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Calculation of Point-Defect Energies and Displacements in 
Alkali Halides Using the Lattice-Statics ~ e t h o d *  

Arnold M. Karo 
Lawrence Radiation Laboratory, University of California, L i v e r m o r e ,  Ca1i;fornia 94550 

and 

John R. Hardy 
Behlen Laboratory of Phys ics ,  Universi ty  of Nebraska, Lincoln, Nebraska 68508 

(Received 27 March 1970) 

The method of lattice statics, in the zero-order approximation, i s  used to evaluate the 
Schottky-pair formation energies and the displacement fields about positive- and negative-ion 
vacancies for  all alkali halide crystals with rock-salt structures.  The deformation-dipole 
model, used extensively in ear l ie r  work on the lattice dynamics of these crystals,  i s  em- 
ployed to describe the host lattice. Long-range Coulomb interactions a r e  included explic- 
itly, and short-range repulsive interactions a r e  described by a simple Born-Mayer potential. 
Comparison i s  made with ear l ie r  Mott-Littleton-type calculations and very satisfactory 
agreement i s  found. Comparison with available experimental values i s  somewhat less  satis- 
factory, particularly regarding the lithium salts;  but for "typical" alkali halides, e. g. , 
NaCl and KC1, the calculated values a r e  within 10% of the experimental values. 

I.  INTRODUCTION 

In 1938, Mott and ~ i t t l e ton '  presented their clas- 
s ic  calculation of the formation energies of Schottky 
pairs  in ionic crystals. The Schottky pair i s  de- 
fined a s  a pair of positive- and negative-ion vacan- 
cies, and the formation energy is that energy re-  
quired to remove the ions from the vacated lattice 
si tes and place them on the crystal surface. 

The Mott-Littleton and subsequent calculations 
have been based on the assumption that the crystal 
energy can be written a s  a sum of pairwise te rms.  
In the simplest case, the lattice energy i s  consid- 
ered to be composed of the Coulomb energy of the 
positive and negative ions and the energy associated 
with a short-range repulsive interaction between 
nearest neighbors. The latter can be said to ar i se  
from overlap of the electron densities of neighbor- 
ing ions a s  these a r e  brought together in the crys-  
tal. The increase in local electron density with 
decreasing internuclear separation results in in- 
creasing Coulomb and exchange contributions that 
stabilize the lattice. Calculations by ~Bwdin' sup- 
port such a simple model although indicating the 
need for considering three- and possibly four-body 
t e rms  in lattice-energy calculations. 

As Mott and Littleton have shown, the energy re-  
quired to create a Schottky pair i s  not simply that 
needed to remove the ions from their lattice si tes 
and place them on the surface. If this were the 
case, the formation energy would be the lattice 
energy per ion pair. However, the lattice energy 
per pair i s  typically about 8 eV, whereas observed 
formation energies a r e  about 2 eV. The difference 
a r i s e s  because the lattice about a defect does not 

remain undistorted and unpolarized. One thus in- 
f e r s  that the relaxation energy, i.  e . ,  the energy 
recovered when the lattice polarizes and distorts, 
is of the order of 6 eV. 

In any theoretical computation, the formation 
energy appears a s  the difference between two larger 
quantities-the lattice energy and the relaxation en- 
ergy-and care in evaluating these quantities i s  
therefore important. Since the lattice energy can 
be precisely computed without difficulty, it  i s  the 
relaxation energy that presents the problem, and 
the Mott-Littleton technique has been used to date 
to calculate this value. Such defect calculations 
have been characterized a s  "semidiscrete" : In 
such calculations the lattice is divided into two 
regions labeled I and 11. The first  region, I ,  i s  
treated on a discrete atomistic basis, while the 
second region, 11, i s  represented by a continuum 
approximation. In simple Mott-Littleton calcula- 
tions region I includes only the defect and i t s  near- 
est  neighbors and the second region i s  considered 
a s  apolarizeddielectric continuum. Recent calcu- 
lations by Scholz4 have extended region I t o  include 
more than 200 ions, region II again being repre- 
sented by a dielectric continuum. In a l l  these cal- 
culations there is the difficulty of matching regions 
I and I1 at the boundaries. For defects in metals it 
has been foundS that Mott-Littleton calculations 
would require region I to be inordinately large for 
the boundaries to be in the true continuum region. 
For ionic crystals, if the defect is charged, there 
i s  the additional complication of allowing for the 
long-range forces exerted by the defect on the ions 
of the host lattice. These forces cause the ions to 
displace and polarize, creating additional problems 
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in the matching of regions I and 11. 
In an earlier paper5 the formalism for the method 

of lattice statics was presented, and i t  was shown 
that the formation energies of charged point defects 
in ionic crystals could be calculated without the 
artificial dichotomy between regions I and 11. In 
that paper the principal concern was the method of 
calculating the displacements and polarizations and 
establishing their asymptotic behavior far from the 
defect. Our purpose in this paper is to present the 
results of numerical calculations for the rock-salt- 
structure alkali halide sequence based onthe lattice- 
statics method and with assumptions about ionic in- 
teractions similar to those made by Mott and Little- 
ton. We shall restrict  the calculations to the for- 
mation energies of Schottky pai rs ;  however, the 
proposed method is general and can be applied 
equally well to other point defects such a s  substitu- 
tional impurities and interstitials. 

11. THEORY 

In this paper, we shall not repeat in detail the 
formal theory given in full  in Ref. 5. It is worth 
emphasizing, however, that the crucial step in all 
these calculations is the Fourier transformation of 
the equilibrium equations for displacements and 
polarizations of the ions. It should be noted also 
that the ionic dipole moments must appear a s  e s  - 
sential additional degrees of freedom having their 
own equilibrium equation since, for a charged de- 
fect, a generalized force is applied to these elec- 
tronic dipole moments a s  well a s  to the displace- 
ments. The model used here to describe the lattice 
is the deformation-dipole model also discussed in 
detail in our earl ier  paper.6 This model is a gener- 
alization of ideas originally developed by szigeti7 
for treating long-wavelength lattice vibrations or 
periodic distortions of arbitrary wavelength. Be- 
cause of the finite number of ions in a lattice, it 
follows that there a re  but a finite number of allowed 
distinct wave vectors. These vectors a re  such 
that the number of Fourier components of the dis- 
placements, o r  of the dipole moments, i s  exactly 
equal to the total number of degrees of freedom of 
the lattice a s  a whole. From the detailed deriva- 
tion of the lattice-statics method in Ref. 5, we can 
extract the following basic equations [i. e . ,  the def- 
inition of the energy function W and Eqs. (2.16) and 
(2. 17) of Ref. 51 on which the present calculations 
a r e  based : 

w = x c z : I ,  i;.)+r(T, Z )  , (1) 

ymin= $ [ E ( S U +  1)~"; ,~ ,+ B ~ , ~ , , + E ~ , ~ , ]  , (2) 

Ymi,=${[ ?+Ec- ' ( I+SU)U- ' ]  M - I  

x [ ~ - ' ( 1 +  U S ) ~ " E  + 1/11 + $,$c-lcuE , (3) 

in which and denote the displacements and mo- 

ments in the region where the potential-energy func- 
tion i s  harmonic. In the first equation, the total 
energy of the solid is expressed a s  the sum of two 
terms. The first  term represents the interaction 
between the defect and the ions of the host lattice, 
and the second t e rm represents the energy stored 
in the distorted and polarized but otherwise perfect 
lattice. The distortion is assumed to be within the 
limits of the harmonic approximation. The total 
energy Wof the solid is minimized with respect to 
both the displacements and the dipole moments, and 
both quantities a r e  then eliminated by expressing 
them in terms of the force exerted by the defect. 
As a result we have Eq. (2), from which Eq. (3) 
follows by substituting the appropriate expressions 
for Tmin and The matrices have been defined 
in Ref. 5, and the quantity Ymin in Eq. (3) is the 
energy stored in the distorted perfect lattice. If 
the first  term in Eq. (3) is expanded a s  a power 
ser ies  in the nuclear displacements and dipole mo- 
ments, i t  can be shown5 that the change in energy 
of the crystal when the lattice is allowed to  relax 
and polarize (5 e. , the relaxation energy ER) is, to 
first order in tmin and ,&,in, given by 

The expression for Y,,, is written entirely in t e rms  
of the forces, both Coulomb and repulsive, exerted 
by the defect on the lattice ions at their unrelaxed 
positions. We refer to this a s  the zero-order ap- 
proximation, and the calculations in the present 
paper a re  made within this approximation. 

The evaluation of ER i s  accomplished by Fourier- 
transforming Eq. (3) and obtaining a sum over the 
allowed wave vectors, given in the following form: 

E R =  - $C3 [ ? +Ec-'(I + S U)U-'I 111-' 

X [ U " ( ~ + U S ) ~ - ' E + V ] - $ C ~ ~ C - ~ ~ E ,  (5) 

in which the direct-space vectors and matrices a r e  
replaced by their Fourier transforms. Two im- 
portant points should be emphasized. First, at no 
stage in this calculation has a distinction been made 
between region I and region 11; the expression for 
Y,,, refers to the lattice a s  a whole. Second, the 
long-range Coulomb forces, after Fourier trans- 
formation, can be handled by the Ewald 6-function 
transformatione in the manner described in Appen- 
dix I of Ref. 5. The zero-order approximation is 
particularly convenient because the actual displace- 
ments and dipole moments need not be introduced 
o r  evaluated in treating these long-range forces. 
To proceed beyond this approximation, techniques 
must be followed similar to those used in treating 
metals by the lattice-statics m e t h ~ d , ~  where the 
displacements of close neighbors of the defect were 
explicitly considered-these being the largest and 
also possibly outside the limits of the harmonic 
approximation. 
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111. RESULTS AND DISCUSSION 

It is relevant to summarize results of a survey of 
the alkali halide Schottky-pair formation energies 
and associated displacement fields about the vacan- 
cies. The energy calculations have been carried 
out within the zero-order approximation, and the 
results can be compared appropriately with Mott- 
Littleton-type calculations and with experimental 
data. In Table I we collect the formation energies 
of Schottky pairs evaluated in this way. Listed 
separately a re  the energies required to remove the 
positive and negative ions to infinity (E + and E.), 
the lattice energy per unit cell (E,), and the for- 
mation energy of the Schottky pair ( E s  = E + + E- +EL).  
Implied is an assumption that the energy of the per- 
fect crystal can be written as  a sum of pairwise 
terms. Thus, for the lattice energies we have a 
simple Born-Mayer form 

restricting the short-range interaction to nearest- 
neighbor ions. The constants A and p a r e  deter- 
mined in the usual way from the lattice-equilibrium - 

~1 condition and the observed compressibility. Taken 
w Q, 

rl - together, these define the first  and second deriva- 
w tives of the short-range interaction and thereby A 
li . and p .  The matrix M i s  essentially the dynamical - m :I g matrix, without pre- and postmultiplication by the 

ri diagonal mass matrix, defined for the deformation- 9 ';[ 
z z  dipole model.' 

i 

Tables I1 and 111 summarize our calculations of 
3 <I the displacements of neighboring ions about the de- 
PI -;, 

u fects and along several symmetry directions for 
.$ $i each alkali halide. Only representative results a re  " given for the symmetry directions in Table 111. 

3 8 Complete data a re  available upon requesteg The 

6 
calculations follow from the expression 

4 met M J =  U - ~ ( I  + ~ ~ 1 t - l ~  + v , (7) 
or, by the Fourier transform 

M Q  = u-'(I + US)C-IE + v , (8) 

which a re  Eqs. (2. 14) and (3.1) of Ref. 5. One 
thenback-transforms,i. e., sums the Fourier ser ies  
for the direct-space displacement of each ion. We 
have, in fact, been somewhat more sophisticated 
in calculating the displacements versus the relaxa- 
tion energy, since the short-range force V is eval- 
uated at the first-neighbor relaxed position. In 
doing this, we note that $valuation of the first-  
neighbor displacements t xn  about the defect in-  
volves Eq. ('7)) which is nonlinear in these dis- 
placements since the short-range force i s  itself a 
function of the first-neighbor displacement. The 
evaluation can be done iteratively and, once ac- 
complished, yields the appropriate form of V for 
use in calculating the relaxation energy of any 
neighbor. Stated more precisely, we know the ap- 



TABLE II. Displacement components fo r  certain near neighbors about a positive-ion vacancy (+) or  negative-ion vacancy (-). Values are  given in percent of the near- 
neighbor distance in the perfect lattice. A positive value indicates outward relaxation. 

Neighbor (+) (-) (+) (-) 

=I L 2  -53 t x  t y  t; e 5 x  t Y [ e  t x  [ Y  5 ,  t x  [ Y  5 e  

Li F LiCl 

1 0  0 12.356 0.0 0.0 16.057 0.0 0.0 7.221 0.0 0.0 14.262 0.0 0.0 
1 1 0 -1.635 - 1.635 0.0 - 1.316 - 1.316 0.0 - 0.925 - 0.925 0.0 - 1.319 - 1.319 0.0 
1 1  1 0.160 0.160 0.160 0.186 0.186 0.186 0.324 0.324 0.324 0.248 0.248 0.248 
2 0 0 -0.622 0.0 0.0 1.428 0.0 0.0 - 2.522 0.0 0.0 3.271 0.0 0.0 
1 2  0 1.752 1.654 0.0 2.227 2.355 0.0 1.366 0.967 0.0 1.387 1.516 0.0 
1 1 2 -0.567 -0.567 -0.455 - 0.432 - 0.432 - 0.432 - 0.282 - 0.282 - 0.155 - 0.412 - 0.412 - 0.348 
2 2 0 -0.377 -0.377 0.0 0.024 0. 024 0.0 - 0.130 - 0.130 0.0 0.015 0.015 0.0 
2 2  1 0.345 0.345 0.444 0.561 0.561 0.609 0.303 0.303 0.386 0.301 0.301 0.285 
3 0  0 0.589 0.0 0.0 0.454 0.0 0 .0  - 0.387 0.0 0.0 2.639 0.0 0.0 
2 2 2 - 0.316 -0.316 -0.316 -0.124 -0.124 -0.124 -0.100 -0.100 - 0.100 -0.182 -0.182 - 0.182 

LiBr LiI 

1 0  0 5.433 0.0 0.0 13.839 0.0 0 .0  3.444 0.0 0.0 14.108 0.0 0.0 
1 1 0 -0.798 -0.798 0.0 - 1.274 - 1.274 0.0 - 0.226 - 0.226 0.0 - 1.222 - 1.222 0.0 
1 1  1 0.331 0.331 0.331 0.263 0.263 0.263 0.303 0.303 0.303 0.192 0.192 0.192 
2 0 0 -3.134 0.0 0.0 3.861 0.0 0.0 - 5.370 0.0 0.0 4.427 0.0 0.0 
1 2  0 1.225 0.779 0.0 1.232 1.359 0. 0 1.188 0.784 0.0 1.097 1.019 0.0 
1 1 2 -0.243 - 0.243 - 0.129 - 0.385 - 0.385 - 0.321 - 0.114 - 0.114 0.038 -0.366 -0.366 - 0.298 
2 2 0 -0.112 - 0.112 0.0 0.045 0.045 0.0 - 0.110 - 0.110 0.0 0.063 0.063 0.0 
2 2  1 0.268 0.268 0.352 0.264 0.264 0.236 0.277 0.277 0.366 0.178 0.178 0.171 
3 0 0 -0.767 0.0 0.0 3.028 0.0 0.0 - 1.783 0.0 0.0 4.341 0.0 0.0 
2 2 2 - 0.078 -0.078 -0.078 - 0.170 - 0.170 - 0.170 - 0.024 - 0.024 - 0.024 - 0.177 - 0.177 - 0.177 

NaF NaC 1 

1 0  0 11.128 0.0 0.0 13.202 0.0 0.0 7.625 0.0 0.0 12.527 0.0 0.0 
1 1 0 - 1.965 -1.965 0.0 -1.465 -1.465 0.0 - 1.517 - 1.517 0.0 - 1.367 - 1.367 0. 0 
1 1  1 0.441 0.441 0.441 0.576 0.576 0.576 0.429 0.429 0.429 0.512 0.512 0.512 
2 0  0 1.012 0.0 0.0 1.650 0.0 0.0 - 0.301 0.0 0.0 3.016 0.0 0.0 
1 2  0 1.191 1.286 0.0 1.620 1.805 0. 0 1.052 0,802 0.0  1.232 1.467 0.0 
1 1  2 -0.600 -0.600 -0.677 - 0.415 - 0.415 - 0.369 - 0.422 - 0.422 - 0.454 - 0.376 - 0.376 - 0.330 
2 2 0 -0.415 -0.415 0.0 - 0.050 - 0.050 0.0 -0.230 -0.230 0 .0  - 0.010 - 0.010 0.0 
2 2  1 0.305 0.305 0.277 0.523 0.523 0.443 0.249 0.249 0.267 0.374 0.374 0.293 
3 0  0 1.435 0.0 0.0 0.776 0.0 0.0 0.587 0.0 0.0 1.820 0.0 0.0 
2 2 2 -0.347 -0.347 -0.347 - 0.145 - 0.145 - 0.145 - 0.200 - 0.200 - 0.200 - 0.150 - 0.150 - 0.150 



TABLE I1 (continued). 

Neighbor (+) (-) (+) (-) 

L1 L2 L3 t x  t Y t z  Ex (Y t z  x [Y ( z t x  5, 5,  
NaB r NaI 



TABLE I1 (continued). 

Neighbor (+) (-) (+) (-) 

Li L2 -53 Ex Ey Ez 5% f ,  t z  t x EY t z  Ex 5, 52 

RbF RbCl 

KbBr RbI 

1 0  0 7.860 0.0 0.0 10.615 0.0 0.0 6.770 0.0 0.0 10.628 0.0 0.0 
1 1 0 -1.517 -1.517 0.0 - 1.162 - 1.162 0.0 - 1.408 - 1.408 0.0 - 1.155 - 1.155 0.0 
1 1  1 0.417 0.417 0.417 0.543 0.543 0.543 0.406 0.406 0.406 0.524 0.524 0.524 
2 0  0 0.729 0.0 0.0 2.100 0.0 0.0 0.237 0.0 0.0 2.642 0.0 0.0 
1 2  0 0.825 0.687 0.0 1.101 1.166 0.0 0.808 0.571 0.0 1.008 1.117 0.0 
1 1 2 -0.405 -0.405 -0.456 -0.293 - 0.293 - 0.247 - 0.367 - 0.367 - 0.409 -0.289 -0.289 -0.237 
2 2 0 - 0.232 - 0.232 0.0 0.021 0.021 0.0 - 0.192 - 0.192 0.0 0.025 0.025 0.0 
2 2  1 0.195 0.195 0.188 0.345 0.345 0.276 0.185 0.185 0.191 0.314 0.314 0.242 
3 0  0 1.403 0.0 0.0 1.478 0.0 0.0 1.008 0.0 0.0 1.802 0.0 0.0 
2 2 2 -0.209 -0.209 -0.209 - 0.097 - 0.097 - 0.097 - 0.177 - 0.177 - 0.177 - 0.102 - 0.102 - 0.102 

CsF 

1 0  0 10.067 0.0 0.0 8.614 0.0 0.0 
1 1 0 - 1.735 - 1.735 0.0 - 0.690 - 0.690 0.0 
1 1  1 0.319 0.319 0.319 0.534 0.534 0.534 
2 0  0 2.773 0.0 0.0 - 0.491 0.0 0.0 
1 2  0 0.548 0.690 0.0 1.295 1.075 0.0 
1 1 2 -0.488 -0.488 - 0.546 - 0.174 - 0.174 - 0.056 
2 2 0 -0.387 -0.387 0.0 0.092 0.092 0.0 
2 2  1 0.113 0.113 0.082 0.397 0.397 0.376 
3 0  0 3.553 0.0 0.0 - 0.033 0.0 0.0 
2 2 2 - 0.310 -0.310 -0.310 0.0001 0.0001 0.0001 
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propriate Fourier amplitudes for all the allowed 
wave vectors after taking into account the effect of 
first-neighbor relaxation on the short-range force. 

The summation of the Fourier series requires 
additional comment. Both the Fourier ser ies  for 
the displacement and the summation that determines 
the relaxation energy have integrable singularities 
in the long-wavelength limit. Throughout the cal- 
culations, we have used periodic boundary condi- 
tions imposed across the faces of a supercell having 
the same symmetry a s  the primitive unit cell of 
the lattice. To see how the displacements and en- 
ergies change with the sampling density and to de- 
termine whether the singularities at the Brillouin- 
zone origin have introduced complications, we have 
successively increased the number of points sam- 
pled on a uniform mesh within the first  Brillouin 
zone from 1000 to 8000 to 64 000 and, in several 
cases, to 512 000. From this it is found that the 
displacements converge rapidly for neighbors near 
the defect. Even for more distant neighbors such 
a s  those listed in Table 111, the change in going 

from 8000 to 64 000 i s  only a few percent. Results 
in Tables I1 and I11 for the displacements a re  for 
the sampling density of 64 000 within the first  zone. 
Increasing the sampling density should not give ap- 
preciably different results. There a re  larger per- 
centage changes in the relaxation energies calcu- 
lated for sample densities of 8000 and 64 000, re-  
spectively, but the convergence i s  very uniform. 
Accurate extrapolation to the energy values corre- 
sponding to an infinitely dense sample of wave vec- 
tors i s  readily possible. These extrapolated values 
a re  those listed in Table I .  

In Table I we also have the rcsults obtained by 
Boswarva and ~ i d i a r d "  using a refined Mott-Little- 
ton theory. Although very close agreement exists 
between our results and theirs, it would be unwise 
to read any great significance into this since the 
approximations in the two cases a re  very different. 
For example, Boswarva and Lidiard used a more 
highly developed model for the lattice energy, in- 
cluding repulsive interaction beyond first neighbors 
and also including van der Waals attractions between 

TABLE 111. x components of the relaxations a t  lattice sites along three symmetry directions in the lattice. Values 
a r e  given in terms of percent of the near-neighbor distance in the perfect lattice and positive values indicate outward 
displacements. The sign in the parentheses indicates the vacancy type. The [I001 direction is  taken to be equivalent to 
the X direction. 

Neighbor LiF NaCl KBr RbI 
L. Lg Lq E x ( + )  [,(-I 5,(+) t x ( - )  5,(+) [,(-I 5,(+) tJ-) 
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second neighbors. 

IV. SUMMARY 

The present results a r e  very satisfactory and 
represent the zero-order approximation. Subse- 
quent extension of this initial investigation to more 
refined lattice potential functions and to forces 
evaluated at the relaxed positions has been carried 
out1' for Frenkel-pair formation energies where 
the relaxations a re  significantly larger. In modi- 
fying the zero-order approximation for E, to  allow 
for relaxation of the first  neighbors, the calcula- 
tions become considerably more complex. How - 
ever, these refinements a re  essential for treating 
an interstitial positive o r  negative ion since the re-  
laxations about the defect a re  so  large that zero- 
order results have little significance. 

The lattice-statics method, then, avoids the dif- 
ficulty inherent in the Mott-Littleton approach of 
matching a discrete region I to  a continuum region 
11. The two regions into which the lattice is divided 
in the lattice-statics treatment describe the space 
where the defect-lattice forces a r e  corrected for 
relaxation and the space where the forces a r e  eval- 
uated at the unrelaxed positions. From our present 
knowledge, restricting the first  region to first 
neighbors of the defect seems to be sufficient. This 
is readily checked by computing the displacements 
and dipoles of various close neighbors. For other 
than first  neighbors, these a re  usually small. 

Thus, the method of lattice statics offers a rigor- 
ous means of making self-consistent calculations 

of charged-defect formation energies in ionic crys- 
tals. The next stage in such calculations, after 
correcting for relaxation effects, would be to use 
a more sophisticated form for the cohesive energy 
of the perfect lattice, e. g., to include second- 
neighbor, short-range, and van der Waals terms 
a s  done by Boswarva and ~ i d i a r d "  in their Mott- 
Littleton calculations. The present results a re  
presented in the spirit of Mott and Littleton's orig- 
inal work: that is, to  demonstrate the validity of 
the technique for a simple potential function. To 
include all the refinements initially would be to 
confuse and obscure the power and effectiveness of 
this new technique. In comparison with experiment 
the present results show the same tendency a s  the 
various Mott-Littleton results to be on the low side. 
Although more refined calculations may prove bet- 
t e r  in this respect, it should be noted that experi- 
mental values of Es  are  measured indirectly, de- 
pending significantly on theoretical analysis of the 
experimental data, and a re  taken at several hundred 
degrees centigrade, whereas the input parameters 
generally available for the lattice-statics theory 
a re  from experimental data at or  below room tem- 
perature. 
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