Circle of Willis Model for Transcranial Doppler Ultrasound Training

Conner J. Beyersdorf
University of Nebraska-Lincoln, connerbeyersdorf@gmail.com

Ben Hage
University of Nebraska-Lincoln

Greg Bashford
University of Nebraska-Lincoln

Follow this and additional works at: http://digitalcommons.unl.edu/ucarereresearch

Part of the [Bioimaging and Biomedical Optics Commons](http://digitalcommons.unl.edu/bioimagingandbiomedicalelectronics), [Biomedical Devices and Instrumentation Commons](http://digitalcommons.unl.edu/biomedicaldevicesandinstrumentation), and the [Other Biomedical Engineering and Bioengineering Commons](http://digitalcommons.unl.edu/otherbiomedicalengineeringandbioengineering)

http://digitalcommons.unl.edu/ucarereresearch/16
Background

The Circle of Willis is an anastomosis of the major blood vessels of the brain. It sits at the base of the cerebellum and anterior to the brain stem. Monitoring this structure is effective in determining adequacy of brain blood flow [1].

Transcranial Doppler (TCD) ultrasound is a method of observing functional blood flow velocities in cerebral arteries. It is a noninvasive procedure useful for pathological analysis and blood flow lateralization. It can easily observe the Circle of Willis and any blood flow changes in real time. [2].

Learning how to effectively use and interpret TCD ultrasound is a difficult process. The ability to practice on a realistic model can improve proficiency of medical professionals with TCD [3].

Design

The model is an anatomic accurate representation of the Circle of Willis. Arterial diameter is based on average size measurements taken on adults [3].

An AutoCAD software was used to design the model and served as the template for 3D printing. The printing material is called TangoPlus and was used because it mimics the flexibility of cerebral arteries.

Methods and Instrumentation

After printing, the model was secured in physiological orientation inside of a plastic skull. A gelatin mixture was then poured through the foramen magnum to create a brain-like phantom. A mixture of dehydrated milk and water was pumped through the model to simulate the scattering effect of blood on TCD frequencies. Flow patterns were analyzed using TCD ultrasound applied directly to the phantom.

Results and Discussion

Transcranial Doppler (TCD) ultrasound is a method of measuring flow patterns in a phantom of the Circle of Willis. Further work must be done in simplifying production of the model.

Future efforts will work at optimizing flow rates by increasing pump speed. Waveforms can potentially be normalized using a periodic pump that creates pulsations similar to a human heart. Minimizing vibrations and the effect of tube-model transitions will improve waveforms as well. Other iterations of the model could mimic pathological blood flow in the Circle of Willis, such as an embolus, aneurysm, or a stenosis.

Additional studies may be undertaken to determine effectiveness in teaching medical students how to use TCD ultrasound.

Conclusion and Future Work

The results demonstrate the feasibility of TCD ultrasound to measure flow patterns in a phantom of the Circle of Willis. Further work must be done in simplifying production of the model.

Future efforts will work at optimizing flow rates by increasing pump speed. Waveforms can potentially be normalized using a periodic pump that creates pulsations similar to a human heart. Minimizing vibrations and the effect of tube-model transitions will improve waveforms as well. Other iterations of the model could mimic pathological blood flow in the Circle of Willis, such as an embolus, aneurysm, or a stenosis.

Acknowledgements

I would like to thank Ben Hage, Dr. Greg Bashford, and Hayden Kaderly for guidance on the project. I would also like to thank Aaron Engel and Max Twedt for their assistance with TCD analysis, as well as Evan Curtis and Pengbo Li for help with 3D printing the model. I extend an additional thank you to the UCARE program for funding this project.

References

