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Abstract 
Metabolites of the 6,7,10,11 bisepoxide juvenile hormone III (JHB3), and other potential juvenoids, 
were tested for juvenile hormone activity using early instar or early stage pupae of Drosophila mela-
nogaster. Importantly, methyl farnesoates were tested as they might have JH-like activity on Dipteran 
juveniles. Larvae were exposed to compounds in medium, or the compounds were applied to white 
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puparia. In the assays employed in the present study, there was no indication for JH activity associ-
ated with the metabolites of JHB3. The activity of methyl farnesoate (MF) was higher than that of JH 
III and far greater than bisepoxide JH III. As opposed to the two endogenous juvenile hormones, 
methyl farnesoate has weak activity in the white puparial bioassay. When fluorinated forms of me-
thyl farnesoate, which is unlikely to be converted to JH, were applied to Drosophila medium to which 
fly eggs were introduced, there was a high degree of larval mortality, but no evidence of subsequent 
mortality at the pupal stage. One possible explanation for the results is that methyl farnesoate is 
active as a hormone in larval stages, but has little activity at the pupal stage where only juvenile 
hormone has a major effect. 
 
Keywords: bisepoxide juvenile hormone, juvenile hormone, methyl farnesoate, Drosophila, bioassay 
 
1. Introduction 
 
The identification of the basis of all the sources of JH activity in Drosophila melanogaster has 
proven to be a difficult problem. The titers of JH III are relatively low in this insect (Sliter 
et al., 1987; Bownes and Rembold, 1987). Low levels of juvenile hormone are present in all 
larval stages. JH III is undetectable at mid-pupal stages but rises sharply at the time of 
eclosion in both sexes. Another issue is the role of JH in larval D. melanogaster. Ashburner 
(1970) described atypical effects of topical administration of juvenile hormone to third in-
star (last instar) D. melanogaster larvae of the wild type Canton S strain. The observed ef-
fects consisted of perturbations of bristle morphology but not retention of juvenile 
characteristics in adults, nor blockage of pupation, as would be expected from such an 
experiment. To further test the effect of JH on metamorphosis of D. melanogaster, Riddiford 
and Ashburner (1991) continuously exposed Canton S larvae to a JH analog in the food 
medium and the results were quite similar. There was very little suppression of puparia-
tion in spite of the fact that high concentrations of potent analogs were used in the study. 
However, there was evidence that exposure of early stage larvae to high concentrations 
caused a failure to differentiate adult structures. Administration of the analogs to white 
puparia resulted in a concentration-dependent suppression of eclosion and of normal 
adult development of the abdomen as previously observed by Ashburner (1970) and 
Postlethwait (1974). 

Early on it was assumed that the JH of D. melanogaster was JH III, but Richard et al. 
(1989a) documented that the juvenile hormone bisepoxide III (JHB3) is the predominant 
product of an in vitro JH biosynthesis assay. As a control, labeled JH III was included in 
the incubation medium and very little was converted to JHB3. Treatment of white puparia 
with test compounds, and subsequent determination of eclosion failure, is a standard dip-
teran JH bioassay (Postlethwait, 1974). Using this assay, the activity of JHB3 on D. melano-
gaster was observed to be about 10% of that of JH III. JHB3 is synthesized by higher Diptera, 
but not by mosquitoes, and it has been shown to have JH activity in a range of bioassays 
(Richard et al., 1989a, 1990). Casas et al. (1991) demonstrated that homogenates of D. mel-
anogaster convert JHB3 in vitro to the epoxydiol, cis- and trans-tetrahydrofuran diols and 
tetraol metabolites. The question arose, as to whether these compounds have juvenile hor-
mone activity. 
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The goal of the present study was to test metabolites of JHB3 and methyl farnesoates for 
JH activity using the standard white puparial assay and an assay based on continuous 
exposure of larvae. Generally speaking, it is difficult to extrapolate from the bioassays to 
in vivo activities. Nevertheless, it is worthwhile to test the hormonal activity of compounds 
of interest with the understanding that positive results would motivate further research. 
A range of other relevant compounds was employed in the present study for comparison. 
 
2. Methods 
 
2.1. Test compounds 
Some of the compounds assayed were provided by commercial sources and others were 
donated. S-methoprene was obtained as a gift from Zoecon Corporation and S-31183 
(pyriproxifen) was provided by Sumitomo Chemical Company. In the present study, these 
potent JH analogs served as positive controls for JH activity in the assays on D. melano-
gaster. Farnesol (2E, 6E) was purchased from Sigma Chemical Company (“mixed isomers, 
approximately 90%”). The tetraol metabolite of JHB3 (Messeguer et al., 1991) was derived 
enzymatically from incubation of racemic bisepoxide juvenile hormone III with cytosolic 
mammalian epoxide hydrolase (Casas et al., 1991) and thus consists of a diasteromeric 
mixture. Mono-fluorinated methyl farnesoate, methyl (2E, 6E) 10-fluorofarnesoate, and tri-
fluorinated methyl farnesoate, methyl 12,12,12-trifluoromethylfarnesoate, were kindly 
provided by A. Messeguer (Camps et al., 1988a,b). The trifluoromethyl farnesoate was a 
mixture of (9:1) of methyl (2E, 6E, 10Z)- and (2E, 6E, 10E)-12,12,12-trifluorofarnesoate. The 
halogenated forms of methyl farnesoate (2E, 6E) are very refractory to epoxidation, which 
is required to form juvenile hormone III. 

The remainder of the test compounds were synthesized for this study. All of the com-
pounds tested are shown in figure 1. The described NMR spectra (90 MHz) were deter-
mined with a Varian EM-390 spectrophotometer with Me4Si as an internal standard 
(CDCL3 was used a solvent). Gas chromatographic analysis was performed on a Hewlett 
Packard (Model 5890) equipped with a hydrogen flame ionization detector. 
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Figure 1. Chemical structures of tested compounds. 
 
2.2. Synthesis of methyl farnesoates 
The synthesis of methyl (2E, 6E) farnesoate (methyl farnesoate) was initiated by 8.2 g of 
trimethyl phosphonoacetate to a suspension of 1.8 g of NaH (60% in oil) in 40 µl of dime-
thylformamide under N2 atmosphere at 25–30°C. After stirring for 1 h at room tempera-
ture, a solution of 8.7 g of (E)-geranylacetone (Fluka, 99.8% purity by GC) in 10 ml of 
dimethylformamide was added dropwise at 0–5°C. The mixture was stirred for 20 h at 
room temperature and was then poured into water. The product was extracted with ether 
and the ether solution was washed with brine and dried over Na2SO4. After removal of the 
solvent, the residue was chromatographed on silica gel and eluted with hexane-ether 
(100:1) and (50:1). The isomers of methyl farnesoate were identified by comparison of the 
1H NMR data reported by Burrell et al. (1966). 

Methyl (2Z, 6E)-farnesoate (1) was obtained from the hexane-ether (100:1) eluate. Con-
centration of the eluate under reduced pressure afforded 0.9 g (8%) of (1). NMR δ: 1.60 (6H, 
s), 1.66 (3H, s), 1.88 (3H, d, J = 1.5 Hz), 1.7–2.4 (6H, m), 2.5–2.8 (2H, m), 3.67 (3H, s), 4.9–5.3 
(2H, m), 5.70 (1H, broad s). In tables 1 and 3, this compound is referred to as methyl far-
nesoate (Z). 

Methyl (2E, 6E)-farnesoate (2) was eluted after (1) with hexane-ether (50:1). After con-
centration of the eluate under reduced pressure, the residue was chromatographed on sil-
ica gel and eluted with hexane-ether (100:1) and (50:1). Concentration of the hexane-ether 
(50:1) eluate under reduced pressure afforded 2.8 g (25%) of (2). GC analysis showed com-
pound (2) was contaminated with 1.3% of compound 1. NMR δ: 1.60 (6H, s), 1.70 (3H, s), 
1.8–2.4 (8H, m), 2.18 (3H, d, J = 1.5 Hz), 3.70 (3H, s), 4.9–5.2 (2H, m), 5.70 (1H, broad s). In 
tables 1 and 3, this compound is referred to as methyl farnesoate (E). 
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2.3. Synthesis of (+)-methyl 10,11-epoxy-(2E, 6E)-farnesoate (JH III) 
To a cooled (ice bath) solution of 7.3 g of (2) in 80 ml tetrahydrofuran and 25 ml of water 
was added drop wise (over a 30 min. period) a solution of 5.8 g of N-bromosuccinimide in 
10 ml of tetrahydrofuran. After a further 4 h stirring at 0–5°C, the solution was concen-
trated under reduced pressure and the product was extracted with ether. The ether solu-
tion was washed with 5% NaHCO3 solution and brine and dried over Na2SO4. Evaporation 
of the solvent under reduced pressure afforded 9.0 g of crude bromohydrin. To a solution 
of this crude bromohydrin I 70 ml of dry methanol was added 16.1 g of anhydrous K2CO3 
under an atmosphere of N2. After stirring vigorously for 30 min at room temperature, the 
solid was filtered off and washed with methanol. After concentration of the combined fil-
trates, the residue was dissolved in ether and the ether solution was washed with brine 
and dried over Na2SO4. After removal of the solvent, the residue was chromatographed on 
silica gel and eluted with hexane-ether (30:1). Concentration of the eluate under reduced 
pressure afforded 4.4 g (56.6% of JH III. NMR δ: 1.26 (3H, s), 1.63 (3H, s), 1.63 (3H, s), 1.5–
1.8 (4H, m), 2.0–2.2 (4H, ml), 2.18 (3H, d, J = 1.5 Hz), 2.72 (1H, t, J = 6 Hz) 3.70 (3H, s) 5.0–
5.3 (1H, m), 5.73 (1H, broad s). GC analysis showed that the purity of JH III was 96.4%. The 
product of synthesis was a racemic mixture of 10R- and 10S-JH III which was identified by 
comparison of the 1H NMR data with those reported by Van Tamelen and McCormick 
(1970). 
 
2.4. Synthesis of methyl 6,7,10,11-diepoxy-(2E)-farnesoate (bisepoxide JH III) 
To cooled (ice bath) solution of 2.9 g of JH III in 40 ml of dichloromethane was added 4.8 g 
of 85% m-chloroperbenzoic acid. After the stirring for 1 h at 0–5°C and then for 20 h at 
room temperature, dichloromethane solution was washed with 5% NaHCO3 solution and 
brine, and dried over Na2SO4. After removal of the solvent, the residue was chromato-
graphed on silica gel and eluted with hexane–ethyl acetate (5:1) and (2:1). Concentration 
of the hexane–ethyl acetate (2:1) eluate under reduced pressure afforded 2.3 g (70.3%) of 
(3). NMR δ: 1.26 (6H, s), 1.30 (3H, s) 1.5–1.9 (6H, m), 2.20 (3H, s), 2.1–2.5 (2H, m), 2.6–2.9 
(2H, m), 3.70 (3H, s), 5.76 (1H, broad s). The product of synthesis was obtained as a dia-
stereomeric mixture which was identified by comparison to the 1H NMR data reported by 
Ichinose et al. (1978). 
 
2.5. Synthesis of cyclic compounds from methyl 6,7,10,11-diepoxy-(2E)-farnesoate (tetra-
hydrofuran diols) 
To a solution of 1.8 g of bisepoxide in 25 ml of tetrahydrofuran was added 10 ml of 2.5% 
HClO4 solution at room temperature. After stirring for 4 h at the same temperature, the 
product was extracted with ether. The ether solution was washed with 5% NaHCO3 and 
brine and dried over Na2SO4. TLC of the products using hexane-ethyl acetate (1:1) showed 
two distinct spots (A: Rf = 0.27, B: Rf = 0.22). These two compounds were separated by flash 
chromatography on silica gel using hexane-ethyl acetate (2:1) and (1:1). Compound A was 
identified as the cis-isomer, and compound B as the trans-isomer, by comparison of the 3H 
NMR data with those reported by Messeguer et al. (1991). 

Compound A was obtained from the hexane-ethyl acetate (2:1) eluate. Yield 0.21 g. 
NMR δ: 1.16 (6H, s), 1.28 (3H, s), 1.4–2.7 (9H, m, (1H) D20 exchangeable), 2.20 (3H, s), 3.40 
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(1H, broad s, D2O exchangeable), 3.58 (IH, dd, Ja = 3 Hz, Jb = 9 Hz), 3.70 (3H, s), 3.83 (1H, 
t, J = 6 Hz), 5.75 (1H, broad S). 

Compound B was obtained from hexane-ethyl acetate (1:1) eluate. Yield 0.31 g. NMR δ: 
1.13 (6H, s), 1.20 (3H, s), 1.4–2.6 (9H, m, (1H) D20 exchangeable), 2.20 (3H, s), 2.63 (1H, 
broad s, D20 exchangeable), 3.5–3.7 (1H, m), 3.72 (3H, s), 3.7–4.0 (1H, overlapped), 5.80 
(1H, broad s). 
 
2.6. Bioassays 
The Canton S strain of D. melanogaster was used for all assays. This stock was maintained 
by placing 10 females and 10 males in an 8 dram vial containing 10 ml of standard Dro-
sophila medium (cornmeal, yeast, sugar, agar) for 2 days at 22°C. After 2 days these flies 
were transferred to a new set of vials for egg laying. The flies used for stock maintenance 
were 4–16 days old. 

In one set of bioassays, larvae were continuously exposed to the test compounds which 
were applied to the surface of the diet beforehand. Any one dose of a test compound was 
dissolved in 100 µl of ethanol (EtOH). This solution was added to the surface of Drosophila 
medium in an 8 dram vial. The solution was swirled across the surface for even distribu-
tion and allowed to dry for 24 h. EtOH alone was added to vials as a control and some vials 
received no solvent to assess any effect of EtOH on larval survival. All vials were subjected 
to an overnight drying period regardless of whether they received solvent. The purpose 
was to be sure there was little solvent in the medium at the start of the bioassays. 

A standard number of eggs were transferred to the bioassay vials. As a source of eggs, 
approximately 100 inseminated females were added to “cut bottles” for overnight egg lay-
ing. The top half of the bottle was removed and 40 eggs were transferred from the surface 
of the bottle medium to the surface of the vials using a flat toothpick. The vials with eggs 
were held at room temperature (approximately 22°C) until all adults eclosed. The number 
of survivors to the pupariation stage, and the number to the adult stage, was determined. 

The white puparial assay, as described in Riddiford and Ashburner (1991), was used as 
a standard JH bioassay in the present study. For this assay, white puparia were collected 
from the inside glass wall of culture vials. This early stage was identified when the larvae 
first become immobile, rounded, and have everted their spiracles. The white puparia were 
placed ventral side down on one side of double-stick tape affixed to a microscope slide. 
The test compounds were administered in 0.2 µl of acetone with a repeating Hamilton 
syringe. The compounds, or the same volume of acetone as a control, were administered 
within 15 min after pupariation. Slides with treated and control puparia were placed in 
separate Petri plates with a moist Kimwipe to maintain humidity. The plates were placed 
at 25°C until all adult eclosion was completed. The number eclosed was tabulated and the 
uneclosed puparia were scored as described in Riddiford and Ashburner (1991). One set 
of these assays was conducted at the University of Washington at Seattle (table 3) and an-
other set was conducted at the University of Nebraska–Lincoln (table 4). 
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3. Results 

Table 1 presents the bioassay results based on continuous exposure of larvae. Compared 
to vials with nothing added, the survival to the pupariation and adult stages was not sig-
nificantly affected by the addition of 100 µl of EtOH. To facilitate comparison of all the 
compounds tested, the same doses were used for all compounds except the potent juvenile 
hormone analogs (table 1). There is a five-fold difference between each dose in a dose se-
ries. 
 

Table 1. Exposure of larvae of Drosophila melanogaster to compounds applied in 100 µl of ethanol 
(EtOH) onto the surface of fresh fly medium 

Treatment Number of puparia ± SD Number of adults ± SD Number of vials 

Nothing added 36.2 (3.4) 36.0 (3.4) 40 
EtOH only 35.6 (3.8) 35.4 (3.6) 36 

Farnesol    
   1 × 10–7 mol 35.4 (1.5) 35.4 (1.5) 5 
   5 × 10–7 mol 34.8 (5.6) 34.5 (6.1) 6 
   2.5 × 10–6 mol 36.2 (3.5) 35.2 (2.3) 6 
   1.25 × 10–5 mol 0.2 (0.4) 0.2 (0.4) 6 

Methyl farnesoate (E)    
   1 × 10–7 mol 35.2 (4.8) 35.0 (5.0) 9 
   5 × 10–7 mol 26.4 (6.5) 22.9 (7.2) 9 
   2.5 × 10–6 mol 14.6 (9.1) 3.1 (2.5) 8 
   1.25 × 10–5 mol 2.4 (5.7) 0.2 (0.6) 9 

Methyl farnesoate (Z)    
   1 × 10–7 mol 32.0 (7.7) 31.8 (7.5) 6 
   5 × 10–7 mol 36.0 (2.1) 35.6 (2.2) 6 
   2.5 × 10–6 mol 32.0 (9.3) 31.0 (9.3) 6 
   1.25 × 10–5 mol 2.0 (2.9) 2.0 (2.9) 6 

JH III    
   1 × 10–7 mol 34.6 (5.8) 34.6 (5.8) 9 
   5 × 10–7 mol 30.2 (2.6) 28.6 (6.1) 8 
   2.5 × 10–6 mol 29.6 (3.9) 23.0 (5.8) 8 
   1.25 × 10–5 mol 12.0 (6.1) 4.7 (3.1) 9 

JH III bisepoxide    
   1 × 10–7 mol 35.4 (6.1) 35.0 (6.5) 8 
   5 × 10–7 mol 38.0 (3.5) 37.7 (3.5) 7 
   2.5 × 10–6 mol 31.0 (14.5) 27.0 (12.6) 5 
   1.25 × 10–5 mol 38.9 (2.2) 13.1 (6.0) 7 

Tetrahydrofuran diol (A)   
   1 × 10–7 mol 36.7 (1.5) 36.0 (1.0) 3 
   5 × 10–7 mol 38.3 (1.1) 38.0 (1.0) 3 
   2.5 × 10–6 mol 38.0 (1.0) 38.0 (1.0) 3 
   1.25 × 10–5 mol 38.3 (1.5) 38.0 (1.7) 3 
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Tetrahydrofuran diol (B)    
   1 × 10–7 mol 34.7 (1.5) 34.7 (1.5) 3 
   5 × 10–7 mol 36.0 (1.7) 35.7 (1.5) 3 
   2.5 × 10–6 mol 32.0 (1.7) 32.0 (1.7) 3 
   1.25 × 10–5 mol 33.7 (2.1) 31.3 (4.0) 3 

Methoprene    
   4 × 10–9 mol 31.0 (3.0) 28.7 (2.1) 3 
   2 × 10–8 mol 31.7 (3.2) 0.3 (0.6) 3 
   1 × 10–7 mol 27.7 (3.8) 0.0 (0.0) 3 
   5 × 10–7 mol 24.0 (1.7) 0.0 (0.0) 3 

Pyriproxyfen    
   3.2 × 10–11 mol 32.3 (3.8) 31.7 (3.0) 3 
   1.6 × 10–10 mol 33.3 (3.5) 29.7 (3.0) 3 
   8 × 10- mol 29.3 (5.5) 3.7 (2.1) 3 
   4 × 10–9 mol 32.0 (3.0) 0.0 (0.0) 3 

Forty eggs were added to each vial and the mean survival (± standard deviation, SD) to the pupariation and 
adult stages are shown. Furan A refers to the cis-isomer of tetrahydrofuran diol metabolite of JHB3 and furan 
B refers to the trans-isomer (Methods). The synthesis of the E (active) and Z (inactive) forms of methyl far-
nesoate are also described in the Methods section. 

 
There was an overall effect of dose in the experiment for both larval survival and sur-

vival after pupariation formation (p < 0.0001) (tables 1 and 2). The compounds that showed 
a significant effect of dose on pupae are farnesol (p < 0.0001), JH III (p < 0.0001), JH3bisepox-
ide (p < 0.0001), both forms of methyl farnesoate (E and Z) (p < 0.0001), both florinated 
forms of methyl farnesoate (p < 0.0001), and methoprene (p < 0.0039). A similar set of com-
pounds has a dose-dependent effect on survival after pupariation formation: farnesol (p < 
0.0001), JH III (p < 0.0001), JH3bisepoxide (p < 0.0001), both forms of methyl farnesoate (E 
and Z) (p < 0.0001), both florinated forms of methyl farnesoate (p < 0.0001), methoprene (p 
< 0.0039), and pyrproxyfen (p < 0.0001). In general, there was evidence for a high degree of 
biological activity of the endogenous form of methyl farnesoate (MF E) and no activity of 
the JHB3 metabolites. 
 

Table 2. Mean survival (± standard deviation, SD) of Drosophila melanogaster to the pupariation 
and adult stages after larval exposure to mono-fluorinated methyl farnesoate (MFMF) and tri-
fluorinated methyl farnesoate (TFMF) on medium 

Treatment Number of puparia ± SD Number of adults ± SD Number of vials 

MFMF    
   5 × 10–7 mol 31.8 (1.1) 31.8 (1.1) 6 
   2.5 × 10–6 mol 14.3 (13.6) 13.3 (12.8) 6 

TFMF    
   5 × 10–7 mol 31.8 (1.1) 31.4 (3.6) 6 
   2.5 × 10–6 mol 0.7 (1.0) 0.0 (0.0) 6 

Forty eggs were added to each vial. 
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3.1. Biological activity of methyl farnesoates 
The results of exposure to MF are as follows. For the biologically active isomer (E), there 
was dose-dependent larval mortality and a relatively high level of mortality following lar-
val exposure to higher doses of the compound. The effect of exposure to the 2.5 × 10–6 mol 
of methyl farnesoate (E) was greater than that observed after exposure to the same level of 
JH III (table 1). In both cases, there is significant mortality to larvae and after puparial for-
mation. Exposure to methyl farnesoate (Z) produced a similar pattern of mortality to that 
observed for farnesol which has a potentially toxic effect at the highest dose (table 1). Thus, 
the 2Z isomer was much less potent than the 2E isomer of methyl farnesoate. 

JHB3 caused little larval mortality but mortality after puparium formation at the highest 
doses (table 1). High pupal mortality with relatively little larval mortality was also ob-
served for the two juvenile hormone analogs: methoprene and pyriproxifen (table 1). 

The indication of significant JH activity associated with exposure to methyl farnesoate 
(E) (table 1) motivated an experiment to test the hypotheses that the biological activity of 
methyl farnesoate (E) resulted from the conversion of methyl farnesoate to juvenile hor-
mone. The mono-fluorinated and trifluorinated synthetic derivatives of the biologically 
active form of methyl farnesoate are refractory to conversion to juvenile hormone. These 
compounds were applied to medium at the two intermediate doses tested for methyl far-
nesoate (E) and methyl farnesoate (Z). Only two doses were tested due to a limited abun-
dance of each compound. The standard number of eggs (40) was added to the fly medium, 
and the number of surviving pupae and adults recorded (table 2). Marked larval mortality, 
but no significant mortality after pupariation formation was observed for the highest level 
of the mono-fluorinated compound. Exposure to the lower level of this compound resulted 
in a little larval mortality and no added pupal mortality. The trifluorinated compound re-
sulted in the same pattern of mortality at the lower level, but the higher dose caused nearly 
100% larval mortality. 

In the case of exposure to farnesol, at the three lower doses there was no significant 
mortality after pupariation as indicated by the fact that the number of puparia and the 
number of adults were very similar. At the highest dose of farnesol, there was very low 
survival to pupariation formation. 
 
3.2. White puparial assays 
The results of the white puparial assays conducted in two laboratories are shown in tables 
3 and 4 based on the results from each laboratory. The JHB3 metabolites [furan A and furan 
B (table 3), tetraol (table 4)], did not prevent eclosion. The topical administration of methyl 
farnesoate (E) to white puparia was associated with eclosion failure, but the effect was not 
strong (tables 3 and 4). The administration of JHB3 in doses ranging from 0.5 to 4 nmol 
resulted in a dose-dependent increase in eclosion failure (tables 3 and 4) and an increased 
incidence of abnormal abdominal bristles in adults (table 3). 
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Table 3. White puparial assay for a JH effect after exposure to methyl farnesoate (E), JH III bi-
sepoxide, and the tetrahydrofuran diols (Furan A and Furan B). 

Treatment Number tested Eclosed 

Non-eclosed phenotypes 

Normal 
pharate 

Abnormal 
abdominal 

bristles Pupa* 

Methyl farnesoate (E)      
   0.05 nmol 20 17 (85%) 1 0 2 
   0.14 nmol 19 12 (63%) 5 0 2 
   0.44 nmol 20 17 (85%) 0 0  
   1.4 nmol 20 17 (85%) 3 0 0 
   4 nmol 20 19 (95%) 1 0 0 

JH III bisepoxide      
   1 nmol 19 7 (37%) 0 11 1 
   2 nmol 20 4 (20%) 0 16 0 
   4 nmol 10 1 (10%) 0 19 0 

Tetrahydrofuran diol (A)      
   10 nmol 20 20 (100%) 0 0 0 
   20 nmol 19 19 (100%) 0 0 0 

Tetrahydrofuran diol (B)      
   10 nmol 20 19 (95%) 1 0 0 
   20 nmol 20 19 (95%) 1 0 0 
   Control (acetone) 43 42 (98%) 1 0 0 

* Death after head eversion but before eye pigmentation. 
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Table 4. White puparial assay for a JH effect after exposure to JHB3, 
the tetraol metabolite of JHB3, methyl farnesoate (E and Z), and 
methoprene 

Treatment Number tested Number eclosed 

JH III bisepoxide (JHB3)   
   0.25 nmol 30 26 (87%) 
   0.50 nmol 30 20 (67%) 
   1.00 nmol 30 9 (30%) 

Tetraol metabolite (JHB3)   
   0.25 nmol 80 73 (91%) 
   0.50 nmol 80 75 (94%) 
   1.00 nmol 60 56 (93%) 

Methyl farnesoate (E)   
   0.25 nmol 30 26 (87%) 
   0.50 nmol 30 20 (67%) 
   1.00 nmol 30 28 (93%) 

Methyl farnesoate (Z)   
   0.25 nmol 30 24 (80%) 
   0.50 nmol 30 26 (87%) 
   1.00 nmol 30 24 (80%) 

Methoprene   
   5 pmol 40 34 (85%) 
   20 pmol 40 28 (93%) 
   50 pmol 40 22 (55%) 
   80 pmol 40 13 (32%) 

Control (acetone) 360 338 (94%) 

 
4. Discussion 
 
In the present study, a focal outcome was the biological activity of methyl farnesoate which 
is active on larvae and pupae. This activity has implications for an endogenous JH-like role 
for this compound. 
 
4.1. Activity of methyl farnesoates 
The activity of the methyl farnesoates is intriguing (tables 1–4). Methyl farnesoate (E) ap-
peared to have “JH activity” when larvae were exposed to the compound on medium. The 
effect is greater than that observed for larval exposure to the same amount of JH III. It kills 
larvae and has a residual mortality effect after pupariation formation (table 1). The effect 
of the JH analogs is that they act at the pupal stage but have low activity on larvae, which 
is not the same pattern as the active form of methyl farnesoate. The monofluorinated me-
thyl farnesoate exhibited the same mortality effect on larvae as observed for methyl far-
nesoate (E) at 2.5 × 10–6 mol but had no residual effect on survival after pupariation 
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formation (tables 1 and 2). Exposure to the trifluorinated form of methyl farnesoate re-
sulted in even greater larval mortality at 2.5 × 10–6 mol but no mortality beyond the larval 
stages. This implies that methyl farnesoate must be converted to JH III to be active at the 
pupal stage. The JH activity of methyl farnesoate (E) in the white puparial assay was much 
less than that of JHB3 (tables 3 and 4). One hypothesis to account for these findings is that 
methyl farnesoate is active as a JH during larval life but not during the pupal stage. At the 
latter stage, it must be converted to JH III to be active. This is possible for MF (E) (table 1) 
but not for the fluorinated forms of methyl farnesoates, thus explaining their lack of effect 
on pupal survival (table 2). Perhaps, the JH activity of methyl farnesoate during the larval 
stages of D. melanogaster explains the low levels of JH III found in larvae (Bownes and 
Rembold, 1987; Sliter et al., 1987). Interestingly, Jones et al. (2010) found that feeding far-
nesol, but not JH III and/or methyl farnesoate, could rescue larval mortality in larvae ex-
pressing 3-hydroxy-3-methylglutaryl CoA reductase (HMGCR) RNAi in the corpora 
allata, which they suggest may indicate that the proper ratio of the farnesoid derivatives is 
necessary for normal larval development. 

There is evidence that methyl farnesoate plays a juvenile hormone-like role in D. mela-
nogaster and other higher Diptera (reviewed in Jones and Jones, 2007). The level of methyl 
farnesoate produced by the larval ring gland (Richard et al., 1989b) is higher than that pro-
duced by the corpora allata of adult females (Tu et al., 2005). Also, Ultraspiracle binds me-
thyl farnesoate at nanomolar levels (150-fold higher affinity than for JH III) (Jones et al., 
2006; Jones and Jones, 2007). 
 
4.2. Activity of JHB3 and metabolites 
There was negligible mortality at the pre-pupal and pupal stages after exposure of larvae 
to the tetrahydrofuran diols (Furan A, Furan B, table 1). JHB3 has been shown to interfere 
with normal abdominal bristle development (Richard et al., 1989b) as also indicated by the 
results of the present study (table 3). However, the in vivo role of JHB3 is not clear. One 
reason for questioning the importance of JHB3 is that its biological activity is relatively low 
in spite of the fact that its polarity is only slightly higher than JH III. The biological activity 
of JHB3 is substantially lower than JH III in the white puparial assay, inhibition of ecdys-
teroid biosynthesis, stimulation of yolk protein production and interference with the rota-
tion of male genitalia (Richard et al., 1989a,b, 1990). However, JHB3 is relatively effective 
in breaking diapause by stimulating vitellogenesis (Saunders et al., 1990). In Phormia regina, 
JHB3 is at least as effective as JH III in restoring oogenesis in allatectomized flies (Yin et al., 
1995). In the present study, the high doses of JH III and JHB3 have a similar effect on mor-
tality after pupariation formation when larvae are exposed to the compounds applied to 
medium (table 1). Establishing the potency of JHB3 thus may require testing in a broad 
range of bioassays. As another consideration, the relatively low activity of JHB3 might be 
due to the fact that we tested a diastereometric mixture. In order to further investigate the 
activity of JHB3, it would be informative to test natural enantiomers and test hormones in 
combination with each other. There is evidence that a blend of JHB3, JH III, and methyl 
farnesoate is especially biologically active in Phormia adults (Yin et al., 1995). 

In summary, there are basic science outcomes and an applied science suggestion from 
the results of the present study. Methyl farnesoate might be a significant source of juvenile 
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hormone activity in D. melanogaster juvenile stages. Thus, there is potential for an advance 
in understanding the endocrinology of this important model for genetics research. Also, 
methyl farnesoate appears to be active at the larval stage but not the pupal period tested. 
The applied science suggestion is based on the high level of mortality after exposure of 
larvae to methyl farnesoate. Specifically, there is the possibility that plants might be engi-
neered to produce methyl farnesoate as an anti-dipteran, or other invertebrate, control 
agent. Methyl farnesoate does occur in some wild plant species. All plant make the main 
compounds in the terpene pathway. Plants are known to epoxidize double bonds. Lemon 
grass is known to make juvenile hormone III. It might be straightforward to synthesize 
methyl farnesoate in crop species based on expression of one, or a few, transgenically de-
rived enzymes. It can block development of insect embryos and act to kill juvenile insects. 
Methyl fanesoate and juvenile hormone in plants has the potential to be a valuable inver-
tebrate pest control agent. 
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