October 2005

Where’s the Poop? Environmental Challenges for Large and Small Animal Feeding Operations

Richard K. Koelsch
University of Nebraska - Lincoln, rkoelsch1@unl.edu

John Lawrence
Iowa State University

Follow this and additional works at: http://digitalcommons.unl.edu/biosysengpres

Part of the Biological Engineering Commons

http://digitalcommons.unl.edu/biosysengpres/20

This Article is brought to you for free and open access by the Biological Systems Engineering at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Conference Presentations and White Papers: Biological Systems Engineering by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Heartland Regional Regional Water Coordination Initiative Conference

DoubleTree Hotel - Overland Park, KS

October 26 - 28, 2005

Online at: http://www.oznet.ksu.edu/waterquality/Reg_Conf/presentations.htm
Where’s the Poop? Environmental Challenges for Large and Small Animal Feeding Operations

Rick Koelsch, University of Nebraska and John Lawrence, Iowa State University
Where’s the Poop?

• Small AFO
 – Under 1000 AU
 – Below the NPDES permit size unless designated or direct contact or man-made discharge to water of US
 – May require state permit

• CAFO
 – 1000 or more AU
 – Required to have NPDES permit
Where’s the Poop?
AFO or CAFO

- Which size has the more operations?
- Which size has more animals/poop?
- Which size has more recoverable nutrients?
- Which size has more acres available for manure?
Where’s the Poop?
AFO or CAFO

- Who are your clients?
- What are their challenges?
- How do you reach them?
- Where is the greatest environmental risk?
- Where can you have the greatest impact?
Status and Trends in Small and Mid-Sized Animal Operations in the U.S.

Noel Gollehon
Economic Research Service, USDA
Presentation at the Workshop on Small and Mid-Sized Animal Operations and Water Quality
May 2, 2005
Linthicum Heights, Maryland
Numbers of farms, animals, & nutrients

Animal Farms

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>1,400,000</td>
</tr>
<tr>
<td>1987</td>
<td>1,200,000</td>
</tr>
<tr>
<td>1992</td>
<td>1,000,000</td>
</tr>
<tr>
<td>1997</td>
<td>1,000,000</td>
</tr>
</tbody>
</table>

Source: Kellogg, et al., 2000
Numbers of farms, animals, & nutrients

![Bar chart](chart.png)

Million Animal Units

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Units</td>
<td>100</td>
<td>90</td>
<td>80</td>
<td>90</td>
</tr>
</tbody>
</table>

Source: Kellogg, et al., 2000
Non-confined animals: Farms and AU

Source: Kellogg, et al., 2000
Confined animals: Farms and AU

Source: Gollehon, et al., 2001
Recoverable Nitrogen

Recoverable Phosphorus

Source: Gollehon, et al., 2001
Confined animals: Farms with excess manure

Source: Gollehon, et al., 2001
AFO Challenges

• More than half of recoverable nutrients
• 98% of animal operations
 – Over 700,000 farms
 – 150,000 farms 300-1000 AU
• Largely under the radar
• Balancing carrots and sticks
 – Few sticks if unregulated
 – Cost-share carrots are costly to implement and discourage of some producers
AFO Take-home Points

• Nutrient planning essential
 – AFO’s with enough land need better utilization
 – AFO’s with excess nutrients need to plan beyond the farm borders

• Educational programs important
 – Too many to regulate
 – Technical assistance programs costly
Bang-for-the-Buck Programming

- Results in water quality improvement
- Not so detail as to discourage adoption
- The producer understands:
 - Greatest water quality risk factors
 - Nutrient value of manure
 - BMPs and simple strategies to address both
Are you going to lead or defend?