(r:i—ps )8 (ri—pi ) Ti(pr—p ) Ti(o1—p1'), (11)
and
Pobef=pP *+L P~
Poyfete=Poyt ¥—Poy™ 7,
Poodbe=p ++ 4L p ==
Popﬂaaﬁ —_—P0p+ +— Pop_ - (12)

Each of the operators given by Eq. (10) is totally
symmetric with respect to permutations of the sub-
scripts.

It is seen that each of the first-order density operators
is in the form >; 4:B;, and that each of the second-
order density operators is in the form 2 i<y A4iBij
where A and B refer to spatial and spin coordinates,
respectively. In the latter case Ay==4; and
Bi;;==+Bj;, where the upper or lower signs apply
together. We must analyse these forms to determine
some of their algebraic properties. We take up the
first-order density first.

It is easily shown® that a set of » quantities 4
Ay, Ag, +++, A, form a basis for a reducible representa-
tion of S, if the permutations operate on the subscripts.
This representation is a direct sum of the irreducible
representations [#] and [#—1, 1]. We may form linear
combinations of the A’s which belong to these repre-

¢ M. Hamermesh, Group Theory (Addison-Wesley Publ. Co.,
Inc., Reading, Mass., 1962).
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sentations. Let us denote the totally symmetric function
A® and the n—1 functions belonging to

[n_ 1) 1]) Al(l)’ A2(l)y. ‘e y An—l(l)-

The functions are considered to be real and algebraically
normalized, that is, the sum of the squares of the
coefficients in each is equal to one. If we form a similar
set from the operators B, it is seen that

Zn: ABi=A®BO} "i‘l AWB,®,

=1 =1

(13)

The precise form of Eq. (13) is obtained only if 4,®
and B,® are arranged to give identical representations
of [n—1, 17, and this is assumed. Explicite expressions
are possible and one such is given by ’

AO =125 4
z

A5(1)=[i(i+1)]_1/2(2 Aj_iAi+1)’ i= 1¢2: s, n— 1;
J=1

(14)

with the same expressions for the B’s. The form of Eq.
(13) is convenient for our purposes since each of the
operators in the sum has a definite symmetry.

Similarly, a set of quantities A;;=A4;.; 15 form the
basis of a representation which in reduced form is
[n]+[n—1, 1]4-[n—2, 27. The dimension of [n—2, 2]
isn(n—3)/2. 1f A®, 4,9, and 4,2 are bases for these
three irreducible representations, respectively, and
B®, B,®, and B;® are a similar set from the B’s we
have ¢

> AyBy=AOBO+Y A WBWOLT A ®OB®.  (15)
<J [ z

When 4;;=— 4;:; 177, these quantities are a basis for
a representation equivalent to [#—1, 1]4+[rn—2, 12],
and an expression similar to Eq. (15) may be written.
The dimension of [#—2, 17] is (n—1) (n—2)/2.

ITII. DENSITY MATRICES

We may consider each of the terms on the right of
Egs. (13) or (15) separately, and the portions belonging
to [#] are trivial since these operators satisfy all of the
requirements that a spin-free operator does. Therefore,
one obtains from Eq. (4)

(| A®B® | @)
(@] @)

_ GAVEY (v) | o) | BYED (v) | w)
GIE@ )| ¢)w]| EP () | w)

In this case A® is just #~2 times the first-order spinless
density operator or [2/n#(n—1)7]"2 times the corre-

(16)

WAVEFUNCTIONS. V 895

Tasre I. Symmetric spin operators,

B®

Pae Ll yits,

pss _linlﬂ__ —1/25‘=

Pucaa [3n(n—2) 1+ (n—1)S.+S 2
press (ln(n—2)]— (n—1) S+ S ]x
P+ n—S2le '
P+ [252—282—n]x

x=[8n(n—1) 12

sponding second-order operator. Table I gives the spin
parts for each of the cases.

We now consider an operator term of the form
2o AOB@ Tt is shown in IT that the v’s in E® (y)
may be included in the spatial function ¢ as an alterna-
tive to their being placed with E® (v}, Thus E® (v)
is proportional to

Z Yy, jO’z'_IIVP ]Vo’j,
i

where the o; are permutations which transform the
principal standard Young tableau into the others.
Thus Eq. (4) could be written

In B
®=C 3 [ea®¢ (v)J[ea®w]
i=1 .

=YW@, (17)
where e;® now is proportional to NPN. The operator
PNP corresponding to (u) could be chosen also for
en®. The constant C in Eq. (17) is to be adjusted so
that ¢;® and w;® are algebraically normalized. For the
w;® this is true normalization since these functions are
written in an orthonormal basis. Using Eq. (17), (13),
and (15) we obtain

(@] 24, @B | &)/(® | @)= (fultr® | 2®))?

X Z <¢].(M) I A ’ ¢k(u)><wj(ﬁ) ] B;@ I wk(ﬁ)>_ (18)
ik

As is well known, linear combinations of quantities
like 4,®¢;* can be constructed which are bases for

irreducible representations of S,; thus
i7" = 3 (aipk | ¥1) AP, (19)

ik

where the (aipk|+yl) are the Clebsch—Gordan coeffi-
cients.® In general, one needs another index in these
coefficients if any of the (y) appear more than once, but
we will restrict the discussion to cases where Eq. (19)
applies. The (aipk | v!) are elements of an orthogonal

Downloaded 29 Nov 2006 to 129.93.16.206. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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matrix; thus

% (cvipk | yl) (cipk | ¥'V) =8,pbur, (20)
and .
% (aipk | ¥F) (cd’pk’ | 41) =815, (21)
Using Egs. (19) and (21), one obtains
A0y W) = Zl: (cdipke | Y1), (22)
r

The case for Bi“w,® may appear more complicated
since these functions are not all linearly independent
because B;@aw,® is still a sum of simple products of
spin functions. This means that some of the functions
defined by Eq. (19) are identically zero, and these
relations give the connections between the B;@uw;,®,
Nevertheless, Eq. (22) still applies—some of the terms
in the sum are zero; thus

B (@, ) = Z (ot’l,ﬁk I ’Yl)wl('_‘)'. (23)

v,

In Eq. (23) one of the symmetry relations of Clebsch—
Gordon coefficients has been used, viz.,

(ciukt | 1) = (ceih | ), (24)

where the bar indicates the conjugate representation.

Using Eqgs. (22)-(24) we obtain
22 (A (B @y @) = 3 ;@ ®’,  (25)
itk 7l

and

@ TiA@B@[8)  (h® | 1) (n® | in®’)
(@] ®) CASEEAR)

.

(26)

If (aipl | p1)= (aifl | 51)5%0 we may solve Eq. (22)
for ¢:%’ and correspondingly «;®’ and the right side
of Eq. (26) becomes

1 (319 | A& | @) (@ | B, | @)
(oipd | p1)? (B [ ¢ ®) ’

(7).

and we have the desired result, an expression involving
only ;% (and ey®). The crucial step in our derivation
is the assumption that (aiul | £1)520, of course, and as
will be shown this fails for the case a=[n—2, 12].
Thus we cannot obtain the complete second-order
density by this method. However, we can obtain the
symmetric part, and this is sufficient for an operator
with a symmetric spatial part.

Another noteworthy aspect of our result is that only
one function each of the types 4, and B;® is needed,
that is, we need only e and no other part of the
algebra.

G. A. GALLUP

IV. CLEBSCH-GORDON COEFFICIENTS AND
SPIN OPERATOR INTEGRALS

As is well known, relations between (eiBj|vk) and
the irreducible representation matrix elements may be
obtained. In our special case the square is obtained
directly:

(181 ] 1)*= (fo/g)D® (x)12D® (w)u.  (28)

It is shown in I that the representations 8 are of the
type [2¢/2—5', 1287 and B are [(#/2)+S, (n/2)—S],
where # is the number of electrons and S is the total
spin quantum number. Because of the symmetry of
Eq. (28) with respect to 8 and § we may use either,
and we arbitrarily use B, writing [#—%, k] where
k=3n—S. Figure 1 gives the numbering that we use of
the positions in the tableau [#—Fk, &]. Since the inclu-
sion of the 4’s (in ¢) in the treatment guarantees the
generality of the results, any en® may be used. As
appears to be usually the case, PV P (for spin functions!)
is simpler, therefore we base most of our analysis on
this form.
It is shown in ITI that

D® (7|-)]1 =D® (l)nD(ﬁ) (’H'B)u, (29)

where 7€ P and [ is one of the left coset generators for
the subgroup P. Hence, Eq. (28) will be most easily
evaluated if both the representations (&) and (38) have
the same base subgroup P. Now (8) is one of the
representations [n—#k, k], whereas (@) is [#—1, 1],
[n—2, 2], or [#—2, 12]. Therefore, Littlewood’s
theorem (I) indicates this is possible for [n—1, 1],
k>1and [#n—2, 2], k> 2. The representation [#n—2, 12]
must be treated differently. We take up the operators
of the first-order density matrix first.
Using standard methods® it is easily shown that

[n—1, 11X [n—k, k]=[n—k—1, b+1]4+[n—k, k]
+[n—k+1, k=1 [y h—1, 1]

F[n—k—1,%k1], n=2k
=[k+1, b—1TH-[k, k—1, 1],
n=2k. (30)

The portions of Eq. (30) consisting of three-part
partitions do not occur in the application since B;®wy;,®
is still a sum of product spin functions, and spin func-

1

n—2k |n—2k+

7/

n—k+2 n
/1
/s

n—k+1

F16. 1. The general two-row tableau for spin functions, (z).

Downloaded 29 Nov 2006 to 129.93.16.206. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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tions corresponding to these representations do not
exist. Equation (30) also gives the result obtained in a
different way by McWeeny and Mizuno, that the
first-order density operator applied to a spin eigen-
function of quantum number S gives states of S41, S,
and S—1. In order to satisfy the requirement that the
base subgroup for («) and (8) in Eq. (28) be the same,
it is sufficient (and necessary) that Bi® be an eigen-
function with eigenvalue 41 of every 7€ P.
It is easily seen that

B®=B—Buin

is a function belonging to [z—1, 1] and taking

B, =const.X P (B,—

Bniy1) (31a)

(Cn—1, 111[n—, Bt | [n—h, KJL)2= (o k1) (n—20)/ (n—R) (n—204-2),

897

satisfies the above requirement. In order to make the
notation more compact, we define U as the set of
integers in the first (upper) row of the tableau in Fig. 1
and L as the integers in the second (lower) row and

define
BU= E Bi’
iU
By=3 B (31b)
tel
Then one obtains
B\Y=[kBy— (n—k)B.)/[nk(n—E)J'>  (32)

for the algebraically normalized operator. Equations
(28) and (32) with the results of IT yield

k>1. (33)

When we have quantities of the type B;;=-£Bj;, these too support the representation [#—1, 17]. We define

Byyv= > B,
i<iU

Byr= >, X By,
€U jeL

Bi= 2, B, (34a)
i<kL

and the [#—1, 1] function may be written in terms of these quantities. For the case By;=Bj; we have

B®=[2kByy— (n—2k)Byr—2(n—Fk)Brr)/[nk(n—2) (n—Ek) ]2,

and for the B;j=— Bj;,'we have

BiY=Byr/[n(n—k) M2

The matrix element

{@® | Bi® | oy ®)

may now be worked out. This is a’straightforward but tedious calculation and the results are glven in Table II.
The calculation for the [n—2, 27 -type operators possesses a complication. It may be shown, in general, that

[n—2, 2]X[n—F, k]=[n—E+2, b— 2]+ [n—k+1, k= 11+ 2 n—&, 1+ [n—k—1, b+ 11+[n—k—2, k+2]

-+ (three- and four-part partitions),

2<k<n—k—2, (34b)

and it is seen that [#—F, k] appears twice in the reduced form. This introduces much complexity into our treat-
ment for the density (but the transition densities do not have the difficulty) and this case shall not be discussed
in general. Equation (34) does not apply to singlet or doublet states, and we see that

[n—2, 2]X[n—Fk, k]=[k+3, b—2]+[k+2, B—1]+[k+1, E]+ (three- and four-part partitions),

=[k+2, k—27+[k, k]+ (three- and four-part partitions),

n=2k+1
(35)

n=2~k. (36)

Therefore, we may apply our treatment to these states with'no change. We shall not discuss the higher multi-

plicity cases.

The operator corresponding to the [#—2, 2] representation constructed from doubly indexed quantities By~

is easily seen to be

B,®=

37

[(n—l)(n—Z)k(k 1)(n k) (n—k— 1)]“2

Downloaded 29 Nov 2006 to 129.93.16.206. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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With the results given in II and Eq. (37) we may calculate the appropriate Clebsch—-Gordon coefficient, and

one gets

(Cn—2, 21—k, k1L | [n—F, EJ1)? -

k(k 1)(n—2k+2)(n—2k+3)—2(n—1)(k— 1)(n—2k+1)(n—2k+3)-|—(n—1)(n—2)(n—2k+1)(n—2k+2)

(n—k—1)(n—k) (n—2k+2) (n—2k+3)

Of course, Eq. (38) gives the sum of the squares of two
Clebsch—-Gordon coefficients for multiplicities greater
than doublet. Table IIT gives the values of the integral

(@@ | Bi® | &, ®)

for the various Byj.

The operator P~ contains spin operators of the
property B;;=— Bj; which leads to the representation
[#—1, 14+ [r—2, 12], as we have seen. The results for
[r—1, 1] have already been given, but the representa-
tion [#—2, 12] requires a new technique since, as we
have seen, we cannot construct an e[n—2, 12]; with
the same base subgroup as those giving the spin and
space functions.

First, we see that

[n—2, 17X [n—Fk, k]
“k<n—k—2, (39)

in general, and the special cases of doublet and singlet
states give

[n—2, ¥ ]X[n—Fk, k]
=[k+1,k—1], n=2k

+ (3- and 4-part partions),

n=2k+1 (40)
(41)

TasBLE IL. Integrals for [#—1, 1], singly and doubly indexed
spin operators,

B" or Bij (wl(;) [ Bl(l) | wl(l_‘)>

%:l:Szi
(%+Szt) (%"'S:J)

+x
(n~k~1) (n~k+1)y

(3—S82) (3— Sz ~(k—1)(n—k+1)y
=584 $(n—k+1) (n—2k)y
SitSi+ 88 2{n—k)y »
SitS;— S8t 0
Su—Sz
(n—ht1) (n—2B)[ B
C (—2k42) [n<n~k>]

(n—28) T 3 ]w
C(n—2k+2) | n(n—2) (n—F)

(38)

Equations (40) and (41) have three- and four-part
partitions omitted. The difficulties attendent to the
[#—2, 2] representation do not arise here, and we see,
also, tha,t Eq. (41) implies the density component
P~ is zero for singlet states.

Let us chose any three of the numbers 1, 2, «-+, n:
1,7, and k. The operator

Bju® = Bij+ Bt Bui

belongs to the [#—2, 12] representation, and an ortho-
normal set of representation functions may be written
as linear combinations of the B;x®. It is easy to
show that

(42)

{0 ® | Bip® | i ®)=0

for all choices of 4, 7, k, thus this type of integral is zero
for all (w® | By® | w;®), and nonzero integrals must
be of the type {w,%® | B;® | wxi®), j71. If we let a==
#n—Fk+1 the Appendix shows how we may obtain an
operator e;® from en®. We get

en®=[(n—k+1)(n—k— 1) I+ (n—k) (1a) Jeu™,

and if we take B1(3) =B124(3),

([n—2, U]1[n—k, k11 | [n—k, E]2)*

= (f/8)2D® (x)uD® (7)D® (x)u  (43)

is zero only for the singlet case. Equation (43) may be
evaluated as the others, and we find

(n—2%) (n—k+41)%/3k (n—2k+2) (n—k—1)%, (44)
and for the spin integral we get
(n® | By® | 0, ®)
= (n—2k) (n—Ek+1)2/V3 (n—2k+2) (n—k—1)32,
(45)
V. THE REDUCED OPERATORS FOR DENSITY-
MATRIX COMPONENTS

We may now determine the components of the density
matrices with the results of the previous sections.
Using D to represent any of the density operators from

Downloaded 29 Nov 2006 to 129.93.16.206. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



PROJECTED HARTREE PRODUCT WAVEFUNCTIONS. V

899

TaBLE IIT. Integrals for [#—2, 2], doubly indexed spin operators.

Bi;

(@@ | By® | a®)

(3==5u) (3£S5)

[2(E—1) (n—2k+2) (n—2k+3)—2(n—1) (k—1) (n—2k+1) (n—2k+3)

+(n—1) (n—2) (n—2k+1) (n—2k+2) Jx

S8+ S8t

2L(3n—2k43) (n—k+1) (n—2k+1) —2k]x

x=[(n—2k+2) (n—2k+3) T 1[k(k—1)/2(n—1) (n—2) (n—k) (n—k—1) ]2

Eqgs. (13) or (15), (19), and (27), we get
(@ID]|®)  « &®]| 49| @) P | B |a®)
(@] ®) - @ (alpl | w1 )2 (e® | 1) ’
(46)

except for the [#—2, 1?] representation from Q.
which case is taken up later. Equation (46) may be
used to define a reduced operator

R=3[{w/® | By | y®)/ (alpl | p1)2]41@, (47)
and it is seen that
(@|D]|2)/(®|®)={(r® | R| @)/ (r® | r¥).
(48)

We list in Table IV the reduced operators for the com-
ponents of the first-order density matrix, and in Table
V the expressions for singlet and doublet states com-
ponents for the second-order density matrix. In these
tables the same convention is used concerning the U and
L subscripts as is used in Egs. (31b) and (34a).

It can be seen immediately from Table V that the
linear relation

Paaua+PBﬁ5ﬁ =2p* +I+ pt+ . (49)

holds. This has been observed for singlet states by
Kutzelnig.® It is seen that the same result holds for
doublet states.

The P,,~ ~' is somewhat different as was pointed out
above. The [#—1, 1] part is zero as can be seen from
Table II. The [#—2, 1¥] portion gives as a reduced
operator

R=—[k(n—k)(n—k—1)/ (n—k+1)](1a)

X Qe ~+Qw ~+Qu~ -), (50)

Tasire IV. Reduced operators for v (xix1'), M,=S.

D R
Ponaa QU
Popﬁﬁ QL

1 W, Kutzelnig, Z. Naturforsch. 18a, 1058 (1963).

where we have included the effect of the shifting
operator ex® in R. This operator yields

P~ (oun | pr'pd) = (&% | R | 1)/ () | $:®),  (51)

but we may reduce the numerator of Eq. (51) to some
extent. The (u) in Eq. (51) corresponds to the tableau
conjugate to that shown in Fig. 1, and since

0@ =W, (52)

we have
<¢1(#) ! R | ¢1(n)>= <¢1(ﬂ») | v 1Ry I ¢1(u))’

where » is any permutation of N for (u) [or any
permutatlon of P for (#)]. It should be noted that (1a)
is not one of these permutations. We average Eq. (53)
over this subgroup of S, and obtain

(6:9 | R| @) =[k1(n— k) (6 | T Re | 6:®),
SRy = (k—1)!(n—k—2)!
X ¥ 3 [#)— ()IQs 0w +0u)

i< jelU keL
= (k—1)1(n—k—2)IR, (54)

(53)

and therefore,
(i | D | ¢1®)=— (n—k+1)H$® | B | @)

That Eq. (55) represents a 51mp11ﬁcat10n is seen since
N for (u) is a factor of en®™ and ‘this factor commutes
with R, and hence may be removed from the expression.

(55)

TasLe V. Reduced operators for T (e | 2/%2)

s = S ’ S= ] f

D R
Poyroex (1/2)Quv*
P, fe88 (1/2)Qur*
Pyt t (1/2)Que*
Pyt Qur*—Qurt+Qut]
Py~ ~ (1/2)Quz~
Py Discussed in text
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Tasre VI. Reduced operators for components of (%, | #,") direct and transitions.

Density component

R

PB(S+1M+1p; | SMpr)
Pea(S+1Mp1 | SMpr')
—PES(S4-1Mpy | SMPI')}
Pa(S+1M—1p, | SMpy)
Pb(SM+1pi | SMpy')
Pea(SMpr | SMpy')
PEE(SMp, | SMpy')

—$[(S+M+2) (S+M+1) 140y
HAS—M+1) (S+M+1) [0y

H(S-M+2) (S—M+1) Q=
{L(S+M+1) (S—M) 1"/ S}HQu—0r)
(28)L(S+M) Qo+ (S—M) Q1]
(28) M (S—M)Qu+ (S+)Q

’ a=[(n+25+2) (n+25+4)/(261+2)(ZS+3)]”'

This places the evaluation of P,,~ ' on the same basis
as the other operators we have obtained.

The reduced operators for the first-order density
matrix given in Table IV apply only to the principal
case M,=S. We may calculate the other cases and also
the transition densities following the above procedure,
and with the use of the raising and lowering operators
for M,. Table VI gives the complete set of reduced
operators for the first-order density operators. The
cases not listed are obtainable from those given. Care
needs to be used since these formulas are appropriate
for Qu and Q;, based on the tableau shape of S and not
upon that for S+1. In addition, another Clebsch~
Gordon coefficient is needed for those components
involving .S and S+1. Since S is associated with
[n—E, k] and S+1 is associated with [n—&+-1, k—1],
we obtain

(Cn—1, 11—k, EJ1 | [n—k+1, k—171)2
=n/k(n—k+1)(n—k).

Tt is easily seen from Table VI that we obtain the same
result for the spin density as that given in Ref. 6.

(56)

APPENDIX: AN OPERATOR ey®

From the general properties of group algebras it is
known that

321(#)3110‘) = 321(#), (A]_ )
(A2)

(A3)

gn(lﬂ)em () — O,

e21(l-‘?f&21(#) - 3120‘)52101) = e11(1#)_

If x is any permutation w.ith‘,the property
e @ ey @ = D® (,,)Qéu(n);éieno‘), or 0,
it is seen that
y=[D® (7 ) I — 7 Jeu®

satisfied Egs. (Al) and (A2). Equa.tlon (A3) may be
used to normalize y; thus -~

yty=en @D (1) — 7w~ LD (r Yyl — 7 Jens®
= [1 —_ D(M) (7[' ) 1123611(”)3

and we have used the fact that D@ (7)u=D® (7
for real representations. Therefore, ex® may be taken as

¥/[1=D® (r)u e,

If = is a simple binary intei‘change (4,7) which con-
nects the two rows of the tableau in Fig. 1 (€ U,7€ L),

then )
D[ (3, ) Ju=— (n—k)™,
and

en® =L+ (—8) 6,) Jou®/[ (1=t 1) r— = 1)1,
and
en®=[1— (n—Fk) (4,7)Jen®/[ (n—k+1) (s—k—1)]"

for the tableau conjugate to that of Fig. 1.
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