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Higher-order and next-nearest-neighbor Néel anisotropies
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R. Skomski and J. Kirschner
Max-Planck-Institut fu¨r Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany

~Received 8 December 1997; revised manuscript received 17 March 1998!

The problem of higher-order Ne´el anisotropies is solved by exploiting the addition theorem for spherical
functions. A key advantage of the present approach is the orthonormal character of the expansion of the
magnetic energy that simplifies the formalism and makes possible the treatment of nonideal morphologies as
well. Explicit expressions for second-, fourth-, and sixth-order anisotropies are obtained for ideal bulk of fcc
and bcc symmetry as well as for~001!, ~110!, and~111! surfaces with nearest-neighbor~NN! Néel interactions.
The systematic examination of the pair model involves partition by species of inequivalent sites, interaction
spheres, and orders in the multipole expansion. It enables us to to treat also next-nearest-neighbor~NNN! pair
interactions to the same high orders as the NN ones. The analysis sheds light onto the peculiar cases of
bcc~100! and bcc~111! surfaces where one finds no symmetry breaking~no second-order contributions! with
NN interactions only. With the extension to NNN’s, it is demonstrated that bcc~111! surfaces exhibit a
particularly high symmetry and acquire no second-order anisotropy contributions from NNN interactions,
whereas the latter induce a second-order symmetry breaking in the bcc~100! case.@S0163-1829~98!05734-8#

I. INTRODUCTION AND BASICS OF THE MODEL

Since Néel’s pioneering work on surface anisotropy,1 the
expansion of magnetic anisotropy contributions into Leg-
endre polynomials has become a widely used tool in surface,
thin-film, and interface magnetism~see, e.g., Refs. 2–8!.
There are many successful applications of Ne´el’s theory to
scientifically and technologically important problems such as
in-plane and out-of-plane anisotropies in low-symmetry sur-
faces, but most papers are based on lowest-order Ne´el
anisotropies. Higher-order Ne´el contributions have attracted
much less attention,2,6 which is largely due to their presum-
baly very small magnitude. However, there can be no general
justification for the neglection of higher-order anisotropies,
particularly since competing anisotropy contributions may
give rise to small or zero lowest-order anisotropies. Further-
more, it is difficult to extend first-principles calculations2,8,9

to higher-order anisotropy contributions, so that higher-order
Néel considerations are a useful complementary tool in an-
isotropy theory.

The basic assumption of Ne´el’s theory is that the mag-
netic anisotropy energy of a uniformly magnetized ferromag-
net depends on the angle between the uniform magnetization
direction and the coordination vectorsr i j 5r j2r i between
atomic moments located atr i and r j . The total anisotropy
results from summing over pair interactions that are cast in
the form of a cylindrically symmetric multipole expansion:

ui j 5(
l

al~r i j !Pl~cosa i j !. ~1!

Here, r i j 5ur i j u, a i j is the angle betweenr i j and M @Fig.
1~a!#, while Pl(x) are the Legendre polynomials of degreel
~see, e.g., Ref. 10!. The relevant facts about the special func-
tions used in this paper are summarized in Appendix A. The

l 50 term is skipped since it is angle independent, while
uneven values ofl are ruled out by the assumption that the
interaction is invariant under reversal of the macroscopic
magnetization (M↔2M ). Consequently, the sums overl
below involve positive even values only. The coefficients
al(r i j ) parametrize the atomic origin of the anisotropy in
Néel’s model. The total interaction energy is

U5
1

2(iÞ j
ui j , ~2!

where the prefactor takes care about avoiding double count-
ing, while i and j run over all interacting sites. The system-
atic examination of the pair model of magnetic anisotropy
involves partition by species of inequivalent sites, interaction

FIG. 1. ~a! The vector connecting sitesi and j makes an angle
a i j with the vector of macroscopic magnetizationM . The pair in-
teraction is assumed cylindrically symmetric aboutM . ~b! The vec-
tors from ~a! when referred to a specified frame of reference:u i j

and f i j are the polar and azimuthal angles for the pair vector,Q
andF are the respective ones forM . The connection of these with
the anglea i j between the two vectors is provided by the spherical
addition theorem that gives rise to the addition theorem for the
Legendre functions@cf. Eq. ~8!#.
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spheres, and orders in a multipole expansion. In particular,
one must always distinguish betweenlocal and overall an-
isotropy coefficients when there are inequivalent magnetic
sites.11 For this reason we concentrate on the interaction en-
ergy per site i:

U~ i !5
1

2(j
ui j 5

1

2(j
(

l
al~r i j !Pl~cosa i j !. ~3!

If we assume that there arep inequivalent sites, then the total
magnetic energy per magnetic site can be written as

U

N
5 (

m51

p S Nm

N DU~m!, ~4!

with U(m) given by Eq. ~3!. Here, Nm is the number of
magnetic atoms of themth species@characterized byU(m)]
andN11N21•••1Np5N is their total number.12

Changing the order of summation in Eq.~3!, which is
mathematically harmless as long as one considers suffi-
ciently short-ranged pair interactions, one obtains a partition
of the interaction energy for a given sitei into contributions
from confocal coordination spheres:

U~ i !5UI~ i !1UII ~ i !1•••1UK~ i !1•••. ~5!

Usually, only the first neighboring shell of radiusRI is con-
sidered. However, there are good reasons to keep the NNN
shell of radiusRII , too. In bcc crystalsRII :RI51:A3/2, i.e.,
there is only a slight increase of about 15% as one goes over
from the first to the second coordination sphere. Addition-
ally, in Sec. II we find that there is no symmetry breaking at
bcc~100! and bcc~111! surfaces in the sense that the first
nonvanishing contributions are of orderl 54, as in the cubic
bulk, and are not uniaxial-like of orderl 52 as it turns out to
be the case with the other surfaces we consider. In Sec. III,
we extend the calculation for these two peculiar cases to
account for NNN pair interactions as well. Accordingly,
keeping the first two shells of a given sitei ,

U~ i !5UI~ i !1UII ~ i !

5
1

2(l
al~RI !H (

j

I shell

Pl~cosa i j !

1
al~RII !

al~RI !
(

j

I I shell

Pl~cosa i j !J . ~6!

Obviously, the price to be paid for getting more detailed
information from Néel’s pair model is the necessity to con-
sider more interaction parameters$al% that have to be inde-
pendently determined by an atomistic theory and/or experi-
ments. A useful estimate is that,for a given coordination
sphere, the number of phenomenological parameters$al% is
less than, or equal to, the product of the number of consid-
ered orders inl times the number of types of inequivalent
site, and it should be kept in mind that the latter number
itself depends on the coordination sphere considered.11 For
example, for both bcc~100! and bcc~111! surfaces there is
only one type of site with respect to the first~NN! shell and
two types of site with respect to the second~NNN! shell. The
contributions of these two types turn out to be identical~see

Sec. III!, but this is certainly not a general property to be
expected to hold in other geometries or to further coordina-
tion spheres. With fcc~110! surfaces, there are two inequiva-
lent sites already with respect to the nearest shell.

In Eq. ~6!, in each orderl and in each coordination sphere
the microscopic interactionrepresented by theal ’s has been
separated from the purelystructural part specified by the
sum over the coordination anglesa i j . Here we are not inter-
ested in the atomic origin of theal ’s but treat them as phe-
nomenological parameters. There are, however, models such
as the point-charge model13 and the screened-charge model14

that may be used to estimate Ne´el’s parameters for a limited
variety of magnetic materials~see Sec. III C 2!. As a rule, for
RI52.5 A the parametera2(RI) is of the order of 10223 J,
whereas higher-order NN parameters are smaller by at least
an order of magnitude. Note that Eq.~6! is not restricted to
ideal crystals but applies also to edges, steps or local vacan-
cies as well.

Another important problem of general character is the re-
lation between Ne´el’s model and phenomenological expan-
sions such as the uniaxial expression

Ũ5V~K1 sin2 Q1K2 sin4 Q1K3 sin6 Q!, ~7!

whereQ is the angle between the magnetizationM and the
axis of symmetry. Unfortunately, expansions of this type are
neither orthogonal nor complete on the unit sphere of mag-
netization directions.15,16 In this work we shall restrict our-
selves to orthonormal expansions10 into anisotropy coeffi-
cients. We shall use a number of low-indexed surfaces to
derive explicit results and to demonstrate the predictive
power of the method. The relation of the set of anisotropy
coefficients to the set of anisotropy constants is discussed in
Appendix C.

We wish to emphasize at this place that consideration of
the symmetry breaking due to the often non-negligible strain
and magnetoelastic effects lies beyond the scope of this pa-
per. The inclusion of such effects into Ne´el’s model should
follow the lines suggested in Refs. 7 and 8.

II. CALCULATION AND RESULTS

In this section, we evaluate the contributions from the first
~NN! coordination shell only@the first term in Eq.~6!#. The
extension to the second~NNN! shell is straightforward and is
presented in the next section for bcc~100! and bcc~111! sur-
faces.

A. General aspects of the procedure

To proceed with the expression from Eq.~6!, one uses the
addition theorem for Legendre functions:10

Pl~cosa i j !5Pl~cosQ!Pl~cosu i j !

12 (
m51

l
~ l 2m!!

~ l 1m!!
Plm~cosQ!Plm~cosu i j !

3~cosmF cosmf i j 1sin mF sin mf i j !,

~8!

where the angles@Fig. 1~b!# are specified by
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M5M ~sin Q cosF ex1sin Q sin F ey1cosQ ez!

and

r ij 5r i j ~sin u i j cosf i j ex1sin u i j sin f i j ey1cosu i j ez!.

The Plm’s are the associated Legendre functions of the first
kind, whereasPl0(x)[Pl(x) are the usual Legendre polyno-
mials as introduced in Eq.~1! ~cf. Appendix A!. Inserting
Eq. ~8! into Eq.~6! yields, after a straightforward calculation,

U~ i !5(
l

Gl~ i !Pl~cosQ!

1(
l

(
m51

l

Glm
~c!~ i !Plm~cosQ!cosmF

1(
l

(
m51

l

Glm
~s!~ i !Plm~cosQ!sin mF. ~9!

The subscripts (c) and (s) stand for cosine and sine, respec-
tively. All microscopic details about structure and interaction
are contained in the quantitiesGlm( i ):

Gl~ i !5
1

2
al~RI !Sl~ i !, ~10!

Glm
~c!~ i !5al~RI !

~ l 2m!!

~ l 1m!!
Slm

~c!~ i !, ~11!

Glm
~s!~ i !5al~RI !

~ l 2m!!

~ l 1m!!
Slm

~s!~ i !. ~12!

In the above, to facilitate computation and tabulation, we
have introduced the proper structural sums$Slm% as

Sl~ i !5 (
j

I shell

Pl~cosu i j !, ~13!

Slm
~c!~ i !5 (

j

I shell

Plm~cosu i j !cosmf i j , ~14!

Slm
~s!~ i !5 (

j

I shell

Plm~cosu i j !sin mf i j . ~15!

Now, since the magnetization degrees of freedom (Q,F)
have been factored out in Eq.~9!, the energy per magnetic
site from Eqs.~4! and ~9! is

U

N
5(

l
k l Pl~cosQ!1(

l
(

m51

l

k lm
~c!Plm~cosQ!cosmF

1(
l

(
m51

l

k lm
~s!Plm~cosQ!sin mF, ~16!

where

k l[ (
m51

p S Nm

N DGl~m!, ~17!

k lm
~c![ (

m51

p S Nm

N DGlm
~c!~m!, ~18!

k lm
~s![ (

m51

p S Nm

N DGlm
~s!~m!. ~19!

In other words, the Ne´el macroscopicanisotropy coefficients
$k% are weighted averages of the site dependent,local an-
isotropy coefficients$G(m)% (m51,2, . . . ,p, p is the num-
ber of inequivalent types of site!.11

B. Results for bcc and fcc symmetries

The pair-model anisotropies for body-centered-cubic
~bcc! and face-centered-cubic~fcc! crystal symmetries fol-
low from Eqs. ~10!–~15! and ~16!–~19!. Here we consider
ideal bulk crystals and their~100!, ~110!, and~111! surfaces.
More precisely, we derive the anisotropy energyU( i ) per
magnetic site up to sixth order inl .

To this end, it only remains to evaluate forl 52,4,6 the
structure factors$S% and, hence, the local anisotropy coeffi-
cients$G% in Eqs.~10!–~15! for l 52,4,6. The frame of ref-
erence is shown in Fig. 2; the polar (z) axis is chosen out-
wards perpendicular to the surface. For comparison, the bulk
structure factors have been computed in the same frames,
i.e., thez axis is perpendicular to the planes~100!, ~110!, or
~111!, respectively. This means that for the bulk neighbor-
hood one must additionally consider the sites that are mirror
reflections of the hollow~below-the-surface! neighbors with
respect to the surface in Fig. 2. The required structural infor-
mation is presented in Appendix B; Tables I and II record the
results for the surface and bulk cases, respectively.

At the surface~Table I!, there aretwo distinct surface
contributions in the fcc~110! case that are labeledA andB in
the last two columns, i.e., a case per atom in the first and
second layers, respectively. This can be recognized in Fig. 2
where each atom in the second layer misses a neighbor in the
topmost layer. In the terminology of the introductory chap-
ter, there are two inequivalent sites for fcc~110! surfaces al-
ready with respect to the NN shell.

In the bulk case~Table II!, the prefactor of two in the first
two columns, concerning bcc~100! and bcc~111!, is used to
stress the fact that there is a simple relation between the bulk
and surface coefficients in the chosen frame of reference,
namely, the anisotropy contribution of a bulk atom is twice
that of a surface atom. This proportionality correlates with
the absence of geometrical symmetry breaking in these
cases, so that no second-order (l 52) uniaxial anisotropies
are generated at these surfaces. The quest for lowest-order
symmetry-breaking contributions in the peculiar cases of
bcc~100! and bcc~111! surfaces will be continued in the next
section by considering the NNN pair interactions. In all other
cases, considered in this section, the symmetry-breaking re-
sults in the emergence of uniaxial contributions17 and in the
impossibility to reduce the difference between surface and
bulk to a simple proportionality.

C. Analysis of the results

In Tables I and II, a nonzero azimuthal anisotropy contri-
bution Slm whose indexm is not zero indicates that the re-
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spectivez axis is anm-fold symmetry axis for the overall
anisotropy energyU(Q,F) of Eq. ~16!. Going down a given
column, in any particular case one can easily recognize
whether the azimuthal contribution is of the same orderm
for all l . If this is the case, the eventual determination of the
resultant easy axis of magnetization (Q0 ,F0) by minimiza-
tion of U @Eq. ~16!# or FA @Eq. ~22!# is trivial, since the
resulting trigonometric equations for the two magnetization
degrees of freedom (Q,F) are decoupled. By inspection,
this is the case only for bcc~100! and fcc~100! where thez
axis is an axis of fourfold azimuthal symmetry.18,19 In all the
other cases, there are differentm’s for different l ’s (m< l ),
so that the minimization problem leads to untrivially coupled
equations for the determination of the equilibrium values
(Q0 ,F0). In the bulk, this situation is not entirely new and

related problems have been discussed.20 At the surface, how-
ever, with the exception of the no-symmetry-breaking cases
bcc~100! and bcc~111! discussed above, one has to tackle
minimization problems that are considerably more compli-
cated than the corresponding bulk ones. For fcc~100! and
fcc~111!, the difficulty enters with the uniaxial (l 52,
m50) term only, whereas the bcc~110! and fcc~110! cases
involve a twofold azimuthal anisotropy contribution (l 52,
m52) coupled to the uniaxial one (l 52, m50). Thus, the
effective symmetry of the magnetic anisotropy energy is
very low. This signals the existence of cases where the equi-
librium magnetization is neither perpendicular nor parallel to
the surface. Moreover, for such low-symmetry cases there
would arise nontrivial thickness- or temperature-driven spin
reorientation transitions in very thin ferromagnetic films
where the surface contributions dominate.3,4,21 In these tran-
sitions, the magnetization would proceed from its initial easy
axis to its final orientation without remaining in a fixed plane
all along.

The restriction to nearest neighbors brings about the spec-
tacular consequence that all possible ratios between the an-
isotropy coeficients of given orderl are independent of the
microscopic energy parameters$al%. Note that this is true for
both sets oflocal (G) and total (k) anisotropy coefficients.
For instance,

Glm
~c!~ i !

Gl~ i !
52

~ l 2m!!

~ l 1m!! FSlm
~c!~ i !

Sl~ i ! G . ~20!

with the sums in the brackets given in Tables I and II. Such
ratios have been used in experimental bulk magnetism to
analyze anisotropy contributions22,23and can be of interest in
the context of thin-film and surface magnetism as well.

Since there are only even-order Ne´el contributions (l
52h), the maximal numbernmax of total anisotropy coeffi-
cients$k lm% is given by

nmax5h12(
s51

h

~2s!5h~2h13!. ~21!

Consequently, there are at most 5, 14, or 27 nonzero coeffi-
cients forl 52,4, or 6, respectively. The same estimate holds
for each species of local coefficient$G(m)%. In fact, there is
some redundance in Eq.~21! and there exists a minimal set
of coefficientsnmin that is determined by the symmetry of
the surroundings. Hence, what one finds in Table II are just
two groups of anisotropy coefficients~and not six as the
number of columns might suggest!, one per bulk bcc and
bulk fcc, respectively. Within each group, along each row in
the table one finds the same bulk anisotropy coefficient,
computed in three different frames of reference.24 The mini-
mal number of coefficientsnmin to orderl 56 equals four for
both bcc and fcc bulk magnets.

III. DISCUSSION AND CONCLUSIONS

A. Atomistic origin of Néel’s parameters

A question of particular interest is the atomic origin of
the pair-potential interaction parameters$al%. Two examples
are the results foral within the point-charge model13 and
the screened-charge model.14 Both are based on the

FIG. 2. Atomic environment of surface atoms in cubic geom-
etry. Thex andy axes lie in the plane of the figure and are indicated
by arrows. Thez axis is outwards perpendicular to the plane of the
figure. Black circles denote sites at the surface, hollow circles stand
for nearest neighbors below the surface. For the bulk calculation, in
each case one has to consider also the mirror reflections of the
hollow circles with respect to the surface.
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assumptions of rigid spin-orbit coupling in rare-earth ions
and electrostatic crystal-field interactions. By comparing
the point-charge and screened-charge anisotropy
predictions with those of Ne´el’s approach, one obtains
the parametersa2(R)52Q2(eQ/4pe0)(1/R3) or a2(R)
52Q2(eQ/4pe0)(e2qR/R3)(11qR1 1

3 q2R2), respec-
tively. HereR is the distance between the nearest neighbors,
Q is the crystal-field charge of the neighboring atom,Q2 is
the electrostatic quadrupole moment of the rare-earth atom,

while q'2,3 A21 is the inverse Thomas-Fermi screening
length.25 An extension of this approach to 3d metals is given
in Ref. 26.

B. Relation to general anisotropy-energy expansions

It is useful to compare Eq.~16! with the complete and
orthonormal expansion of the magnetic anisotropy energy
FA(Q,F) into spherical harmonics that can be written as27

TABLE I. Structure factors$S% for bcc and fcc surfaces in the frame of reference defined in Fig. 2. Cf.
Eqs.~13!–~15!. Only nearest-neighbor contributions are listed here.

Slm bcc~100! bcc~111! bcc~110! fcc~100! fcc~111! fcc~110!-A fcc~110!-B

S2 0 0 21 21 23/2 21/2 21
S22 0 0 2 0 0 3 0

S4 214/9 28/27 41/36 21/8 41/24 19/32 29/16

S42
(c) 0 0 285/3 0 0 2165/8 2105/4

S43
(c) 0 2560A2/9 0 0 0 0 0

S43
(s) 0 0 0 0 235A2/2 0 0

S44
(s) 2560/3 0 2910/3 2315 0 105/4 2315/2

S6 8/9 128/81 2149/72 259/32 2149/48A2/2 427/256 379/128

S62
(c) 0 0 2525/36 0 0 5775/128 4095/64

S63
(c) 0 4480A2/27 0 0 0 0 0

S63
(s) 0 0 0 0 2455A2/2 0 0

S64
(c) 2240 0 2135 16 065/4 0 276 545/32 261 425/16

S66
(c) 0 197 120/9 236 190 0 61 215 571 725/16 405 405/8

TABLE II. Bulk structure factors$S% for bcc and fcc magnets computed in the same frame of reference
~Fig. 2!. To emphasize the choice of thez axis, we use the Miller indexation. As in Table I, the coefficients
that are identically zero for all cases have been omitted. Compare Eqs.~13!–~15!. Only NN contributions are
listed here.

Slm bcc ~100! bcc~111! bcc~110! fcc~100! fcc~111! fcc~110!

S4 223(14/9) 23(28/27) 7/9 27/4 7/6 7/16

S42
(c) 0 0 2140/3 0 0 2105/4

S43
(c) 0 223(560A2/9) 0 0 0 0

S43
(s) 0 0 0 0 270A2/2 0

S44
(c) 223(560/3) 0 2280 2210 0 2315/2

S6 23(8/9) 23(128/81) 226/9 239/16 213/3 507/128

S62
(c) 0 0 2140/3 0 0 4095/64

S63
(c) 0 23(4480A2/27) 0 0 0 0

S63
(s) 0 0 0 0 2455A2 0

S64
(c) 2232240 0 2800 12 285/2 0 261 425/16

S66
(c) 0 23(197 120/9) 236190 0 60060 405 405/8
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FA~Q,F!

N
5(

l
Al Pl~cosQ!

1(
l

(
m51

l

AlmPlm~cosQ!cosmF

1(
l

(
m51

l

BlmPlm~cosQ!sin mF. ~22!

Here the quantitiesAl ,Alm ,Blm are the usual phenomeno-
logical anisotropy coefficients. Equation~22! is more general
than Eq.~16!, because it is not based on model assumptions.
In other words, theAlm’s andBlm’s may be assumed to en-
compass both Ne´el and non-Ne´el contributions. This recog-
nition is of a general character and provides a possibility for
bridging the gap or interpolating between different theories
of magnetic anisotropy.

Regardless of whether theanisotropy coefficientsare in-
troduced purely phenomenologically as in Eq.~22! or are
derived starting from a microscopic model as in Eq.~16!,
their connection with the traditionally more standardanisot-
ropy constantsdeserves to be clarified. Indeed, the point has
already been discussed in different contexts,15,16 but specific
considerations of implemented theoretical approach, normal-
izing conventions, choice of notation, or the fact that the
usually assumed anisotropy-constant expansions are neither
orthogonal nor complete, almost invariably generate some
confusion. This is why we discuss the issue on an example in
Appendix C.

C. Next-nearest-neighbor contributions at bcc„100…
and bcc„111… surfaces

The consideration in the previous section was restricted to
NN Néel interactions that is a fair approximation in most
cases. As we demonstrated above, notable exceptions are

bcc~001! and bcc~111! surfaces, where the lowest-order NN
contribution is zero by symmetry. In this case, which is also
the bulk cubic case, the surface anisotropy constants encom-
pass contributions from higher-order anisotropy coefficients
~see Appendix C!. It becomes a question of particular impor-
tance whether and to what extent thenext-nearest-neighbor
pair interactions would produce symmetry-breaking lowest-
order contributions to the overall anisotropy. This is a prob-
lem of immediate practical impact, since the bcc NNN dis-
tance which we defined asRII is larger by only about 15%
than the NN distanceRI , so that despite the exponential
decay of the Slater-Koster hopping integrals28 the atomistic
NNN interactions are about half as strong as the NN inter-
actions. On the other hand, in both cases of interest there are
twice as many sites from among the NNN interacting surface
sites than there are from among the NN interacting sites. In
both cases, these are a topmost site plus a site from the first
underlayer~cf. Fig. 2!.

The required geometrical information is given in Appen-
dix B. Note that in bcc geometry the next-nearest neighbor-
hood has the simple-cubic (sc) configuration. In the case
bcc~100!, there are five NNN’s; in the case bcc~111!, there
are three NNN’s. In both cases, geometrical inspection indi-
cates that the additional NNN contribution from a first-
underlayer atom is identical with the contribution of a top-
most atom~a black atom in Fig. 2!. Thus, not only are there
more contributions per unit surface, but they are of the same
sign and magnitude; consequently, there is no way that they
would compensate each other, if different from zero; thus the
exponential decay of the interaction parameters mentioned
above could be counterbalanced@see also Eq.~24! below#.

Now, in analogy to Eqs.~13!–~15!, the proper NNN struc-
tural sums$Ŝ% are given by

Ŝl~ i !5 (
j

I I shell

Pl~cosu i j ! ~23!

and similarly for them-dependent NNN sums.
In both cases, we work in the same frames of reference as

in Sec. II. The results of the calculation for the NNN surface
structural sums$Ŝ% are presented in Table III and have to be
compared with those for the NN surface sums$S% in Table
II.

For the bcc~100! surface, the symmetry breaking is purely
uniaxial with the normal to the surface as the axis of sym-
metry. The fourth-order, fourfold contribution (l 54, m54)
is of the cosine type, whereas with NN interactions, it is of
the sine type (Ŝ44

(c)5420 vsS44
(s)52560/3). This is due to the

coherent rotation of the second neighborhood byp/4 around
the z axis.

For the bcc~111! surface, the most striking feature is the
absence of lowest-order symmetry-breaking terms even
when account is taken of the interactions with the second
neighborhood. On top of that, there comes the observation
that the NNN contributions to the leading fourth order (l
54) have theoppositesign to those of the NN contributions
~compare the second columns of Tables VII and XI!,

TABLE III. Next-nearest-neighbor structure factors$Ŝ% for
bcc~100! and bcc~111! surfaces in the same frame of reference as
for the NN calculations~Fig. 2!. Compare Eq.~23!. Structure fac-
tors that are zero in both cases have not been listed. Compare with
the NN contributions of Table I.

Ŝlm
bcc~100! bcc~111!

Ŝ2
21 0

Ŝ4
5/2 27/6

Ŝ43
(c) 0 70A2

Ŝ44
(c) 420 0

Ŝ6
21/4 2/3

Ŝ63
(c) 0 70A2

Ŝ64
(c) 21890 0

Ŝ66
(c) 0 9240
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whereby their magnitudes are comparable and there aretwice
as manyNNN contributions per unit surface as there are NN
ones. Thus, for the bcc~111! surface, the contributions to the
overall anisotropy coefficients$k% of Eq. ~17! with account
for both NN and NNN coordination shells will be propor-
tional to the expression

a4~RI !S4m
~c!F122

a4~1,15RI !

a4~RI !

uŜ4m
~c!u

uS4m
~c!u G ~m50,3!. ~24!

@For m50, the superscript (c) is to be skipped.# The explicit
calculations combined with the argumentation about the ex-
ponential decay of Ne´el’s parameters$al% with RII very
close toRI favor a conclusion that the factor in the brackets
of Eq. ~24! would possibly be close to zero. This means that
NNN Néel’s contributions to bcc~111! surface anisotropies
suppress the overall surface anisotropy in two spectacular
ways. First, they do not break the symmetry and, conse-
quently, the fourth-order terms (l 54) remain dominant. Sec-
ond, to this leading order they systematically oppose the NN
contributions in sign; a more precise quantification of the
implied reduction could come from a reliable atomistic esti-
mate ofa4(R).

D. Summary

We have extended Ne´el’s model in two ways. First, we
have used Ne´el’s assumptions to calculate contributions to
sixth order for low-index surfaces and for the bulk in cubic
geometry. On the basis of the results given in Tables I and II
for the surface and bulk contributions, respectively, it is pos-
sible to identify cases of very low angular symmetry. This
low symmetry gives rise to complicated minimization prob-
lems for the determination of the equilibrium orientation of
magnetization with or without an applied magnetic field and
can lead to spin-reorientation transitions during which the
magnetization vector does not remain in a fixed plane. Ap-
plications to nonideal materials are straightforward, since the
approach is not restricted to ideal bulk materials and sur-
faces, but applies to vacancies, steps, and edges as well. Sec-
ond, the contributions to the surface anisotropy from the sec-
ond neighborhood have been examined for those cases
@bcc~100! and bcc~111!# where the NN interactions do not
suffice to break the symmetry~Table III!. We find that NNN
interactions do induce lowest-order contributions to bcc~100!
surfaces and that, in contrast, the bcc~111! surface does not
generate anisotropy contributions of the lowest order even
with the second neighborhood taken into account. In this
latter case, we detect a characteristic alternation of signs be-
tween NN and NNN leading (l 54) contributions to the
same anisotropy coefficients. In view of the proximity of the
first- and second-shell radii in bcc geometry, this suggests a
well-pronounced compensation effect as a result of the com-
petition between NN and NNN pair interactions.

An important advantage of the present approach is the
systematic use of the anisotropy coefficients, arising natu-
rally in a multipole expansion of the anisotropy energy that
is both complete and orthonormal. The careful partition of

contributions into nonequivalent species of site, interaction
shell, and order in the multipole expansion reveals, among
other things, the constitution of themacroscopicanisotropy
coefficients$k% as weighted averages of thelocal coeffi-
cients$G% @Eqs.~17!–~19!#. On the other hand, the connec-
tion between thecoefficients$k% and the more usualcon-
stants $K% has been elucidated with emphasis on the
advantages offered by the complete orthonormal set of an-
isotropy coefficients$k%.

It is certainly an important and challenging experimental
problem to find a suitable setting for the acquisition of suf-
ficient information that would allow one to determine the
higher-order Ne´el anisotropies reported here. Such informa-
tion would shed light onto the nature and magnitude of
higher-order anisotropy contributions. These are of special
interest in magnetic systems undergoing spin reorientation
transitions under variation of temperature or, in ultrathin
films, of thickness. They are precisely the higher-order
anisotropies that control and stabilize the behavior of the
respective systems, since the leading-order contributions
cancel at such a transition point.
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APPENDIX A

In order to calculate the local anisotropy coefficients
$Glm% of Eqs. ~10!–~12!, one needs two types of informa-
tion. The analytical information is given here, while Appen-
dix B presents the required stereometrical information.

The usual Legendre polynomialsPl(x)[Pl0(x) can be
found in quite a number of handbooks~see, e.g., Ref. 10!.
We need only those withl 52,4,6. They read

P2~x!5
1

2
~3x221!,

P4~x!5
1

8
~35x4230x213!,

P6~x!5
1

16
~231x62315x41105x225!.

The associated Legendre functionsPlm(x) are defined as

Plm~x!5~12x2!m/2dmPl~x!/dxm. ~A1!

For even values ofm, the Plm’s themselves reduce to
polynomials. For any givenl , we need all functions with
m< l :

P21~x!53x~12x2!1/2,

P22~x!53~12x2!;

P41~x!5
5

2
x~7x223!~12x2!1/2,
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P42~x!5
15

2
~12x2!~7x221!,

P43~x!5105x~12x2!3/2,

P44~x!5105~12x2!2;

P61~x!5
3

8
x~231x42210x2135!~12x2!1/2,

P62~x!5
105

8
~12x2!~33x4218x211!,

P63~x!5
315

2
x~11x223!~12x2!3/2,

P64~x!5
945

2
~11x221!~12x2!2,

P65~x!510395x~12x2!5/2,

P66~x!510395~12x2!3.

APPENDIX B

Here we summarize the required information about the
morphology of the surroundings of a given site at the surface
in cubic geometry~cf. also Fig. 2!. The information about the
first ~NN! shell is collected in Tables IV–IX. To avoid com-
plicated pictures, the NNN surface atoms are not given in
Fig. 2. Their locations are defined in Tables X and XI to-
gether with the additional information that the NNN coordi-
nation in bcc geometry is of the simple-cubic (sc) type. For
an atom in the respective cubic bulk, one has to add the
missing neighbors as explained in the main text. The azi-
muthal coordinates$f% of the added atoms are the same as
for the hollow atoms in Fig. 2, while the polar coordinates
$u% complement top the u ’s of the hollow atoms.

In the calculation of$Slm% @Eqs. ~13!–~15!#, it is under-
stood that the origin is at thei th atom. Hence, we drop the
index i and let the indexj run over the nearest neigbors.
Their number is denoted byzNN . The same holds for the

calculation of$Ŝlm% with the number of NNN denoted by
zNNN .

The anglesf4 in Table V andf7 in Table IX are labeled
as indeterminate. This is because the corresponding neighbor
lies on thez axis below the central atom~Fig. 2!. This inde-
terminacy is, however, irrelevant, since the respective
u-dependent factors in the analytical expression vanish iden-
tically. The factors cosmfj and sinmfj encountered in the

TABLE IV. The surface bcc~001! (zNN54).

j 51, . . . ,zNN u jP@0,p# cosuj f jP@0,2p# cosfj sinfj

1 arccos(21/A3) 21/A3 p/4 1/A2 1/A2
2 arccos(21/A3) 21/A3 3p/4 21/A2 1/A2
3 arccos(21/A3) 21/A3 5p/4 21/A2 21/A2
4 arccos(21/A3) 21/A3 7p/4 1/A2 21/A2

TABLE V. The surface bcc~111! (zNN54).

j 51, . . . ,zNN u jP@0,p# cosuj f jP@0,2p# cosfj sinfj

1 arccos(21/3) 21/3 0 1 0
2 arccos(21/3) 21/3 2p/3 21/2 A3/2
3 arccos(21/3) 21/3 4p/3 21/2 2A3/2

4 p 21 Indeterminate

TABLE VI. The surface bcc~110! (zNN56).

j 51, . . . ,zNN u jP@0,p# cosuj f jP@0,2p# cosfj sinfj

1 p/2 0 f15p1f3 2A2/3 21/A3
2 p/2 0 f252p2f3 A2/3 21/A3
3 p/2 0 f350.18591p A2/3 1/A3
4 p/2 0 f45p2f3 2A2/3 1/A3

5 arccos(2A2/3) 2A2/3 3p/2 0 21
6 arccos(2A2/3) 2A2/3 p/2 0 1
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TABLE VII. The surface fcc~001! (zNN58).

j 51, . . . ,zNN u jP@0,p# cosuj f jP@0,2p# cosfj sinfj

1 p/2 0 p/4 1/A2 1/A2
2 p/2 0 3p/4 21/A2 1/A2
3 p/2 0 5p/4 21/A2 21/A2
4 p/2 0 7p/4 1/A2 21/A2

5 3p/4 21/A2 0 1 0
6 3p/4 21/A2 p/2 0 1
7 3p/4 21/A2 p 21 0
8 3p/4 21/A2 3p/2 0 21

TABLE VIII. The surface fcc~111! (zNN59).

j 51, . . . ,zNN u jP@0,p# cosuj f jP@0,2p# cosfj sinfj

1 p/2 0 0 1 0
2 p/2 0 p/3 1/2 A3/2
3 p/2 0 2p/3 21/2 A3/2
4 p/2 0 3p/3 21 0
5 p/2 0 4p/3 21/2 2A3/2
6 p/2 0 5p/3 1/2 2A3/2

7 arccos(2A2/3) 2A2/3 p/6 A3/2 1/2
8 arccos(2A2/3) 2A2/3 5p/6 2A3/2 1/2
9 arccos(2A2/3) 2A2/3 9p/6 0 21

TABLE IX. The surface fcc~110! (zNN57).

j 51, . . . ,zNN u jP@0,p# cosuj f jP@0,2p# cosfj sinfj

1 p/2 0 0 1 0
2 p/2 0 p 21 0

3 2p/3 21/2 p/3 1/2 A3/2
4 2p/3 21/2 2p/3 21/2 A3/2
5 2p/3 21/2 4p/3 21/2 2A3/2
6 2p/3 21/2 5p/3 1/2 2A3/2

7 p 21 Indeterminate

TABLE X. Next-nearest neighbors for the surface bcc~100! (zNNN55). The topmost~black! atom and the
underlayer~hollow! atoms in Fig. 2 have an identical second coordination and, hence, acquire identical NNN
Néel contributions. The NNN atoms are not given in Fig. 2; their spherical-coordinate angles are labeled with
a ‘‘ II ’’ superscript.

j 51, . . . ,zNNN u j
(II )P@0,p# cosuj

(II ) f j
(II )P@0,2p# cosfj

(II ) sinfj
(II )

1 p/2 0 0 1 0
2 p/2 0 p/2 0 1
3 p/2 0 p 21 0
4 p/2 0 3p/2 0 21

5 p 21 Indeterminate
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calculation may be found either by direct computation with
the respective value off j or by first reducing them to cosfj
and sinfj and using the last two columns in Tables IV–IX.

APPENDIX C

To stimulate the eventual application of our results to spe-
cific cases, we comment on the simple recipe to establish the
quantitative connection betweenanisotropy coefficientsand
anisotropy constants.

One starts with theanisotropy-coefficient expansion@Eq.
~16!# and terminates it to such a value ofl ( l max52qmax)
that corresponds to the highest power of sinQ or cosQ,
appearing in theanisotropy-constant expansionwith which
we would like to establish correspondence. This done and
with the explicit expressions forPl(cosQ) and Plm(cosQ)
given in Appendix A, one has to just collect all terms in Eq.
~16! which have the appearance of a given term in the
anisotropy-constant expansion. As an example, if the
anisotropy-constant energy density for uniaxial~cylindrical!
symmetry is employed, one has

Ũ/V5K1 sin2 Q1K2 sin4 Q1K3 sin6 Q, ~C1!

whereQ is the angle betweenM and the axis of symmetry
~this implies that thez axis coincides with thec-axis!. Since

the structure of the crystal is assumed to be known, it should
present no difficulty to convert the anisotropy energy density
Ũ/V to anisotropy energy per magnetic site by inserting the
volume per magnetic sitev0[V/N. In Eq. ~C1!, the azi-
muthal dependence is dropped. Physically, this is equivalent
to neglecting anisotropies in the plane perpendicular to thec
axis. Accordingly, only the sum withm50 has to be consid-
ered in the anisotropy-coefficent expansion of Eq.~16! and
this isU/N5( l 52,4,6k l Pl(cosQ). Collecting in turn terms in
this sum which are proportional to sin2 Q,sin4 Q, and sin6 Q,
one gets

v0K152
3

2
k225k42

21

2
k6 , ~C2!

v0K25
35

8
k41

189

8
k6 , ~C3!

v0K352
231

16
k6 . ~C4!

The cases with nonzero in-plane contributions (mÞ0) are
treated along the same lines.
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