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a b s t r a c t

PCBs from the Sangamo-Weston Superfund Site near Clemson, South Carolina, USA, were

released into the Twelvemile Creek Arm of Lake Hartwell until the early 1990s. Monitor-

ing data have shown that while PCB concentration in sediments declined since 1995, PCB

concentrations in fish have remained elevated, e.g., largemouth bass (Micropterus salmoides)

concentrations have ranged from 5 to 10 ppm. The EPA aquatic ecosystem model AQUATOX

was applied to this system to better characterize foodweb dynamics that lead to biomag-

nification of PCBs. The model was calibrated with observed fish biomass data. Simulated

PCB loading over a 12-year period provided a reasonable fit to observed PCB data in fish. The

model demonstrated that contaminated labile detritus loaded to the system was incorpo-

rated into the foodweb rather than deposited, thereby maintaining the PCB concentrations

in fish while concentrations in the sediment declined. A dominant PCB pathway was from

detritus to daphnia to shad to largemouth bass. Fish PCB concentrations showed moderate

sensitivity to toxicant parameters; model runs incorporating uncertainty in these parame-

ters predicted recovery (<2 ppm PCB) for all species in the range of years from 2008 to 2013.

The high sensitivity of the model to parameters related to growth strongly affected PCB

concentrations in fish and should be considered in future AQUATOX applications.

Published by Elsevier B.V.

1. Introduction

Historical releases of polychlorinated biphenyls (PCBs) from
the Sangamo-Weston plant in Pickens, South Carolina, have
led to bioaccumulation in fishes in downstream waters. The
Sangamo-Weston plant manufactured capacitors and dis-
charged an estimated cumulative amount of 181.4 MT of PCBs
from 1955 to 1977 into Town Creek, a tributary of Twelvemile
Creek (U.S. EPA, 1994). Contamination of sediment and biota
in Twelvemile Creek and in the Twelvemile Creek Arm (TCA) of
Lake Hartwell is well documented. Studies in 1976 by the South

∗ Corresponding author. Tel.: +1 706 355 8148; fax: +1 706 355 8104.
E-mail address: Rashleigh.Brenda@epa.gov (B. Rashleigh).

1 Current address: US Geological Survey, Fort Collins Science Center, 2150 Centre Avenue, Fort Collins, CO 80526, USA.

Carolina Department of Health and Environmental Control
and the U.S. EPA found fishes in Lake Hartwell to be contam-
inated at levels above the safe tolerance level at that time
(5.0 ppm) (U.S. EPA, 1987), and fish consumptions advisories
were issued for portions of the lake. Concentrations of PCBs in
the sediments of the reservoir were also elevated (Dunnivant
et al., 1989).

Remediation of the Sangamo-Weston site and satellite
dumping grounds was completed in 1997; the downstream
area is being treated with Monitored Natural Recovery, which
relies on continued deposition of clean sediment to cap

0304-3800/$ – see front matter. Published by Elsevier B.V.
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contaminated sediments (U.S. EPA, 1994; Battelle, 2003; U.S.
EPA, 2004a). PCBs in sediments and aquatic fauna have been
monitored since 1995 to gauge the effectiveness of Moni-
tored Natural Recovery in lowering PCB concentrations in
sediments and aquatic fauna (Georgia DNR, 2006). Brenner
et al. (2004) demonstrated that PCB concentrations in TCA
sediments in 2001 and 2002 were in the range of 1 ppm, the
recovery goal for sediments (U.S. EPA, 1994). The recovery goal
for PCBs in fish tissue is 2.0 ppm, which is the current federally
specified level for fish consumption (U.S. EPA, 1994). Although
some tissue data show that concentrations are declining in
some species over time, data for largemouth bass (Micropterus
salmoides), a primary sport-fish in the TCA, show that PCB
levels remain above the recovery goal (Brenner et al., 2004).

In order to understand the patterns of contamination in
Lake Hartwell fish, it is necessary to understand the sources
and pathways for PCBs into fishes at higher trophic levels and
the residence times of PCBs in the Lake Hartwell foodweb.
Foodweb models can contribute valuable information on biotic
processing of contaminated material, persistence of PCBs in
the aquatic environment, and potential lag times in natural
recovery. The Lake Hartwell foodweb was previously investi-
gated by Brockway et al. (1995), and simulations beginning in
1991 were conducted by Bechtel Engineering Inc. (1993), which
estimated that mean PCB concentrations in largemouth bass
fillets would drop below the recovery limit by approximately
2001. Here we applied the AQUATOX model to the TCA, in
order to provide updated simulations using more recent data.
AQUATOX is a simulation model for aquatic systems that pre-
dicts the fate of various pollutants and their effects on the
ecosystem (U.S. EPA, 2004b). AQUATOX was favorably reviewed
in a recent evaluation of integrated eutrophication, fate, and
effects models by Koelmans et al. (2001). Integrated models
such as these allow the user to include feedback mechanisms,
identify dominant processes, and develop hypotheses about
ecosystem functioning (Koelmans et al., 2001).

For this study, our objectives were to (1) apply the AQUA-
TOX model to the TCA to provide an updated simulation and
future forecasts; (2) explore the sensitivity of the model and
how this relates to future predictions; and (3) identify impor-
tant pathways of contaminants to higher trophic levels (i.e.,
fishes) and possible mechanisms driving the ongoing high lev-
els of PCBs observed in fishes. Such an understanding will
enable managers to better identify sources and pathways of
ongoing PCB contamination and to predict recovery times.
Also, this is to our knowledge the first published account of
an AQUATOX application to a contaminated system outside
of the model validation reports (U.S. EPA, 2000), as well as the
first published sensitivity analysis of AQUATOX that includes
fish, so this application provides useful information for other
potential model users.

2. Methods

2.1. Model set-up

The AQUATOX model (Release 3.1) was parameterized and
applied to the TCA region of Lake Hartwell in South Carolina,
the section of the reservoir that is of primary interest due

Fig. 1 – Location of the study area. The source of PCBs in
the system was the Sangamo-Weston plant, located along
Town Creek, a tributary to Twelvemile Creek. The AQUATOX
model was applied to the Twelvemile Creek Arm of Lake
Hartwell from the USGS gage downstream to the
confluence with the Keowee River.

to PCB releases upstream (Fig. 1). Lake Hartwell is a reser-
voir along the Georgia/South Carolina border created by the
Hartwell Dam on the Savannah River. The study reach is a 20.4-
km stretch of the TCA, with the upstream boundary at the U.S.
Geological Survey (USGS) gage #02186000 (Twelvemile Creek
near Liberty, SC) and the downstream boundary between the
TCA and lower Lake Hartwell, at the confluence with the
Keowee River. The study reach was selected to coincide with
the reach used for recent hydrodynamic modeling on the TCA
(RMT, 1999), which provided values for reservoir depth and
volume. Parameters for light, wind, evaporation, and tempera-
ture required by AQUATOX were taken from available literature
data (Table 1). The photoperiod is determined by AQUATOX
based on the latitude of the USGS gage. The model can be
adjusted to allow the system to stratify; however, initial model
runs showed no sensitivity to this option, so it was not used
in the final analysis.

Flow values at the USGS gage were available at the USGS
National Water Information System website (http://nwis.
waterdata.usgs.gov/nwis/nwis) only until September 2001, so
a regression with a nearby gage with highly correlated flow
(Eighteen Mile Creek above Pendleton, SC, � = 0.90, p < 0.0001)
was used to generate the missing values. The AQUATOX model
determines outflow to maintain a constant volume. Mean

http://nwis.waterdata.usgs.gov/nwis/nwis
http://nwis.waterdata.usgs.gov/nwis/nwis
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Table 1 – Input data used to parameterize the AQUATOX model for Lake Hartwell TCA.

Parameter Value Source and notes

Surface area 30,381 m2 RMT (1999)
Depth Maximum: 13.7 m; mean: 4.3 m RMT (1999)
Light Mean: 361; range: 261–461 Ly/d National Renewable Energy Laboratory (1994), for Augusta, GA, 1961–1990,

flat-plate collector with 0◦ tilt
Evaporation 37.6 in./year US Army Corps of Engineers (1996), mean of 20 years of data for

Savannah River Basin
Wind 2.9 m/s US Army Corps of Engineers (1996), mean of monthly values (1961–1990)

for the National Weather Service Station, Augusta, GA airport
Water temperature Mean: 19 ◦C; range: 11–27 ◦C Bechtel Engineering Inc. (1993), represented as a sine curve, repeated

each year
pH 7.0 STORET (US EPA Storet database, http://www.epa.gov/storet/); mean of 12

samples from USGS gage (2002), sd = 0.3
Oxygen 9.9 mg/L STORET, mean of 12 samples from USGS gage (2002), S.D. = 1.6
Ammonia Inflow: 0.05 mg/L STORET for USGS gage; non-point source load adjusted to 25 g/d
Nitrate Inflow: 0.2 mg/L STORET for USGS gage; non-point source load adjusted to 5000 g/d
Phosphate Inflow: 0.1 mg/L STORET for USGS gage; non-point source load adjusted to 200 g/d

values for inflow dissolved oxygen, pH, nitrate, ammonia, and
phosphate measured were taken from the U.S. EPA STORET
database for the USGS gage location and used as constant
input (Table 1). We adjusted non-point source loads for nitrate,
ammonia, and phosphate so that mean concentrations in the
lake were in agreement with measured values.

Default parameters for detrital processes supplied by the
AQUATOX model were used because these are considered
appropriate for most systems (U.S. EPA, 2004c), except that the
maximum degradation rate of labile detritus was reduced from
its default of 0.29 day−1 to 0.15 day−1 (Webster and Benfield,
1986). Input detritus was specified as 1.3 mg/L dry weight
of organic matter (Huffstetler and Carroll, 1992). The total
amount of detritus is divided into four compartments in
AQUATOX: particulate refractory and labile organic detritus,
and dissolved refractory and labile detritus. For Lake Hartwell,
detritus was partitioned as 30% particulate versus 70% dis-
solved, and 60% refractory versus 40% labile (D. Park, Eco
Modeling, pers. comm., 2005). The model required initial esti-
mates for refractory and labile sedimented detritus; for Lake
Hartwell, the estimates were set at 12 and 6 g/m2 dry weight,
which are the values that the model adjusts to after transient
initial dynamics.

2.2. Foodweb representation

Conceptually, PCBs are loaded to the system through water
and detritus, taken up into lower levels of the foodweb, and
transferred to higher levels through feeding interactions. The
AQUATOX model requires the user to provide a foodweb
depicting the tropic interactions among the biological compo-
nents in the system. The foodweb used to represent the TCA
is shown in Fig. 2. Four species of invertebrates were included:
mayfly; Daphnia sp. (water flea); Chironomid sp. (midge larvae);
and the predatory invertebrate, Chaoborus sp. (phantom midge
larvae). We represented the dominant fish species in the lake:
largemouth bass, bluegill (Lepomis macrochirus), and shad (Doro-
soma cepedianum, Dorosoma petenense—these two species of
shad were combined, due to their ecological similarities). We
generally accepted the default trophic interactions in AQUA-
TOX for these biota (U.S. EPA, 2004b) but also considered diet

data from Leidy and Plotsky (1980) for invertebrates and Leidy
and Jenkins (1977) for fish to establish trophic interactions
(Fig. 2).

Fishes are the main focus of this modeling effort because
they are potentially consumed by humans (U.S. EPA, 1994). The
foodweb was simplified to focus on the dominant species in
the reservoir even though additional species such as carp or
striped bass could affect the dynamics of the components that
were modeled (Bechtel Engineering Inc., 1993). We recognize
that the foodweb in Fig. 2 is missing additional members, and
the nature and level of interactions is also uncertain. Bartell
et al. (2003) have discussed the need for ecological risk assess-
ment models to balance the realism of an assessment model
with the usefulness of model outputs for the needs of each
particular application. For this application, we concentrated
on those with reasonable data available.

To parameterize each fish species, we took temperature
response slope, optimum and maximum temperature, max-
imum consumption, Specific Dynamic Action (SDA), and res-
piration parameters from the Wisconsin Bioenergetics model
(Hanson et al., 1997); shad were represented using herring

Fig. 2 – Diagram of the Lake Hartwell TCA foodweb
simulated in AQUATOX. Thick lines indicate strong
interactions (>30% of the diet).

http://www.epa.gov/storet/
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feeding parameters and bluegill temperature parameters
(Table 2). Egestion fraction was set at 0.3 for feeding on inver-
tebrates and algae, 0.4 for feeding on fish, and 0.5 for feeding
on detritus. Daily fish mortality rates were taken from Leidy
and Jenkins (1977) (Table 2). Fish species spawn one time per
year, with a gamete:biomass ratio of 0.05 and gamete mor-
tality of 0.1 day−1 for all species. For invertebrates, Leidy and
Plotsky (1980) was used as the source for invertebrate mor-
tality rates, respiration rates, maximum consumption, and
maximum temperature; and optimum temperature and tem-
perature response were taken from the AQUATOX library and
references therein. We adjusted half-saturation parameters
for fish species in calibration, as described below. A nominal
loading of 0.00001 g/m2 was assumed for all biota in order to
promote stability of the simulation.

2.3. Biomass calibration

The model was run for the years 1995–2006, which is the time
range for which PCB data are available, and predicted fish
biomass data was calibrated to existing fish biomass values
measured by the Georgia Department of Natural Resources
(GADNR). The GADNR fish biomass data used in calibration
was collected with cove Rotenone sampling at three locations
in Lake Hartwell in mid-August of 1978, 1981, 1984, 1987, 1990,
and 1995. We calculated mean biomass for species by pooling
data across sites and years (Table 2). These values are in line
with carrying capacity estimates given by Leidy and Jenkins
(1977) for shad, sunfish, and black bass for southeastern reser-
voirs (Table 2). Fish biomass in AQUATOX was initialized with
data collected by the GADNR. A wet:dry biomass ratio of 5 was
used to convert dry weight biomass predicted by AQUATOX to
wet weight values measured by GADNR (Barber, 2003).

To calibrate the model, values of half-saturation param-
eters for all three fish species were adjusted so that mean
biomass for each fish species in mid-August stabilized in the
range of the values measured by the GADNR. Half-saturation

was chosen as a calibration parameter because parame-
ters controlling biomass – consumption, respiration, and
half-saturation – were related to one another, and consump-
tion and respiration were better known than half-saturation
(Hanson et al., 1997). Biomass values predicted by AQUATOX
were assumed to be in agreement with measured values if
two conditions were met: (1) total biomass for the three fish
species were within the range of measured total biomass in
every year and (2) no significant difference between the mean
predicted biomass and the observed mean biomass of each
species, using a student’s t-test. A time series of fish biomass
with a greater sampling frequency would be more desirable
for calibration, but this type of data is rarely available.

2.4. Representation of PCBs

PCBs were modeled as total PCB (tPCB), which is the unit used
for the recovery level for Lake Hartwell, so this was the most
useful modeling endpoint from the management perspective.
Although the field data were reported as mixtures (Aroclors),
it would have been difficult to simulate individual mixtures,
since different Aroclors occurred in different years: only 1254
was reported in 1995; Aroclor 1260 was reported starting in
1996 but half of the values were below detection levels; and
Aroclor 1242 was first reported in 2001. Also, different Aro-
clors were reported from the sediment. Aroclor 1254 was the
only Aroclor reported from the system in 1995, the dominant
mixture in all years, and within the dominant homolog group
in the Lake Hartwell system (Brockway et al., 1995), so param-
eters for this mixture were used for the model: a molecular
weight of 328 g/mol, log octanol–water partition coefficient
(Kow) of 6.5, and Henry’s law constant of 2.0 × 10−3 (Agency
for Toxic Substances and Disease Registry, 2000).

We relied on available measured data to set the PCB con-
centration in water. In 1991, PCBs were undetected in the study
area at detection limits ranging from 0.49 to 2.0 �g/L and in
1992, PCBs were undetected at detection limits of 1.2 or 1.3 �g/L

Table 2 – Biota characteristics used in the AQUATOX model application to Lake Hartwell.

Parameters Invertebrates Fish

Chironomid Mayfly Daphnia Chaoborus Shad Bluegill Largemouth
bass

Elimination rate constant
(k2, 1 d−1)

0.015 0.0122 0.0243 0.0112 0.0009 0.0014 0.0010

Lipid fraction (wet weight) 0.05 0.05 0.05 0.05 0.06 0.05 0.04
Half-saturation (mg/L) 0.43 1.7 1.0 0.045 2.55 1.35 0.515
Maximum consumption

(g/g d)
0.19 0.1 1.2 0.25 Based on Hanson et al. (1997)

Optimum, maximum
temperature (◦C)

15, 29 18, 35 26, 34 23, 37 27, 36 27, 36 27.5, 37

Temperature response 2.4 1.6 2.4 1.6 2.3 2.3 2.65
Mortality rate (1 d−1) 0.001 0.001 0.002 0.01 0.0020 0.0016 0.0008
Mean wet weight (g) 0.0075 0.02 0.0006 0.02 60 40 500
Respiration (1 d−1) 0.035 0.02 0.15 0.029 Based on Hanson et al. (1997)
Southeastern reservoirs

(g/m2 wet weight)
Not available 3.6 2.1 1.1

GADNR mean biomass
(S.D.) (g/m2 wet weight)

Not available 5.1 (3.1) 2.3 (0.9) 0.8 (0.2)
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(Bechtel Engineering Inc., 1993). Battelle (2003) collected nine
water samples in Twelvemile Creek in 2001 in which PCB
concentrations ranged from below the detection limit (which
was not provided) to 0.19 �g/L, with a value of 0.05 �g/L mea-
sured upstream of the gage. We set initial condition of PCB
in lake water to 0.05 �g/L and assumed no inflow of PCB in
water.

AQUATOX assumes that all PCB in sediment is associated
with the detritus, which was modeled in AQUATOX as organic
matter. The initial PCB concentration of sedimented detritus
in the lake was calculated from data reported by Brenner et
al. (2004): 2 mg PCB per kg dry sediment, divided by 0.03 kg
total organic carbon (TOC) per kg dry sediment, divided by
1.9 (standard AQUATOX conversion from TOC to organic mat-
ter) = 35 mg PCB/mg sediment organic matter. PCB load for
inflow detritus was set based on yearly observed sediment
concentrations at the sample site directly upstream of the
USGS gage (Site SD002); the AQUATOX model conducts linear
interpolation between the yearly values.

Initial levels of PCB in phytoplankton and benthic inverte-
brates were set at the values to which preliminary model runs
equilibrated. Elimination rates for fish and invertebrates were
calculated based on Barber (2003):

k2 = C × wet weight−0.197

lipid fraction × Kow
,

where C = 445 for fish and C = 890 for invertebrates. Estimated
values for lipid fraction and mean wet weight, generally based
on AQUATOX defaults, are given in Table 2.

2.5. Model assessment

Concentrations of PCBs predicted for fish were compared to
measured values from station SV-107, located approximately
5.5 km upstream of the confluence with the Keowee River,
which we considered representative of TCA (Georgia DNR,
2006). The U.S. EPA Region 4 collected fish by electrofishing
and gill netting in April of each year, and fillets were analyzed
using PCB Aroclor Method 8082 (U.S. EPA, 1994). Initial toxicant
levels in fish were specified based on existing data from the SV-
107 site from the initial study year, 1995 (Georgia DNR, 2006).
Measured values were in units of total PCBs in fillets (ppm
wet weight); we used a factor of 0.75 to convert whole-body
concentrations predicted by AQUATOX to equivalent fillet con-
centrations (Amrhein et al., 1999, calculated from mean values
reported in Table 1). Predicted values were compared to mea-
sured values in terms of means and standard deviations; mean
error and mean percent error to measure bias in the model
predictions; root mean square error and mean absolute error,
which measure predictive accuracy of the model and should
be as small as possible (Power, 1993); and r2 to measure the
tendency of predicted and observed values to vary together
linearly.

2.6. Analysis of the TCA system

We conducted a sensitivity analysis in order to identify
the parameters that the model was most sensitive to; that
is, where model outcome shows a relatively large change
in response to a smaller change in that parameter. The

analysis was conducted by sequentially increasing individ-
ual physical/chemical, fish, invertebrate, algae, and toxicant
parameters by 10% and recording the percent change in end-
ing PCB concentration for the three fish species. Sensitivity to
fish biomass was also tracked because PCB concentration is
strongly dependent on it. We recognize that this approach to
sensitivity is simplified; additional sensitivity analyses should
consider parameter interactions (Tang et al., 2007).

The calibrated AQUATOX model for TCA was run to year
2030 to predict when PCB concentrations for all fishes fall
below the recovery level of 2 ppm. We focused on the recovery
of largemouth bass, the fish that showed the slowest decline in
PCB concentrations. The 12-year flow regime was repeated to
represent future flow. Future input detritus was set at a con-
stant 0.12 ppm, which was the mean in the stream between
the gage and the source based on 21 samples in 2003–2004.
Five uncertainty runs – representing uncertainty in the most
sensitive physical/chemical, fish, invertebrate, algae, and tox-
icant parameters – were conducted to establish bounds (±1
S.D.) on the predicted recovery date established in the future
forecast. We used the default uncertainty analysis procedure
in AQUATOX, where parameter values are selected with Latin
hypercube sampling from a normal distribution with a stan-
dard deviation equal to 60% of the mean for a set of 20
runs.

We then analyzed daily rates of PCB movement, which
AQUATOX calculates for each process associated with each
state variable as the magnitude of the flow in or out of the pool
(in �g/L) divided by the magnitude of the pool (U.S. EPA, 2004c).
Rates were used to identify the dominant PCB pathways in the
system.

3. Results

3.1. Assessment of results for fish biomass and PCB
concentrations

When parameters were adjusted in calibration to the val-
ues given in Tables 1 and 2, predicted total fish biomass
for mid-August of each year fell within the range of mea-
sured values. The range of modeled biomass was 5.1–9.0;
the range of measured biomass was from 3.9 to 13.9 g/m2.
There was no significant difference between the mean mea-
sured GADNR biomass and predicted biomass for any species:
(t-test results for shad: p = 0.58, bass: p = 0.78, and bluegill:
p = 0.16). There was some variation in fish biomass across the
years due to variation in flow—high flow or large flow events
increased washout of prey items, which reduced fish growth
and biomass.

The fit between observed PCB concentrations in fish and
values predicted by the model is relatively good for all species
(Fig. 3, Table 3). Predicted data generally fell within one
standard deviation of the observed data, when a range was
available—in some cases (e.g., bluegill in most years) data for
only a single fish was available so the range could not be com-
pared. Mean error and percent mean error measure the bias
in the model predictions, which should be close to zero; mean
error was <1 and percent error was <20% for all fish. The nega-
tive mean error for shad and bluegill indicated that the model
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Fig. 3 – Predicted and observed total PCB fillet
concentrations (wet-weight) over twelve years in three fish
species for Lake Hartwell TCA. Observed values are
concentrations averaged by fish species measured at a
central sample site in TCA (SV-107) in April of each year.

is under-predicting the observed values. The lowest r2-value
occurred for shad (0.33). For shad, and also bass, it appeared
that the predicted pattern followed the observed with a time
lag of 1–2 years (Fig. 3). Also, the model was not able to repro-
duce the sharp increases in observed data (e.g., 125% increase
from 1998 to 1999 for shad, 111% increase from 1996 to 1997
for bluegill).

3.2. Sensitivity analysis

Table 4 shows the sensitivity of fish PCB concentration to a
10% increase in input variables for all tested variables for
which fish PCB sensitivities were ≥1. Biomass sensitivity is
also shown in Table 4 in order to support the interpretation of
patterns in PCB concentration, which often reflect the biomass
sensitivities. PCB concentration in largemouth bass generally

showed higher sensitivity to increased input variables than
that of shad or bluegill. The highest sensitivity of PCB in large-
mouth bass occurred in response to optimum temperature
for the bass. The increase in optimum temperature shifted
the species’ temperature response curve with respect to the
temperature regime, such that more days were further from
the species’ optimum temperature. This resulted in a strong
decline in biomass (−91%), which caused an increase in PCB
concentration (65%). PCB in largemouth bass was also highly
sensitive to the optimal temperature for shad, its most con-
taminated prey item—the loss of shad biomass (−100%) led
to a decline in the bass PCB concentration (−33%), as bass
switched to less toxic prey.

The set of parameters to which the bass PCB concen-
tration was sensitive (≥10%) was dominated by maximum
consumption, optimum temperature, half-saturation, and res-
piration for fish and invertebrates. These changes altered
biomass of different compartments, and the resulting changes
in PCB concentrations were determined by foodweb interac-
tions. The only environmental variables within this sensitivity
range were NO3, which stimulated growth of phytoplank-
ton that served as food for invertebrates and fishes and led
to growth dilution of PCB in fish; and inflow water, which
increased washout of the prey items, reduced biomass, and
therefore increased PCB concentration. PCB concentrations in
all three fish species increased moderately (8–10%) in response
to increased PCB octanol–water coefficient (log Kow), amount
of contaminated input detritus, and level of PCB in input detri-
tus.

The sensitivity of PCB in bass was <10% for several param-
eters, including growth parameters for additional species and
SDA and mortality for most species (Table 4). For this set of
parameters, sensitivity of PCB in shad and bluegill was also
<10%, except for the sensitivity of PCB in shad to parameters
for respiration (27%) and half-saturation (13%) and PCB in
bluegill to respiration (19%). Increases in these parameters
decreased fish biomass and increased PCB concentration in
the fish, and therefore in bass, the top predator. Sensitivities
<1% not shown in Table 4 included PCB molecular weight
and Henry’s law coefficient, physical/chemical variables
(pH, light, oxygen, suspended solids, and CO2), additional

Table 3 – Model performance statistics comparing observed and predicted total PCB fillet concentrations (ppm) for four
fish species from the Lake Hartwell TCA for 1995–2006 (N = 12).

Model performance statistics Fish species

Shad Bluegill Largemouth bass

Mean total PCB concentration
Predicted 4.28 2.32 7.64
Observed 5.17 3.08 6.74

Standard deviation of total PCB concentration
Predicted 2.47 1.17 3.03
Observed 2.12 1.95 2.84

Mean error −0.90 −0.75 0.90
Mean percent error −0.11 −0.13 0.18
Root mean square error 2.23 1.57 2.27
Mean absolute error 1.63 1.02 1.88
r2 0.33 0.47 0.53
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Table 4 – Sensitivity of mean biomass and mean PCB concentration for fish species in AQUATOX for Lake Hartwell in
response to a 10% increase in input parameters (max = maximum, opt = optimum).

Parameters (listed in order of Bass PCB
concentration sensitivity)

Biomass PCB

Shad Bluegill Bass Shad Bluegill Bass

Temperature (opt): Bass 57 60 −91 3 0 65
Temperature (opt): Shad −100 −7 35 535 2 −33
Respiration: Chironomid −18 −17 −87 −1 −5 29
Temperature (opt): Daphnia 12 14 −33 5 6 24
Consumption (max): Daphnia −19 −30 72 −7 −6 −19
Respiration: Daphnia 10 45 −22 4 3 16
Consumption (max): Mayfly −4 −79 −73 3 8 16
Respiration: Bass 27 25 −47 1 0 16
Consumption (max): Shad −17 −89 300 −16 0 15
Half-saturation: Daphnia 10 34 −20 3 3 14
NO3 −23 −52 342 −17 −10 −12
Water Inflow −7 −7 −32 5 6 12
Consumption (max): Bass −43 −38 72 −2 1 −12
Temperature response slope: Daphnia −7 −23 −19 2 4 11
Consumption (max): Bluegill −69 381 284 −6 −2 −11
PCB in input detritus 0 0 0 10 10 10
Photosynthetic rate (max): Green algae −40 −36 203 −5 1 −9
Temperature response slope: Bass 23 22 −37 1 0 9
PCB log octanol–water partition coefficient 0 0 0 8 10 9
Detritus loading 3 −3 30 8 9 8
SDA: Daphnia 5 15 −13 2 2 8
Half-saturation: Bass 25 24 −40 1 0 8
Temperature (opt): Chironomid −4 −6 −64 −1 −3 8
Half-saturation: Shad −93 45 −82 13 2 −7
Temperature (opt): Chaoborus 6 8 −8 1 3 7
Respiration: Shad −96 48 −84 27 3 −6
Temperature response slope: Shad −91 42 −81 8 2 −6
Temperature (opt): Diatoms −29 −24 135 −3 2 −6
Consumption (max): Chironomid −50 −39 263 −2 6 −6
SDA: Chironomid 0 −1 −51 0 −2 5
SDA: Bass 8 7 −15 0 0 5
Half-saturation: Chironomid 1 −2 −51 0 −2 5
NH3 and NH4

+ 2 −3 90 −4 −3 −5
Respiration: Chaoborus −1 −9 −5 1 3 4
Respiration: Bluegill 15 −91 −27 1 19 4
Temperature (opt): Green algae 3 22 −63 −1 −5 4
Temperature response slope: Chaoborus 5 9 −7 1 2 4
Mortality: Shad −22 14 −34 −1 1 −4
Saturating light: Diatoms −14 −12 63 −1 1 −3
Half-saturation: Bluegill 12 −81 −23 1 5 3
SDA: Chaoborus −1 −5 −4 0 2 3
SDA: Shad −41 24 −52 5 1 −3
Temperature (opt): Bluegill 10 −70 −19 1 −10 3
Consumption (max): Chaoborus 6 48 7 −2 −3 −2
Wind 0 0 −4 −2 −3 −2
SDA: Bluegill 6 −47 −13 0 3 2
Mortality: Chaoborus −1 −3 0 0 1 2
Mortality: Chironomid 1 1 −28 0 −1 2
Water temperature −6 51 34 9 −1 1
Temperature response slope: Bluegill 5 −37 −10 1 −3 1
Temperature (max): Shad 11 −11 32 −1 −1 1
Half-saturation: Chaoborus −2 −2 2 0 1 1
Mortality: Green algae −1 −3 −14 0 0 1
Temperature (max): Bass −4 −4 7 0 0 −1
Photosynthetic rate (max): Diatoms 5 9 −40 −1 −5 0
Saturating light: Green algae −1 −2 −26 0 −1 0
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Table 5 – Fate of PCB in the simulated Lake Hartwell system.

PCB in compartment Gain (%) Loss (%)

Largemouth bass Diet (0.1) Mortality (0.1), depuration (0.1)
Bluegill Diet (0.3) Mortality (0.2), depuration (0.1)
Shad Diet (0.3) Mortality (0.2), depuration (0.1)
Chironomid Diet (1.8) Depuration (1.2), mortality (0.5), predation (0.1)
Chaoborus Diet (5.1), gill uptake (0.2) Washout (3.3), mortality (1.0), depuration (1.0)
Mayfly Diet (0.6) depuration (1.1), mortality (0.1)
Daphnia Diet (9.4), gill uptake (0.3) Predation (4.2), washout (3.3), depuration (1.5)
Diatoms Uptake (38) Depuration (20), predation (8.0), mortality (6.5)
Green algae Uptake (42) Depuration (20), predation (9.7), mortality (6.5)
Dissolved labile detritus Formationa (12.1), load (1.5) Decomposition (10.9), washout (3.3)
Dissolved refractory detritus Load (2.2), formation (1.6) Washout (3.2), colonization (2.7)
Particulate labile detritus Formation (21.9), colonization (3.0) Decomposition (10.9), predation (8.5), washout

(3.3), sedimentation (3.2)
Refractory particulate detritus Formation (5.7), load (1.0) Washout (3.2), sedimentation (3.2), colonization

(2.7), predation (1.7)
Sedimented labile detritus Formation (9.7), colonization (4.7), sedimentation (2.4) Decomposition (14.4), predation (2.6)
Sedimented refractory detritus Formation (2.5), sedimentation (0.4) Colonization (2.7), predation (0.1), burial (0.1)
Water Depuration (55), decomposition (52) Algal sorption (95), volatilization (8.0), washout

(3.4), gill sorption (0.3)

Dominant gains and losses are listed for each compartment, which are calculated as the magnitude of the flow in or out of the pool (�g/(L d))
divided by the magnitude of the pool (�g/L), expressed as a percent (100×).
a Formation includes mortality, excretion, defecation, and gamete loss.

biotic parameters for invertebrates, and all initial conditions,
including toxicant in all compartments.

3.3. Future predictions and uncertainty

A future model run showed that largemouth bass, which
showed the slowest decline in PCB concentrations compared
to other fishes, should reach recovery level (2 ppm) in the fall of
2011. When uncertainty was introduced into the most sensi-
tive physical/chemical, fish, invertebrate, or algae parameters,
the predicted fish biomass spanned several orders of magni-
tude, outside the range of observed biomass, so we could not
obtain useful predictions for PCB concentrations under these
scenarios. When uncertainty was introduced into the most
sensitive toxicant parameters (log Kow and PCB detrital load-
ing), there was no effect on fish biomass, and the range (±1
S.D.) for predicted recovery time for largemouth bass was from
the summer of 2008 to the summer of 2013.

3.4. Rates and pathways

Analysis of the rates of PCB movement among model com-
partments is summarized in Table 5. For all fishes and
invertebrates, diet uptake exceeded gill uptake; the ratio of
gill:diet uptake was in the range of 5%, which is consistent
with similar studies (Barber, 2003). Fish and invertebrates lost
PCB through mortality and depuration; invertebrates also lost
PCB through washout and predation. For algae, the domi-
nant gain was uptake and the dominant loss was depuration.
The dominant PCB gain for dissolved and particulate detritus
occurred through morality, defecation, excretion, and gamete
loss from other model compartments. For particulate labile
detritus, the largest detrital pool, PCB was lost to mainly to
decomposition (11%) and ingestion (9%), rather than sedimen-
tation (3%) (Table 5). PCBs in sedimented detritus accumulated

through formation and sedimentation; colonization was the
dominant loss of PCB from the refractory pool (and a gain
to the labile pool), and decomposition was the dominant loss
from the labile pool. PCB released to the water through decom-
position and depuration was quickly taken up by algae.

The PCB in the largemouth bass comes mostly from its
diet—most likely obtained from Chaoborus, the most domi-
nant prey item, and shad, the most contaminated and second
most dominant prey item (Fig. 2). Contamination in shad and
Chaoborus is mostly via their diets, both of which are dom-
inated by daphnia. Daphnia also receives its contamination
via its diet, which consists of detritus and algae. Sensitivity
analysis of daphnia, largemouth bass, and shad PCB concen-
trations to sequential increases in each of the daphnia diet
items showed that highest sensitivity occurred in response to
PCB in the labile particulate detritus in the daphnia diet.

4. Discussion

This application of AQUATOX to the TCA allowed us to meet
our objective of providing an updated simulation with future
forecasts. As expected, differences in toxicant concentrations
among species were due to differences in diet (Luk, 2000),
and PCB concentration in largemouth bass declined most
slowly, due to their large size and carnivorous diet. There was
reasonable agreement of the observed PCB concentrations,
although it may be difficult to match observed data based on
low sample numbers with high variability. Certain aspects
of the measured PCB could not be reproduced, particularly
sharp increases—it is possible that these are related to
irregular flushing of sediment collected behind upstream
dams (Dunnivant et al., 1989), which was not represented in
the model. One difficulty in representing PCB dynamics with
AQUATOX is that elimination of the chemical is represented
as a constant flow; that is, fecal excretion is not explicitly
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represented, which could lead to an inaccurate representa-
tion of elimination. Also, the equations AQUATOX uses for
modeling contaminant bioaccumulation in compartments
are a mixture of compartmental and individual processes,
which, while being dimensionally correct, makes it difficult
to represent compartmental concentrations by manipulating
only individual-based uptake and elimination rates.

Despite the model’s complexity, it is still a simplification
of the actual site in many ways. For example, algorithms used
by AQUATOX to describe dietary and gill chemical are largely
empirically based and may not reflect the current mechanisti-
cally based understanding of these processes (see for example,
Barber, 2003; Arnot and Gobas, 2004; Kelly et al., 2004). Like-
wise, lethal and sublethal effects were not represented here;
AQUATOX does provide this capability but concentrations in
the fishes were well below toxic levels (Mayer and Ellersieck,
1986). Uncertainty is associated with feeding relationships,
which could be considered in future analysis (Preziosi and
Pastorok, 2008). Intra-specific differences in terms of size and
sex, which were not considered here, can also affect PCB
uptake in fishes (Bremle and Larsson, 1998; Madenjian et al.,
1998). The approach used here assumed both temporal sim-
plification, ignoring yearly differences in temperature, and
spatial simplification, ignoring that spatial heterogeneity has
been demonstrated in sediment concentrations across the
lake (Dunnivant et al., 1989; Sivey and Lee, 2007). The repre-
sentation of spatial heterogeneity in a system can increase
realism (Pastorok et al., 2001; von Stackelberg et al., 2002).
Additionally, movement of species in and out of the study
area was not considered, and this could affect the PCB con-
centrations in the system (Bayne et al., 2002). Future work can
address these issues of uncertainty in terms of model struc-
ture and model architecture.

In the exploration of sensitivity of fish PCB concentra-
tion, our second objective, we found that it mirrored biomass
sensitivity, where an increase in biomass was accompanied
by a decrease in PCB concentration due to growth dilution.
Observed fish biomass has been relatively stable since the
1960s, so the sensitivity may be a property of the model
rather than a representation of reality. Bass PCB concentration
was highly sensitive to selected parameters: a 10% parameter
increase resulted in a sensitivity of >10% for 15 parameters,
four of which were >20%. In contrast, Simon (1999) showed
that an FGETS model applied to this same system had equiva-
lent sensitivities of <10% for all parameters tested. van Nes et
al. (2002) showed ≤20% sensitivity for all selected parameters
within PISCATOR, a multi-species individual-based fish model.
PCB concentration in bass was most sensitive to optimal tem-
perature, which is consistent with Sourisseau et al. (2008),
who showed that predators’ highest sensitivity in an AQUA-
TOX application for two artificial streams was also optimum
temperature. Model users should be aware of the potentially
high sensitivity of higher trophic groups. In reality, tempera-
ture across Lake Hartwell is heterogeneous and fish may move
to pockets of suitable temperature, so it is unlikely that tem-
perature has such a large effect on the fishes in this ecosystem
(unless these pockets correlate with levels of contamination).
Based on the high sensitivity of fish PCB concentration to
maximum consumption, respiration, half-saturation param-
eters, it appears to be a property of the model that the feeding

parameters are “balanced” to predict a stable biomass for fish
and invertebrates. Both this study and Sourisseau et al. (2008)
found that the highest sensitivities for algae in AQUATOX were
saturating light, optimum temperature, and maximum photo-
synthetic rate.

Our results showed that sensitivity of fish PCB concen-
tration to log Kow was moderate, and sensitivities to PCB
molecular weight and Henry’s law constant were low, com-
pared to sensitivities of other parameters in the model. These
three parameters would be used in AQUATOX to represent dif-
ferent congeners. PCBs would be most accurately represented
as congeners, since these differ in their chemical properties
and their toxicological effects (Cleverly, 2005), however, the
low to moderate sensitivity in these parameters indicates that
a representation of different congeners in this system would
most likely show a similar result to the one found here for
total PCBs. The moderate sensitivity and uncertainty in fish
PCB concentration in response to the toxicity of input detri-
tus allowed us to make useful predictions for this system,
assuming that the biomass is accurately represented.

Our third objective was to identify important pathways of
contaminants to higher trophic levels (i.e., fishes) and possible
mechanisms driving the ongoing high levels of PCBs observed
in fishes. An interesting finding with respect to PCBs in the
Lake Hartwell system is that PCB loading appears to occur
through input of contaminated detritus that is taken up in
the foodweb. We attribute this result to the process by which
contaminated detritus entering the system is consumed by
invertebrates and fish rather than being incorporated in the
sediment. A dominant pathway was via transfer of PCB from
detritus to daphnia to shad to largemouth bass. This is consis-
tent with the results of Stapleton et al. (2001), who found that
suspended particulate matter rather than sediment was the
main method of exposure for fishes to PCB in Lake Michigan.
Likewise, Thomann et al. (1992) found that the dominant path-
way of exposure to amphipods in Lake Ontario for a chemical
with log Kow in the range 5.5–7 was through consumption of
particulate organic carbon in the sediment. The concentration
of PCB in input detritus for Lake Hartwell is largely unknown.
Quantifying the amount, toxicity, and timing of input detri-
tus is critical for understanding the current dynamics of the
system.

This modeling analysis provides a better understanding
of the system and informs management options. Ecosystem
models such as AQUATOX are useful for studying organic
pollutants such as PCB, since these pollutants tend to be
persistent and present in all environmental phases (Wania
and Mackay, 1999). It is particularly useful to have models
that represent multiple stressors (Wania and Mackay, 1999;
Rose et al., 2003). Such models can provide estimates of the
time needed for toxicant concentrations in fish to be reduced
below target levels for human health. Knowledge of the time
response is important for management, and can influence
remediation choices (Gobas et al., 1995). These predictions and
estimates could be incorporated into probabilistic risk assess-
ment techniques for the site (Simon, 1999). Additionally, the
model could be used in the assessment of future proposed
remediation activities, such as upstream dam removal (U.S.
EPA, 2004a). Assessment of alternatives and predictive capa-
bility are valuable contributions that ecological risk models for
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bioaccumulation can provide to environmental management
of aquatic systems (Sharpe and Mackay, 2000).
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