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Abstract

Logistics support is a key element of aircraft transportation systems. This paper is concerned with the
impact of aircraft spares provisioning decisions on the availability of aircraft. Spares provisioning in this
context is complicated by the fact that spares may be shared across aircraft and that aircraft may have
redundant systems. In addition, decisions concerning aircraft spares support require a rapid response for
safety reasons. Analytical models have proven to provide a quicker response time than corresponding
simulation models. There is an existing analytical model that includes the e!ect of redundancy and spares,
but the underlying assumption is that a large number of aircraft are being modeled. In many applications,
predictions of the number of times an aircraft can #y each day and the number of aircraft that are ready at
any time are applied to a small #eet of aircraft. This paper demonstrates the improvement in computational
accuracy that is achieved by re#ecting the impact of small numbers of aircraft on availability projections. The
approach used is to extend existing "nite queuing spares models to including redundancy. Further, the
method is used to optimize spares provision with respect to a user speci"ed availability goal. Although the
case study for this work is a military combat aircraft application from the Gulf War, the method is applicable
to any small system of vehicles or machines where components may be redundant, demand and repairs may
be approximated as following an exponential distribution, and limited access to spare parts is the rule.

Scope and purpose

In many situations in exploration, mining, rescue, and defense, it is necessary to dispatch a small #eet of
machines to a remote area to perform an important function. Since the location is di$cult to access, resupply
is often di$cult or impossible. In anticipation of this situation, the machines often include redundant parts to
allow for some component failures in the "eld that do not eliminate a machine from further use. Decisions
have to be made, in advance, as to which backup components (spares) should be included with the machines
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at the remote site to be used when failures exceed the built-in redundancy level. This turns out to be an
interesting modeling problem. Since the number of machines is relatively small, exact counting of machines
and their components (both redundant and spares) must be done in order to make a decision. This leads to
a combinatorial problem that cannot be solved for practical-sized problems with a reasonable computational
e!ort by, say, discrete simulation. In this paper, we develop a methodology, based on "nite queuing theory,
which addresses this need. It is applied and validated on an availability situation similar to the deployment of
aircraft to the Middle East during the Gulf War. � 2001 Elsevier Science Ltd. All rights reserved.
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1. Background

The United States Air Force currently uses the best analytical model available for the aircraft
spares provisioning problem. It is named the Dynamic Multi-Echelon Technique for recoverable
item control (Dyna-METRIC) developed by the RAND Corporation [1]. Dyna-METRIC is
a #exible inventory modeling tool, but its underlying assumption is that a large number of entities
are being modeled. The following is a brief discussion of the Dyna-METRIC model. The central
theorem in the Dyna-METRIC model is Palm's theorem [2], also known as the in"nite channel
queuing assumption [3], which states that if demand for an item is given by a Poisson process with
mean m per unit time, and if the repair time for each failed unit is independently and identically
distributed according to any distribution with mean repair time ¹, then the steady-state probabil-
ity distribution for the number of units in repair has a Poisson distribution with mean m¹.

This is a powerful result since it does not depend on any assumption about underlying
probability distributions, but when dealing with a small number of aircraft this theorem is violated
because the demand distribution and the repair cycle are no longer independent. The problem is
well documented and can occur with as many as eight aircraft [4].

The number and location of s spare parts in a supply system is

s"OH#DI!BO, (1)

where OH is the number of spares on the shelf or on-hand, DI the number of items due-in from
repair or resupply, and BO the number of items on backorder.

This is a balance equation where the order quantity is assumed to be one. Any change in one
variable will result in a compensating change in another variable. For example, if an item demand
occurs, the number of items due-in will increase by one and, if the current on-hand balance is
greater than zero, then the on-hand balance will decrease by one. Otherwise, the number of
backorders will increase by one.

Using the initial spares position of each item type i, the Dyna-METRIC model predicts the
number of aircraft available and the number of sorties that can be #own each day. In order to make
these predictions, the model must calculate the expected number of backorders EBO

�
(s
�
) for each

item type on the aircraft. This is done using

EBO
�
(s
�
)"x"

�
�

����

(x!s
�
)Pr

�
[DI"x], (2)
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where s
�

is the stock level for each item type i, and Pr
�
[DI] the probability of DI items due in from

repair or resupply for item type i.
An important common logistics measurement is `pipelinea. Pipeline represents the number of

units of an item in the repair or in the resupply chain. The average pipeline, �, for the single base,
full repair, no depot resupply case is the average demand, m, multiplied by the repair time, ¹, such
that �"m¹. As a result of Palm's Theorem, this average pipeline value becomes the mean of the
Poisson distribution used to calculate the expected backorders. If we allow multiple bases, limited
base repair, and depot repair and resupply, the average pipeline at base j becomes

�
�
"m

�
(r
�
¹

�
#(1!r

�
)[O

�
#EBO[s

�
�m

�
¹

�
]/m

�
]), (3)

where �
�

is the average pipeline at base j, m
�

the average annual demand at base j, r
�

the probability
of repair at base j, ¹

�
the average repair time at base j, O

�
the average order and ship time from

depot to base j, subscript j the base counter, and subscript o the depot counter.
For most single-unit aircraft combat assessments, this equation reduces to �

�
"(r

�
¹

�
)m

�
since

depot repair and resupply are not available.
Aircraft availability (the ratio of aircraft available to aircraft "elded times 100) is an important

measure of merit [5]. It can be calculated from the expected backorders as follows:

A"100
�

�
���

[1!EBO
�
(s
�
)/(NZ

�
)]��

subject to EBO
�
(s
�
))NZ

�
for every item type i, (4)

where Z
�

is the number of times the same item occurs on a single aircraft, and N the number of
aircraft "elded.

This formula implies that an aircraft is available only when there are no failures in any of
the Z

�
items on an aircraft. The constraint prevents the number of backorders from exceeding

the number of possible aircraft positions for each item type. The number of predicted
aircraft #ights/#ying hours per day is simply the number of available aircraft each day times the
maximum #ight rate (#ights/aircraft) per day which is capped at the total number of #ights required
each day.

This is a brief overview of the current model and a description of the current state of the
modeling environment. Next, we introduce a method that addresses some of the shortcomings of
the current method.

2. Research method

The following method is an e!ort to better model small systems of equipment where some of the
assumptions made in Dyna-METRIC fail. However, the proposed method still maintains the
advantages of the analytical model. The proposed method must overcome several challenges. These
include the di$culties of a "nite-calling population, the proper distribution of component back-
orders, item redundancy, and the interdependence of component types. Previous researchers have
dealt with the "rst two of these. We begin with these, then extend that redundancy work.
Subsequently, we present a new iterative approach to handling interdependence.
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Below is a failure distribution function from queuing theory that takes into account the "nite
calling nature of our situation [6]. Once all the original operating units and spares are consumed,
no more arrivals (or failures) can occur. Also, as the number of operating components decreases,
the arrival rate or failure rate naturally decreases as well. This is the probability distribution of
failures, P(X):

P(X"x)"P(0)
f �R�

x!
when x)s (5)

and

P(0)
f �R�

x!
R!

(R!x#s)!
when s#1)x)R#s,

where x is the number of component failures, f the ratio of failure rate to repair rate (�/�), P(0) the
normalizing constant so the distribution sums to one, s the number of spare components, and R the
total number of each component being operated.

Notice that this result is only for one type of unit. In a situation where unit i is actually made up
of r

�
components and there are M such units in operation, the total number of operating

components is R"��
���

r
�
.

To address the problem of component redundancy, Ref. [3] uses the hypergeometric distribution
to properly distribute the total number of component failures, x, across all M operating units. The
number of component failures, y

�
, on each unit i is such that ��

���
y
�
"x. The distribution of X is

shown below:

hyp(y
�
, y

�
, y

�
,2, y

�
�x)"

�
r
�

y
�
��

r
�

y
�
�2�

r
�

y
�
�

�
R

x�
, (6)

where x is the total number of component failures, r
�
the number of components on each unit i, and

y
�

the number of component failures on unit i such that ��
���

y
�
"x.

In this paper, redundancy can imply two things. Firstly, within a unit i, redundancy implies that
not all r

�
components must operate for the unit to function properly. Thus, assume that for unit i to

operate properly, only q
�

of the r
�

components must be operating. Secondly, system redundancy
implies that in a system of M units, not all M units need to operate for the system to function
properly. Therefore, assume that I units of the M must be operating as a minimum for system
success.

To illustrate these concepts more clearly, let us look at a simple radio example (see Fig. 1). This
radio system is composed of transmitting and receiving units. Transmitter units for each radio are
made up of three transmitter components (r

�
"3). Receiver units are each made up of a single

receiver component (r
�
"1).

Based on the earlier discussions, the failure distribution of the units in this M radio system can be
calculated. First, a failure distribution is needed for each unit type. Here we take the transmitter as
one type ( j"1) and the receiver as a second type ( j"2). Since numbering of units is arbitrary, we
assume the `"rsta fails. The failure distribution of unit type j, for the "rst 1, 2,2, k units up and the
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Fig. 1 . M radio operating system.

k#1, k#2,2, M units down, is calculated using

;
�
(k)"

�
�
���

P
�
�X"x��

	

hyp(y
�
, y

�
,2, y

�
�x), I)k)M, (7)

where j is the unit type number, ¹ the complete set of component failure combinations that result
in the "rst k units of type j up and the rest down, and I the minimum number of radios that must be
available.

One advantage to this approach is that the set ¹ of possible failure combinations, resulting from
the "rst k units operating and the last M!k being down, limits the number of hypergeometric
calculations that must be performed. Also, since these calculations are not dependent on the failure
or repair distributions, they can be calculated once and used for all components.

The results for each unit type are then combined into a radio system failure distribution. For the
radios, there are two di!erent unit types, a transmitter and receiver type. The probability that all
M radios are up and none are down, ;(M), is given by

;(M)";
�
(M);

�
(M), (8)
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which is simply the probability of all the transmitter units being up times the probability of all the
receiver units being up.

Similarly, ;(M!1) is the probability that the "rst M!1 radios are up and radio M is down.

;(M!1)";
�
(M!1)[;

�
(M!1)#;

�
(M)]#;

�
(M);

�
(M!1). (9)

This equation results from unit combinations (transmitter and receiver) that create the "rst M!1
radios up and the Mth radio down. For example, the "rst term in Eq. (9) is created by the
cases where either both unit types have the "rst M!1 units up or the transmitter unit type has the
"rst M!1 up and the receiver unit type has all M up. Both of these combinations result in the "rst
M!1 radios up and the Mth radio down. The equation for the "rst M!2 radios up and
the M!1 and M radios down is more complex:

;(M!2)";
�
(M!2)[;

�
(M!2)#2;

�
(M!1)#;

�
(M)]

# 2;
�
(M!1)[;

�
(M!2)#;

�
(M!1)]#;

�
(M);

�
(M!2). (10)

The logic for building this equation is the same as explained previously, that is, enumerate all
combinations that produce the "rst M!2 radios up and the M!1 and Mth radios down. For
example, the second term (;

�
(M!2)�2;

�
(M!1)) is a result of the fact that with two radios

down for transmitter units, there are two ways to select the radio that is also down for the receiver
unit. This combinatorial equation building process continues until the minimum number of
acceptable operating radios, I, is reached.

Based on the calculations for operating radio probabilities, an overall radio system availability
can be calculated. Since ;(k) is the probability that the "rst k radios are operating while the
remaining M!k are down, the availability, A(k), of at least k radios operating can be found by
computing the number of ways in which k up radios can be selected from the M radios. This results
in the following equation:

A(k)"100�;(M)#�
M

M!1�;(M!1)#2#�
M

k �;(k)�, I)k)M. (11)

This is the only model, to date, that incorporates "nite source arrivals, component redundancy, and
multiple components into one availability model.

The preceding approach handles "nite-population demand (i.e. the failure rate decreases as
failures increase) within a component-type, but fails to consider the impact the failures that each
component type have on the other component-type failures. Therefore, some type of adjustment
must be made to account for this inter-component interaction. We propose an iterative approach.
An adjustment of the other component-type's failure rates based on the highest failing component-
type's expected availability will re#ect this interaction. The expected number of operating units,
E[O

�
], is calculated for each component-type j using

E[O
�
]"�

�
�

��
�

M

M!k�;�
(M!k)(M!k)�. (12)

Then the component type with the lowest number of expected operating units would be used to
adjust the demand rates of the remaining component types. The adjustment factor is the availabil-
ity of this least available component type. This availability is then multiplied by the arrival rate of
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Fig. 2. Flow of model calculations.

all the other component types to obtain a new utilization rate. This equation is shown below:

f
� ���

"f
� ���

E[O
�
]/M. (13)

This new utilization rate, f
� ���

, is used to recompute all the other component-type's;
�
(k). Then the

system availability is recalculated, checking to see if the increase in A(M) (i.e.
A

�	

���
(M)!A

	���
(M)) is more than 0.001 (we "nd 0.1% to work well). If it is, then the second

lowest E[O
�
] value is selected and new f

� ���
values are computed for all but the lowest two E[O

�
]

values. Then new availability's are computed. When the change in A(M) is less than 0.001, stop the
process and report the availability results.

This iterative procedure requires only a small fraction of the computational time necessary by
other techniques (such as simulation) to consider all of the combinations of failure interactions by
focusing on the most likely to fail components. If we had a system with a single class of unit,
and no spares, we could exploit the k-out-of-n system structure [7], but our system is more
complicated than that. Our iterative procedure dramatically reduces computational e!ort while
including both redundancy and spares. Fig. 2 and the algorithm given below summarize the
method.

Algorithm.

Step 1: Calculate the component failure distributions, P(X), and the hypergeometric distribution
of failures Hyp(y/x) for each component (Eqs. (5), (6)).
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Step 2: Calculate the probability that the "rst k components of each are up and the
k#1, k#2,2, M are down, ;

�
(k) (Eq. (7)).

Step 3: Calculate the probability that the "rst K units of the system are up and the
K#1, K#2,2, M units are down, ;(k) (Eqs. (8)}(10)).

Step 4: If "rst pass or A
	

���

(M)!A
����

(M)'0.001, go to step 5. Otherwise, go to step 8.
Step 5: Calculate the expected number of operating components of each component type, E[O

�
]

(Eq. (12)).
Step 6: Select the smallest E[O

�
] value in step 5 and calculate the new utilization rates, f

� ���
, for

all the other component-types (Eq. (13)).
Step 7: Go to step 1 and repeat the steps for all components except the components whose E[O

�
]

have already been computed.
Step 8: Calculate the availability, A(k), for the system based on the desired number of operating

pieces in the system (Eq. (11)).

We now have a method to overcome all the shortcomings of current logistics models for spares
provisioning. The next section presents computational and validation results based on a Gulf War
case study.

3. Case study

Validation is always an important aspect of model development. In order to build a comparison
database, a simulation model was developed using the SLAM II language [8] to create
simulated data. The simulation model in [9] was used as a baseline for creating this simulated
data. It had already been validated against operational data, so it provides an excellent starting
point.

In addition, Headquarters Air Combat Command (HQ ACC) provided expert advice on data,
modeling and validation issues. Aircraft in ACC are basically divided into two groups, "ghters
and `heaviesa. Fighters include aircraft such as the F-15, F-16, A-10 and F-111. Heavies include
aircraft such as the B-52, B-1, E-3, and B-2. The test parameters were established through work
with HQ ACC and are documented in [10]. Two aircraft from each group based on the
recommendations of HQ ACC have been selected as typical of a deployed Gulf War unit. These
aircraft are the B-52, E-3B, F-15, and F-16. For each of these aircraft types, three aircraft sizes were
selected. Stock positions were set at three di!erent levels: zero stock, fully authorized level, and the
average "ll percentage level based on March 1995 "ll rates. Flight pro"les were also provided by
HQ ACC.

The results presented in Table 1 and Table 2 are a typical sample of the 120 di!erent cases we
analyzed. In only three cases of 120 were the proposed model results outside of the 95% con"dence
intervals for the simulation model, and the largest 95% simulation con"dence interval based on
availability was less than 4% wide. In addition, hypothesis of means tests were performed on the
two di!erent redundancy case output di!erences and they both had high-power values. This
provides strong evidence that the new model is highly accurate. Furthermore, the run times for the
analytical model required CPU seconds to execute, whereas the simulation model requires CPU
hours to accomplish the same task.
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4. An optimizing tool

Another capability missing from the current models is the ability to quantify any additional
capability (or shortage) that might be available if the current availability goal is exceeded (or not
met). For example, Dyna-METRIC will tell the user that he can #y his requested #ying hours and
maintain a 85% aircraft availability. But what if the availability goal is only 80%? Dyna-METRIC
cannot tell you how many additional #ying hours can be #own and yet still meet the availability
goal. By adding a feedback mechanism to the proposed model and providing a user-input
availability goal (>), the proposed model can report the maximum operating hours per day
per system, H, that can be achieved and still maintain the user availability goal (>). This can be
stated as

Maximize H"OHC�CPD

Subject to A(M!1)*> for M*3,

A(M)*> for M(3

where H is the number of operating hours per system per day, > the user-input availability goal,
A(M) and A(M!1) are de"ned in Eqs. (8), (9), OHC the operating hours per cycle, and CPD the
cycles per day.

This problem is solved by adding the following step to the algorithm presented previously.
Step 9: If the availability of M!1 or more systems is greater than the availability goal, > (the

availability of M systems is used for scenarios where M(3), increment the daily operating hours
per system by the user provided step size, G, and go to step 1. If the availability goal, >, is not
exceeded, then report the availability and operating hours for the last acceptable operating
hour/availability combination. If no such combination exists, simply report this operating hour
program and the expected system availabilities, A(k)'s.

Of course, if the availability goal could not be met by the current stock quantities, the stopping
rule is changed to decrement operating hours to "nd the maximum operating hours in order to
meet the availability goal.

The following example illustrates how this capability might be used. In Table 1, the B-52 three
aircraft `no redundancya availability of two or more aircraft was 90.01%. What if the availability
goal was only 80%? How many additional #ying hours per aircraft per day could someone achieve
and still meet the availability goal? If this information is used in the optimization model, we
discover that instead of 7.2 #ying hours per aircraft, we can get 10.20 #ying hours per aircraft while
achieving a 81.44% availability. This process could also be used to study the relationship between
di!erent stock levels and #ying hours and their impact on aircraft availability using the optimiza-
tion model.

Fig. 3 shows a complete response surface for the relationship between di!erent stock levels, #ying
hours, and aircraft availability for the B-52 three aircraft case discussed above. Notice that it is
unimodal (a property we observed in all cases), so that the optimization model yields the global
solution (see Table 2).

Here we have a complete view of the general relationship between stock levels, #ying hours, and
availability which we could not create with current modeling capability. This graph was generated
by running the model with 1% availability goals and a step size of 0.5 #ying hours. The stock levels
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Table 1
No redundancy comparison of results * full stock case

� Of A/C Research model Model error Simulation 95% C.I.

Lower Mean Upper

E3B 5 19.40 0.06 18.14 19.34 20.54
37.50 !0.06 36.49 37.56 38.62

3 48.28 0.07 46.91 48.21 49.51
39.71 0.06 38.77 39.65 40.53

1 82.38 !0.43 81.84 82.81 83.79

F15 5 24.33 0.99 22.35 23.34 24.33
39.67 0.22 38.66 39.45 40.24

3 53.90 1.18 50.99 52.72 54.45
36.94 !1.09 36.52 38.03 39.53

1 86.89 !0.23 85.70 87.12 88.54

B52 5 25.78 !0.33 25.34 26.11 26.89
37.97 !0.73 38.20 38.70 39.20

3 54.34 0.07 53.29 54.27 55.25
35.67 !0.60 35.65 36.27 36.89

1 82.38 !0.09 81.45 82.47 83.49

F16 5 87.97 !0.42 87.49 88.39 89.29
11.41 0.48 10.11 10.93 11.75

3 94.76 !0.46 94.50 95.22 95.93
5.142 0.459 3.997 4.683 5.368

1 97.73 0.27 96.89 97.46 98.04

Fig. 3. Relationship of #ying hours and stock level to availability.

538 J.K. Cochran, T.P. Lewis / Computers & Operations Research 29 (2002) 529}540



Table 2
Redundancy case comparison of results * partial stock case

� Of A/C Research model Model error Simulation 95% C.I.

Lower Mean Upper

E3B 5 17.67 0.07 16.81 17.60 18.38
36.55 0.34 35.49 36.21 36.93

3 45.47 0.26 43.58 45.21 46.85
40.93 0.44 39.19 40.49 41.79

1 77.63 !0.04 76.3 77.67 79.04

F15 5 19.36 0.54 17.96 18.82 19.67
37.58 0.1 36.67 37.48 38.28

3 46.46 0.71 43.96 45.75 47.54
40.55 !0.13 39.21 40.68 42.16

1 78.46 1.01 76.06 77.45 78.94

B52 5 16.31 0.46 14.96 15.85 16.74
35.19 0.26 33.97 34.93 35.89

3 56.18 !0.2 55.05 56.38 57.7
34.61 !0.35 33.94 34.96 35.98

1 82.72 !0.3 82.03 83.02 84.01

F16 5 76.52 0.31 74.64 76.21 77.77
20.88 0.08 19.46 20.8 22.15

3 85.56 !0.48 85.05 86.04 87.04
13.69 0.42 12.33 13.27 14.21

1 95.49 0 94.69 95.49 96.29

were decremented from 100% by randomly selecting the missing items for each additional loss in
available stock until zero was reached. This graph allows the general assessment of any combina-
tion of #ying hour and stock level decisions. However, it is much more computational demanding
than a single search using the optimization model.

5. Summary

Logistics support has always been a key element of combat e!ectiveness as well as an important
element in commercial aircraft systems. The Air Force is interested in developing tools and
methods to assess the impact of logistics on combat capability. The current method used by the Air
Force to assess aircraft spares support was developed for use with a large number of aircraft. With
the high cost of new aircraft, fewer aircraft are "elded and, therefore, some of the critical
assumptions made in the current model are unsatisfactory. This includes the assumption of an
in"nite calling population of demands and the distribution of backorders by sampling with
replacement. This research develops an original method to assess the system availability of a small
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number of vehicles or machines which overcomes the #aws of the existing model. The new method
also allows the user to include component redundancy and component spares in the system.

In order to test the research method, a FORTRAN program was written to implement the
approach. Using actual US Air Force failure, repair, and scenario data for the F-16, F-15, E-3B,
and B-52H, the results were compared to simulation results. The research model was tested under
two di!erent cases: component redundancy and no component redundancy. In both cases, the
research model performed very closely to the simulated data. This provides strong evidence that
the research method performs well under a wide range of operating conditions. The research model
has an e$ciency advantage over the simulation model which include speed of processing (perfor-
mance improvement of several orders of magnitude) and, thus, the ability to handle more
components in the system for a "xed response time.

Finally, an additional capability was added to the research method that does not exist in the
current model or in the simulation model. An optimization technique is provided that allows the
user to optimize operating hours given a system availability goal or target. This new ability allows
the user to estimate the additional capability available (i.e. additional operating hours), or shortage,
if he is currently not matching his availability goal.
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