Spring 2000

Enjoy the Donut: A Regulatory Response to the White Paper on Preventing Invasion of the Great Lakes by Exotic Species

Sandi Zellmer

University of Nebraska Lincoln, szellmer2@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/lawfacpub

Part of the Legal Studies Commons

http://digitalcommons.unl.edu/lawfacpub/20

This Article is brought to you for free and open access by the Law, College of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in College of Law, Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
ENJOY THE DONUT: A REGULATORY RESPONSE TO THE
WHITE PAPER ON PREVENTING INVASION
OF THE GREAT LAKES BY EXOTIC SPECIES

Sandra B. Zellmer*

"The success of technology-based standards in abating toxic water pollution depends largely on one's predisposition to enjoy the donut or regret the hole."

INTRODUCTION

The adverse economic and environmental consequences associated with the invasion and establishment of exotic species have raised significant concerns among the Great Lakes community. In September 1999, the International Joint Commission (IJC) hosted a workshop on exotic policy, drawing upon the expertise of biologists, lawyers and public officials, to consider means of preventing exotic species invasions. The White Paper on Policies for the Prevention of the Invasion of the Great Lakes by Exotic Organisms served as the centerpiece for discussion at the workshop.

The White Paper concludes that economic initiatives, such as subsidies or taxation, would be the most viable way to prevent introductions through ballast water, a primary means for invasion by exotic species in the Great Lakes. This article suggests instead that regulation under the Clean Water Act (CWA) is an effective solution, at least with respect to ships traversing United States waters.

Not only is federal regulation required under the plain language of the CWA, it

* Professor Sandra Zellmer, LL.M - George Washington National Law Center, JD – Univ. of South Dakota, BS – Morningside College. Professor Zellmer teaches environmental law courses at the University of Toledo College of Law and is a faculty member of the Legal Institute of the Great Lakes. The author would like to thank the College of Law and the Legal Institute for their support, Eric Reeves for the invitation to the International Joint Commission workshop on exotic species, Dom Carlson, U.S. EPA, Brent Foster, and Drs. Robert Sinsabaugh and Daryl Moorehead for their input. The assistance of Carolyn Salzmann, JD Candidate, University of Toledo College of Law Class, is also acknowledged with gratitude.

3. As aquatic species do not respect political boundaries, introductions through ballast water on the Canadian side of the border can have serious effects in the United States. This article, however, is limited to an assessment of U.S. domestic law, in particular, the Clean Water Act, 33 U.S.C. §§ 1251 et seq., as well as the U.S.-Canada Great Lakes Water Quality Agreement.

207
could most expediently address the invasion of exotics through ballast water discharges.

The U.S. Environmental Protection Agency (EPA), however, has issued a regulatory exclusion for "incidental" ballast water discharges. This exclusion, which has been challenged by a coalition of environmental groups, finds no support in the statute. Under the CWA, contaminated ballast discharges from vessels are prohibited as "discharges of pollutants" from point sources, unless a permit is obtained. Ballast water discharge permits would incorporate effluent limitations reflecting the best technology available, a marked improvement over the status quo. Once a threshold level of treatment is established by the CWA, perhaps economic initiatives could provide additional incentives for compliance and technological innovation.

To put the issues in context, this article will first provide background regarding the effects of exotic species introduced into the Great Lakes through ballast water as well as current legal controls. It will then turn, in Section II, to the relevant sections of the CWA and the federal regulations. Section III explains the advantages of a regulatory permit system, particularly in comparison to economic approaches. Finally, Section IV assesses the practical implications of implementing the CWA permit system to control ballast water discharges.

I. EXOTIC SPECIES DISCHARGED WITH BALLAST WATER: Effects AND CURRENT CONTROL EFFORTS

Exotic species have taken a heavy toll on United States' ecosystems. The White Paper and numerous other scientific and legal publications provide detailed assessments of the adverse consequences of exotic species' invasions in the Great Lakes, particularly those resulting from ballast discharges.4 To set the stage for the discussion of regulatory options, this article will outline some of the more serious effects.

The rate of invasion by exotic species "poses an increasing global threat to native biodiversity, ranked second only to habitat loss."5 Exotic species have made a significant contribution to the decline of indigenous species in the Great Lakes.6 The sea lamprey, for example, depredates directly on native fish, such as

lake trout, walleye and whitefish. Other exotic species affect Great Lakes' fisheries by competing for food and habitat, and by introducing disease and parasites.

Exotic species also cause a variety of economic harms. Declining fisheries are but one source of loss. The highly fecund zebra mussel (*Dreissena polymorpha*) is estimated to cost between $3 to $5 billion a year nationwide, in large part due to the expenses incurred by power plants to clear and maintain clogged intake pipes. Total losses caused by fifteen selected nonindigenous aquatic species, including zebra mussel and the purple loosestrife plant (*Lythrum salicaria*), have been estimated at over $134 billion.

Ballast water is one of the primary vectors for the introduction of exotic species into Great Lakes waters. Vessels generally pump ballast water into tanks to replace the weight of off-loaded cargo or expended fuel, thereby improving vessel stability in transport. The zebra mussel is perhaps the most well-publicized of the invaders attributed to ballast water discharges. Others include the Eurasian ruffe (*Gymnocephalus cernuus*), the spiny water flea (*Bythotrephes cederstroemi*), and even human bacterial pathogens such as cholera.

The discharge of ballast from commercial ships was virtually unregulated until the early 1990's, when regulations were issued pursuant to the Nonindigenous Aquatic Nuisance Prevention and Control Act of 1990 (NANPCA), as amended

12. See id. at 22.
in 1996 by the National Invasive Species Act (NISA). Under NISA, vessels must exchange their ballast at sea before entering the Great Lakes, but the statute does not specify federal requirements for the "purity" of ballast water released. Instead, Coast Guard regulations set a salinity standard of at least 30 parts per thousand (ppt). Although there is no evidence that 30 ppt salinity acts as an effective biocide, it presumably indicates that an ocean exchange of approximately 85% of water by volume occurred. However, even if 85% were considered an adequate exchange, many foreign flag vessels pipe salt water into their ballast tanks before they leave their home port and they may enter Great Lakes waters with a salinity factor equal or higher than 35.3 ppt, the ocean's salinity. In addition, evaporative losses during a trans-Atlantic voyage tend to increase salinity in the tank. Given these variables, the salinity test provides no guarantee that an adequate ocean exchange occurred.

There are broad-sweeping exemptions in NISA which further undermine the exchange requirements. First, exchange can be avoided on the grounds of ship safety, left almost entirely to the captain's discretion. Safety reasons can include "vessel architectural design" or "other extraordinary circumstances." Accordingly, a captain who sails a poorly designed ship, or, arguably, even a ship with an inexperienced crew or one sailing under a tight schedule, can avoid ballast exchange. Ships that fail to accomplish an exchange outside of the exclusive economic zone must employ another method of ballast water management before entering the Great Lakes, or request the Coast Guard's permission to exchange ballast water in an alternative designated area.

Further, NISA does not require the treatment of residual sediments and slop in the tanks of ships fully loaded with cargo, also known as "no ballast on board", or NOBOB, vessels. While fully loaded, the residue in a ship's ballast water tanks is unpumpable, yet, residual sediments and slop can support aquatic life forms, which subsequently will be mixed with ballast water pumped into the tanks.

17. 16 U.S.C. § 4711. Although this article is limited to United States law and policy, the Canadian Shipping Act provides an interesting comparison. Instead of specific prohibitions and exceptions regarding ballast water exchange, that Act, as amended in 1998, simply provides that "[t]he Governor in Council may make regulations respecting the control and management of ballast water." R.S.C., RS-9, § 657.1. Unlike NISA, it appears that this Act allows the adoption of control measures beyond mere ballast exchange. See Reeves, supra note 8, at 67.
18. 33 C.F.R. § 151.1510(a)(1).
19. See Reeves, supra note 8, at 57.
20. See id.
21. See id.
24. See 33 C.F.R. § 151.1510.
25. See 16 U.S.C. § 4711(k)(2)(A),(B); 33 C.F.R. § 151.1514. The exemption sweeps even more broadly for ships traversing U.S. waters other than the Great Lakes. These ships may avoid exchange on safety grounds and proceed to discharge water "in any harbor." Id.
26. See Reeves, supra note 8, at 54-55.
27. See id. at 54.
As a result, NISA is largely ineffective for preventing exotic species invasions.

II. THE CWA'S APPLICATION TO BALLAST WATER DISCHARGES FROM VESSELS

The CWA prohibits the "discharge of any pollutant by any person," unless a National Pollution Discharge Elimination System (NPDES) permit is obtained.\footnote{CWA § 301(a), 33 U.S.C. § 1311(a).} The "discharge of a pollutant" is defined, in relevant part, as "any addition of any pollutant to navigable waters from any point source."\footnote{CWA § 502(12), 33 U.S.C. § 1362(12).} Navigable waters include all surface waters of the United States, including lakes, rivers and streams, wetlands, and the territorial seas, extending seaward from the coast for a distance of three miles.\footnote{CWA § 502(7)-(8), 33 U.S.C. § 1362(7)-(8). See United States v. Riverside Bayview Homes, Inc., 474 U.S. 121 (1985) (upholding the regulatory definition of navigable waters).}

Pollutants are added to United States waters from a point source when ballast water containing exotic species is pumped from vessels. Yet, the Environmental Protection Agency (EPA), by regulation, excludes ballast water discharges from the NPDES program: "The following discharges do not require NPDES permits: (a) Any discharge of sewage from vessels, effluent from properly functioning marine engines, laundry, shower, and galley sink wastes, or any other discharge incidental to the normal operation of a vessel."\footnote{40 C.F.R. § 122.3(a).} The Pacific Environmental Advocacy Center and other groups petitioned EPA for the repeal of its regulation in January 1999.\footnote{Letter from Pacific Environmental Advocacy (PEAC) to Carol Browner (Jan. 13, 1999) (on file with author).} In response, EPA acknowledged that ballast water could be covered by CWA's prohibition on point source discharges, and stated that it would prepare a report to "explore options" for regulating ballast water by September 1, 1999.\footnote{Letter from Asst. Administrator Charles Fox to Craig N. Johnston, PEAC (Apr. 6, 1999) (on file with author).} However, no official report or proposed rule has been issued to date. Once EPA makes a final determination, it could be subject to a citizen suit under the CWA.\footnote{See CWA § 505(a)(2), 33 U.S.C. § 1365(a)(2) ("any citizen may commence a civil action... against the Administrator [of EPA] where there is alleged a failure... to perform any act or duty under this chapter which is not discretionary with the Administrator."); Natural Resources Defense Council v. Costle, 568 F.2d 1369 (D.C. Cir. 1977) (requiring EPA to regulate agricultural return flows as point sources). See also Section III.D., infra (discussing citizen suits).}
A. Exotic species are pollutants

The language of the statute, as well as its objectives and its legislative history, support the inclusion of exotic "pollutants" into the regulatory program.\(^35\) The term pollutant, as used in the CWA, means heat and a variety of substances, such as garbage, solid waste, sewage, chemical wastes, and, most importantly here, biological materials.\(^36\) Although the definition of pollutant in the CWA is not so broadly phrased as to be considered all-inclusive,\(^37\) courts have construed it to encompass substances not specifically enumerated but subsumed under the listed, more general terms.\(^38\) Thus, fish and other organisms – alive, in various life stages, or dead – are included under the term "biological materials," and are therefore pollutants under the CWA.\(^39\) By way of analogy, pathogens in sewage treatment plant effluent are undoubtedly biological pollutants, which may not be discharged in navigable waters without a permit.\(^40\)

Courts have, however, deferred to EPA's determination that NPDES permits are not required when fish and fish parts are moved through a waterbody via dams, because there is no "addition" of pollutants from dams; the fish do not come from the "outside world" but instead originate within the same ecosystem.\(^41\) Similarly, EPA's decision that the transfer of cold water from an impounded reservoir through a dam to the receiving stream or river is not an "addition" of a pollutant has been upheld.\(^42\) By contrast, seafood processing plants that remove fish and then process and discharge the fish wastes into receiving waters of the

35. See David Whalen, The Control of Aquatic Nuisance Nonindigenous Species, 5 ENVTL. LAW. 65, WL *10-12, 26-27 (1998) (reviewing legislative history of the CWA and determining that the definition of pollutants should include living aquatic invasive species); Reeves, White Paper, supra note 2, at 6 (agreeing that exotic species are pollutants, as a matter of law, economics and common sense). See also David Eldridge, supra note 13, at 49.

37. See Nat'l Wildlife Fed'n v. Gorsuch, 693 F.2d 156, 175-76 (D.C. Cir. 1982) (finding in dicta that cold, unlike heat, is a water condition; because cold is not specifically listed, while heat is, cold is not necessarily a pollutant).

38. See United States v. Hamel, 551 F.2d 107 (6th Cir. 1977) (affirming the district court's decision that petroleum products are included under the broad term "chemical waste," even though Congress did not list oil and oil products by name within the definition of pollutant). See also Hudson River Fishermen's Ass'n v. City of New York, 751 F. Supp. 1088, 1101 (S.D.N.Y. 1990) (holding that chlorine, when discharged into navigable waters, is regarded as a pollutant, though intended for a beneficial use), aff'd, 940 F.2d 649 (2d Cir. 1991).

39. See Nat'l Wildlife Fed'n v. Consumers Power Co., 862 F.2d 580 (6th Cir. 1988). See also United States v. Dubois, 102 F.3d 1273, 1296-97 & n.29 (1st Cir. 1996) (finding that movement of organisms in river water to a pond is an addition of pollutants; although defendant's snowmaking did not itself contribute new pollutants, it was undisputed that the river contained at least some pollutants not found in the pond, including the parasitic giardia lambia); Ass'n of Pacific Fisheries v. EPA, 615 F.2d 794, 807 n.7 & 815 (9th Cir. 1980) (concluding that fish wastes discharged from seafood processors are pollutants).

41. See Consumers Power, 693 F.2d at 584-86.

42. See Gorsuch, 693 F.2d at 156.
United States are adding pollutants.43

The EPA has recognized that exotic species are pollutants in a variety of other contexts. For example, in proposing Total Maximum Daily Load (TMDL) regulations for drinking water contaminants, EPA stated that "all microbial contaminants that may be discharged to waters of the U.S. (e.g., bacteria, viruses and other organisms) fall under the term 'biological materials.'"44 In addition, EPA implicitly acknowledged that invasive species contribute to water quality impairment when it approved California's list of 472 impaired waters, including those listed as impaired because of the presence of invasive species.45

B. Vessels are point sources

Vessels which discharge ballast water into waters of the United States are expressly included in the CWA's definition of a "point source." The term is defined broadly as "any discernible, confined and discrete conveyance, including but not limited to any pipe... or vessel or other floating craft, from which pollutants are or may be discharged."46 The definitional section excludes only "agricultural stormwater discharges and return flows from irrigated agriculture."47

Although agency interpretations of a statute under its administration are generally given deference, interpretations which fly in the face of explicit mandates of the statute, such as EPA's regulatory exclusion of ballast, must be set

43 See 40 C.F.R. Part 408; Pacific Fisheries, 615 F.2d at 801. Similarly, the discharge of dredged-up sediments and debris, although indigenous materials at their place of origin, adds pollutants when introduced to another area. See United States v. M.C.C. of Florida, Inc., 772 F.2d 1501, 1506 (11th Cir. 1985), vacated on other grounds, 481 U.S. 1034 (1985), reh'g on other grounds, 863 F.2d 802 (1989); United States v. Banks (S.D. Fla. 1995); United States v. Zaner (N.D. Cal. 1991).

44 Proposed Revisions to the Water Quality Planning and Management Regulation, 64 Fed. Reg. 46012, 46017 (1999). See CWA § 303(d), 33 U.S.C. § 1313(d) (requiring the identification of impaired waters and establishment of TMDLs); discussion at Section III.C infra (discussing TMDL program).

46 CWA § 502(14), 33 U.S.C. § 1362(14) (emphasis added).

47 Id. In addition, a limited exemption for stormwater runoff from mining activities is found outside of the definitional section. See CWA § 402(1)(2), 33 U.S.C. § 1342(1)(2).
"[T]echnological or administrative infeasibility of [uniform national effluent] limitations may result in adjustments in the permit programs... but it does not authorize the Administrator to exclude the relevant point source from the NPDES program."\footnote{49}

Not only is the regulation inconsistent with the plain language of the CWA's "point source" definition, it undermines the CWA's straightforward and ambitious objectives.\footnote{50} The CWA is intended to restore and maintain the chemical, physical, and \textit{biological} integrity of waters of the United States,\footnote{51} and to ensure water quality supports fisheries and other designated uses, such as recreation.\footnote{52} There is no dispute that invasive species, no less than other pollutants, have had tremendous effects on Great Lakes' water quality and native biodiversity.

Moreover, neither the legislative nor the regulatory history supports the exclusion of ballast water discharges. The legislative history of the CWA specifies that all discharges to waters of the United States, the contiguous zone and the ocean "were to be regulated by EPA under one Act or the other."\footnote{53} The Committee on Public Works and Commerce intended "complete and integrated regulation of the disposal of pollutants \textit{into all waters and over all sources of pollutants subject to its jurisdiction."\footnote{54}

\begin{footnotes}
\footnote{48. See Natural Resource Defense Council, Inc. v. Costle, 568 F.2d 1369 (D.C. Cir. 1977) (invalidating EPA's exclusion for agricultural return flows as inconsistent with the plain language of section 502(14); Congress later amended that provision to explicitly exclude return flows); Chevron USA, Inc. v. Natural Resources Defense Council, Inc. 467 U.S. 837 (1984) (holding that courts reviewing statutory interpretations by agencies should first determine whether the statute is ambiguous; if it is not, the court may not defer to the agency, but must give effect to the plain meaning of the statute). See also Chevron v. Hammond, 726 F.2d 483, 488 (9th Cir. 1984) (upholding Alaska's application of the permit system to oil-tainted ballast water discharged from vessels, noting that the CWA provided only limited exemptions to the otherwise comprehensive NPDES program).}

\footnote{49. Costle, 568 F.2d at 1379.}

\footnote{50. See Hammond, 726 F.2d at 493 (finding that CWA's objectives support Alaska's application of the NPDES program to ballast water).}

\footnote{51. CWA § 101(a), 33 U.S.C. § 1251(a) (emphasis added).}

\footnote{52. CWA § 101(a)(2), 33 U.S.C. § 1251(a)(2).}

\footnote{53. See 44 Fed. Reg. 32859 (1979) (citing SENATE COMMITTEE ON PUBLIC WORKS, 93d Cong., 1st Sess. (1973) at 1492 (referencing the CWA and the Marine Sanctuaries Act, 16 U.S.C. § 1431, \textit{et seq.}). The Ocean Dumping Act (ODA) compliments the CWA with regard to emissions outside of the CWA's jurisdiction, as it prohibits vessels registered in the United States or flying a United States flag from transporting "any material for the purpose of dumping it into ocean waters." 33 U.S.C. § 1411(a)(2). The ODA also prohibits any person from dumping "any material transported from a location outside the United States" into United States territorial seas, or the U.S. contiguous zone if it may affect U.S. territorial seas or territory, unless a permit is obtained. 33 U.S.C. § 1411(b). The United States claims a contiguous zone of twelve miles from its baseline. See, e.g., 33 U.S.C. § 1402(b);19 U.S.C. §1401(j). See also Pres. Proclamation No. 5928 (Dec. 27, 1988); 54 Fed. Reg. 777 (1989). In addition, nations may generally exercise jurisdiction over foreign flag vessels that violate its customs, fiscal, immigration, or sanitary laws if the vessels are traveling within their contiguous zone. See United Nations Convention on the Law of the Sea, art. 33, 21 I.L.M. 1261 (Dec. 10, 1982).}

\footnote{54. 44 Fed. Reg. 32859, (citing SENATE COMMITTEE ON PUBLIC WORKS, 93d Cong., 1st Sess. (1973) at 1492 (emphasis added)).}
The regulatory history of section 122.3 indicates that EPA may not have intended ballast water discharges to be excluded when the regulation was first issued in 1973. The provision as originally proposed in the federal register excluded only "discharges from properly functioning marine engines." The final provision was extended to "discharges incidental to the normal operation of a vessel," but it did not cover trash discarded overboard or discharges from vessels acting in a capacity other than transportation, "such as when a vessel is being used as a storage facility or a cannery." EPA's explanation indicates that the exclusion for incidental discharges was meant to apply to recreational boats, not commercial vessels: "This type of discharge generally causes little pollution and the exclusion of vessel wastes from the permit requirements will reduce administrative costs dramatically."

Other provisions of the CWA provide support for treating ballast discharges as point sources subject to the NPDES program. First, statutory amendments enacted in 1996 exclude incidental discharges from military vessels from the definition of pollutant. Although Congress expressly noted that "[v]essels are point sources of pollution" under the CWA, it believed that an alternative program was desirable for the military, given the operational problems experienced by the Navy when various coastal states attempted to impose inconsistent regulatory requirements or inspection programs on naval vessels. Thus, instead of obtaining NPDES permits to discharge their ballast water, military vessels must comply with another new provision, section 312(n), which requires on-board marine pollution control devices if such devices are reasonable and practicable. This exclusion provides at least some evidence that Congress intended for incidental discharges, like ballast water, from non-military vessels to included in the NPDES program. Generally, an explicit exclusion of one activity negates an implied exclusion of another type of

56. 40 C.F.R. § 125.4(c), See 38 Fed. Reg. 13528, 13530 (1973). See also 44 Fed. Reg. 32859 (1979) (stating that, although the CWA does not define "vessels or other floating craft, it appears that those terms refer to transportation vessels").
57. 38 Fed. Reg. 13,528 (1973). Similarly, the legislative history of the CWA indicates that Congress believed that permitting for millions of recreational boats would have been an "unreasonable expenditure of administrative effort" as well as an "unreasonable burden on the individual boat owners." See O'Toole, supra note 55, at 12-13 (citing 118 CONG. REC. 16,875-76 (1972)).
60. S. REP. NO. 104-113, at 1, 7.
61. CWA § 312(n), 33 U.S.C. § 1322(n); See 40 C.F.R. Part 1700.
62. See CWA § 312 (n)(1),(2), 33 U.S.C. § 1322(n)(1), (2). See also discussion, infra, at IV.B.
The subsequent enactment of a statutory exclusion for military vessels could, however, cut the other way. Arguably, the fact that Congress had notice that EPA was, by regulation, excluding ballast discharges from NPDES coverage, and amended the relevant provisions of the CWA with respect to military discharges only, indicates congressional approval of EPA's regulation.

Yet, post-enactment developments like the exclusion for military vessels cannot properly be described as legislative history, and therefore, cannot be given the weight of contemporaneous legislative reports or statements. "The views of a subsequent Congress form a hazardous basis for inferring the intent of an earlier one."

A reviewing court would likely find that the definitional provisions of CWA section 502, along with the general prohibition of section 301, are clear and unambiguous, and give post-enactment legislative history little, if any, weight. If the statute is plain on its face, courts need not resort to legislative history for

63. See Andrus v. Glover Constr. Co., 446 U.S. 608, 618 (1980); League to Save Lake Tahoe, Inc. v. Trounson, 598 F.2d 1164, 1171 (9th Cir.), cert. denied, 44 U.S. 943 (1979). See also City of Chicago v. Envtl. Defense Fund, 511 U.S. 328, 338 (1994) (in refusing to imply exemption from hazardous waste regulation of the Resource Conservation and Recovery Act (RCRA), Court noted that Congress had provided a complete exemption in a separate section of RCRA by utilizing a comprehensive list of relevant activities, and therefore "knew how to draft a waste stream exemption in RCRA when it wanted to."). See also Hammond, 726 F.2d at 488 (noting that CWA's explicit exclusion for certain types of discharges supported inclusion of ballast water in the NPDES program).

64. "The congressional failure to revise or repeal the agency's interpretation is persuasive evidence that the interpretation is the one intended by Congress." Geldermann, Inc. v. Commodity Futures Trading Comm'n, 836 F.2d 310, 316 (7th Cir.1987) (quoting NLRB v. Bell Aerospace Co., 416 U.S. 267, 274-75 (1974)).

65. See Redlark v. Comm'r of Internal Revenue, 141 F.3d 936, 941 (9th Cir. 1998).

66. Consumer Product Safety Comm'n v. GTE Sylvania, Inc., 447 U.S. 102, 117-19 (1980) (footnote omitted) (citing United States v. Philadelphia Nat'l Bank, 374 U.S. 321, 348-49 (1963) and United States v. Price, 361 U.S. 304, 313 (1960)); See North Haven Bd. of Educ. v. Bell, 456 U.S. 512 (1982) (post hoc congressional actions may be viewed as instructive as to the reasonableness of an agency's interpretation.); See Apex Hosiery Co. v. Leader, 310 U.S. 469, 487-89 (1940) (once an agency's statutory construction has been "fully brought to the attention of the public and the Congress," and Congress has not sought to alter it although it has amended the statute in other respects, a court may presume that the agency has correctly discerned the legislature's intent.).

67. CWA §§ 301(a), 502(6), (14), 33 U.S.C. §§ 1311(a), 1362(6), (14).

68. See W. Va. Univ. Hosps., Inc. v. Casey, 499 U.S. 83, 98-99 (1991) ("Where a statute contains a phrase that is unambiguous—that has a clearly accepted meaning in both legislative and judicial practice—we do not permit it to be expanded or contracted by the statements of individual legislators or committees during the course of the enactment process."); United States v. Ron Pair Enterprises, Inc., 489 U.S. 235, 241 (1989) ("Where, as here, the statute's language is plain, the sole function of the court is to enforce it according to its terms.") (quoting Caminetti v. United States, 242 U.S. 470, 485 (1917); Chevron, 467 U.S. at 842-43 (if the statute is unambiguous on its face, the court must simply effectuate its terms instead of deferring to an agency's interpretation).
confirmation, but must give the language of the statute "its natural meaning." While EPA does have some power to define technical terms like "point source" and "pollutant," broad-sweeping categorical exemptions like the one for ballast discharges from commercial vessels would likely be rejected as inconsistent with the plain language of the CWA.

A second provision of the CWA provides additional support for including ballast water discharges in the NPDES program. The CWA's definition of a "discharge of a pollutant" expressly includes discharges to the contiguous zone or the ocean "from any point source other than a vessel or floating craft." The contiguous zone is the area from three to twelve miles out to sea. "Navigable waters" include the territorial seas, which extend seaward three miles, but not the contiguous zone. Accordingly, vessels that discharge any pollutant to the territorial seas are in fact discharging pollutants from point sources.

Other statutes and executive materials support this interpretation of the CWA. NISA, enacted after the CWA, provides for the application of the CWA to ballast discharges by stating that it does "not affect or supercede any requirements or prohibitions pertaining to the discharge of ballast" under the CWA. The plain language of this broadly worded savings clause confirms that the CWA may be applied to ballast water discharges in United States waters.

Finally, as a matter of federal policy, Executive Order 13112 directs EPA and other agencies to "use existing programs and authorities to prevent introduction of invasive species." EPA not only has the authority and even the mandate to regulate ballast under CWA section 402, but executive policy states it should do so as a matter of federal prerogative.

The EPA has experience and technical expertise in controlling pollution –

69. Morales v. Trans World Airlines, Inc., 504 U.S. 374, 386 n.2 (1992). See Chevron, 467 U.S. at 842-83; Harrison v. PPG Industries, Inc., 446 U.S. 578, 591-592 (1980). The statute itself, not committee reports or other legislative statements, provides the "authoritative expression" of the law. See Envtl. Defense Fund, 511 U.S. at 337 (holding that ash generated by resource recovery facility's incineration of municipal solid waste was subject to RCRA regulatory scheme governing hazardous waste pursuant to plain language of Section 3001(i), 42 U.S.C. § 6921(i)).

70. See Gorsuch, 693 F.2d at 167.
71. See Costle, 568 F.2d at 1375.
75. 16 U.S.C. § 4711(b)(2)(C), (c)(2)(f).
76. The legislative history of NISA indicates that Congress wanted to ensure that the CWA continues to govern the discharge of oily or chemical-laden ballast. See Senate Environment and Public Works Committee, S. REP. 101-523 on S.2244, at 6 (Oct. 11, 1990), 1990 U.S.C.A.N. 6455, 6450 (S.2244 was incorporated into H.R. 5390, which was then passed into law as the final act, P.L. 101-646 (Nov. 29, 1990)). However, there is no evidence that Congress intended to limit this provision to ballast contaminated with oil or chemicals. To read such a limitation into the statute would fail to do justice to the plain language of NISA's broadly phrased savings clause, in violation of the principle that the language of the statute itself, not the legislative statements, provides the "authoritative expression" of the law. See Envtl. Defense Fund, 511 U.S. at 337.
chemical, physical and biological – under the CWA and other federal statutes. By comparison, the Coast Guard, an agency within the Department of Transportation, has a wholly different statutory mission – safety on United States waters. Its primary responsibilities are enforcement of federal laws on the high seas and waters subject to the jurisdiction of the United States; safety of life and property at sea; aiding navigation through activities such as ice-breaking; and readiness to function with the Navy in time of war. A cooperative arrangement between EPA and the Coast Guard would be mutually beneficial in the context of ballast water discharges.

The CWA envisions working relationships between EPA and other agencies in other contexts, including the dredge and fill provisions of CWA section 404. There, the Army Corps of Engineers issues permits for activities that affect wetlands, while the EPA holds veto power over those permits. The Corps, together with EPA, jointly issues wetlands regulations. Although the relationship is not always an easy one, the different perspectives of the two agencies can contribute to the strength of the overall program.

III. THE EFFECTIVENESS OF THE NPDES PROGRAM AS A REGULATORY TOOL

The White Paper asserts that "serious questions" exist whether the CWA has "made any substantial contribution to the promotion of water...quality." Citing only one somewhat dated economics text, the White Paper asserts that "[a]ccording to a considerable body of scholarship," the regulatory approach "has generally been a costly failure."

Yet, few would deny that the quality of surface waters in the United States has

82. See 40 C.F.R. § 231.1(a); James City County, Va. v. EPA, 12 F.3d 1330 (4th Cir. 1993), cert. denied, 513 U.S. 823 (1994).
85. See Benjamin H. Grumbles & Kenneth J. Kopoci, The Water Resources Development Act of 1992: Expanding the "Corps of Environmental Engineers," 23 ELR 10379, WL *32-33 (1993) (noting that, in carrying out the CWA's goals, both Congress and the EPA may justifiably rely more on the Corps' expertise "in water management, wetlands protection, and other issues addressing both water quality and quantity").
86. Reeves, White Paper, supra note 2, at 113. See also Reeves, Exotic Politics, supra note 2, at 189-90.
improved immensely in the past quarter-century. "Most authorities agree that the country has made significant progress in cleaning up pollution from 'point sources,' such as most industrial discharges and sewage treatment plants."88 Sections 301 and 402 of the CWA "deserve[] a lion's share of the credit."89

As mentioned above, section 301 prohibits discharges of pollutants unless an NPDES permit is obtained pursuant to section 402. NPDES permits must include technology-based effluent limitations,90 water quality related effluent limitations, water quality standards, and ocean discharge criteria.91 Effluent limitations vary according to type of pollutant emitted and whether the discharger is a new or existing source.

A. New vessels

New sources are subject to the strictest standard of the CWA, the "best available demonstrated control technology" (BADT),92 regardless of the type of pollutants emitted. The term "source" sweeps relatively broadly to include any "building, structure, facility, or installation" which may discharge pollutants.93 In contrast to the Clean Air Act's provision governing new sources,94 section 306 is not explicitly limited to stationary sources, and could include mobile sources such as ships. Under the CWA, a source is considered "new" if construction began after proposed regulations are published, establishing performance standards for the relevant category of sources.95

BADT performance standards require the greatest degree of effluent reduction achievable for an industrial class.96 The BADT standard can force process changes, operating methods or other alternatives, "including, where practicable, a standard permitting no discharge of pollutants."97 Because new sources have the

90. See 40 C.F.R. § 122.2 (defining effluent limitations as "any restriction imposed by the Director on quantities, discharge rates, and concentrations of 'pollutants' which are 'discharged' from 'point sources' into 'waters of the United States,' the waters of the 'contiguous zone,' or the ocean.").
91. See CWA § 402(a)-(c), 33 U.S.C. § 1342(a)-(c). The Administrator can also set "other requirements as he deems appropriate." CWA § 402(a)(2), 33 U.S.C. § 1342(a)(2).
93. CWA § 306(a)(3), 33 U.S.C. § 1316(a)(3). Facilities, in turn, are defined by regulation as "buildings, structures, process or production equipment or machinery which form a permanent part of the new source and which will be used in its operation. . . ." See 40 C.F.R. § 122.29(5). This term, like the term "building," seems to include only stationary sources. The terms "structure" and "installation," however, could be construed more broadly.
97. Id.
opportunity to install the best and most efficient production processes and treatment technologies, generally at lower cost than retrofitting existing facilities, BADT "should represent the most stringent numerical values attainable through the application of the best available control technology" for all types of pollutants.98

Although stringent, BADT is unlikely to put most new facilities in economic jeopardy because they are only required to adopt technologies already demonstrated, and because Section 306 directs EPA to consider both the cost of achieving the effluent reduction and any non-water quality environmental impacts and energy requirements.99 In addition, BADT provides protection for facilities that meet all applicable standards; they will not be subjected to any more stringent standards of performance during the ten-year period following completion of construction, or depreciation or amortization of the facility, whichever date is earlier.100

Thus far, BADT has only been applied to a limited number of industrial categories, many of which are explicitly listed in Section 306.101 EPA is directed to revise the list of categories governed by BADT "from time to time."102 Once vessels are listed under Section 306, BADT would most certainly be more stringent than NISA's requirement for 30 ppt salinity, or roughly 85% ballast exchange, and would result in greater reductions in contaminated ballast discharges in vulnerable U.S. waters as new ships are built.

B. Existing vessels

Effluent limitations for existing facilities and vessels vary according to the type of pollutant discharged. Existing sources of toxic and nonconventional pollutants are required to meet effluent limitations based on the best available technology (BAT).103 In comparison, existing sources of conventional pollutants, such as suspended solids and fecal coliform, must meet the best conventional

100. CWA § 306(d), 33 U.S.C. § 1316(d).
102. Id.
103. See CWA § 301(b)(1), (g)(1), 33 U.S.C. § 1311(b)(1), (g)(1).
technology (BCT) for their industrial category. Toxic pollutants include those listed pursuant to section 307. Nonconventional pollutants fall into a "catch-all" category of pollutants - those that are not toxic or conventional. Congress explicitly listed several nonconventional pollutants, such as chlorine, ammonia, color, as well as the thermal component of discharges and gave EPA authority to list additional nonconventionals.

Although some components of ballast water discharges, such as suspended solids, would be considered conventional pollutants, biological materials like exotic species would likely fall under the catch-all category of nonconventional pollutants, and therefore subject to BAT. If EPA were to characterize exotics as nonconventional, that determination would be reasonable and would be accorded great deference. BAT generally requires that existing technology utilized by the "cleanest" firms in the industry be adopted. In setting BAT, EPA takes into account engineering technology and operational processes for categories and subcategories of industry. Although BAT is established with reference to the "best" technology, it does not require the facility to adopt any one particular technology. Instead, individual dischargers may choose their own abatement technique as long as the effluent levels specified in their permits are met.

In addition, EPA is to consider the costs of achieving the best technology available and any non-water quality impacts, as well as energy requirements, in setting BAT. The EPA retains considerable discretion in assigning the weight
to be accorded these factors. Although costs play a role in setting BAT, unlike the BCT limitation for conventional pollutants, EPA need not perform a cost-benefit analysis or otherwise justify its choice of BAT on economic grounds, as long as it has determined that the costs can be borne by industry. That the technology is indeed available provides evidence costs that can be borne by the industry.

[O]stensibly cost-blind standards can help stimulate the development of improved pollution control technology. Thus, they can be rationalized as important elements of efforts to ascertain where technology-forcing can be pursued with greatest promise. Regulations that confront industry with the prospect of substantial compliance costs create greater incentives for the development of cheaper control technology. Time and time again, after regulations have gone into effect, regulatory targets have proven able to do what they previously claimed was impossible when they were seeking to forestall the regulations. A study of industrial responses to regulation found that the stringency of regulation was "the most important factor influencing technological innovation."

Most facilities have been able to comply with BAT at a reasonable cost. BAT does not require a blind eye toward differences among facilities within industrial categories and among geographical areas. EPA has the authority to grant variances or modifications to account for operational differences and even economic hardship. Section 301(g) authorizes a waiver from BAT requirements for nonconventional pollutants if the applicant can demonstrate that its proposed modified effluent limitation is equal to or more stringent than the applicable water quality standards and the initial standard required under the CWA, i.e., the "best practicable control technology currently available" (BPT). The applicant must also show that the modification will not result in additional requirements for other sources, and demonstrate its discharges will not impair the integrity of the receiving water or pose unacceptable risks to the environment or

114. See Chemical Mfrs. Ass'n v. EPA, 879 F.2d 177 (5th Cir. 1989).
115. BCT is roughly equivalent to the "best of the average" performers in an industrial category. BCT limitations are established in light of a variety of factors, including a two part "cost-reasonableness" test. See CWA § 304(b)(4)(B), 33 U.S.C. § 1314(b)(4)(B); American Paper Institute v. EPA, 660 F.2d 954 (4th Cir. 1981). EPA's current methodology for the development of BCT limitations was issued in 1986. 51 Fed. Reg. 24974 (July 9, 1986).
116. See Chemical Mfrs. Ass'n, 879 F.2d at 250, citing EPA v. Nat'l Crushed Stone Ass'n, 449 U.S. 64, 71 n. 10 (1980) (Section 304(b)(2)(B) "does not state that costs shall be considered in relation to effluent reduction").
118. See Shapiro & McGarity, supra note 99, at 744 n.80.
119. See, e.g., CWA § 301(c),(g),(h), 33 U.S.C. § 1311(c),(g),(h).
120. CWA § 301(g), 33 U.S.C. § 1311(g).
human health due to bioaccumulation, persistency, acute or chronic toxicity, or synergistic propensities.121

In addition, section 301(c) gives the EPA authority to modify BAT requirements upon a showing that such modified requirements will: (1) represent the maximum use of technology within the economic capability of the owner or operator, and (2) result in reasonable further progress toward the elimination of the discharge of pollutants.122 Section 301(n) also allows variances if the facility demonstrates it is fundamentally different with respect to relevant factors.123

The imposition of BAT would likely force older vessels to retrofit to achieve greater exchange rates or employ alternative treatment technologies to avoid introducing exotics through ballast discharges altogether.124 There is reason to believe that existing vessels can do better than the current exchange rate, and this would be necessary if BAT applied.125 In fact, the Coast Guard has indicated that 90\% is an achievable rate of exchange for existing vessels.126 Although there are few incentives under the current regime for ships to improve upon their exchange rate or employ the "best" available alternative strategies, several promising technologies are currently being explored: shoreside treatment; ultraviolet light; micro-filtration; ozonation; environmentally friendly biocides; and temperature (heat).127 A Canadian vessel, the ALGONORTH, is implementing a demonstration project, utilizing a filter that can trap particles as small as twenty-five microns.128 This would trap aquatic vertebrates, fish eggs and mussel veliger larvae, along with most invertebrate eggs, fungi and algae cysts.129 With additional treatment, such as ultraviolet light or biocides, even smaller bacteria and viruses could be eradicated.130

While BADT for new vessels could arguably establish standards reflecting the

\begin{thebibliography}{130}
\bibitem{121} See \textit{id}.
\bibitem{122} See \textit{CWA § 301(c), 33 U.S.C. § 1311(c)}.
\bibitem{123} \textit{CWA § 301(n), 33 U.S.C. § 1311(n)}. The \textit{CWA} also allowed dischargers of conventional pollutants to use "innovative technology" resulting in effluent reductions significantly greater than otherwise applicable standards, so long as the control method "moves toward the national goal of eliminating the discharge of all pollutants." \textit{CWA 301(k), 33 U.S.C. § 1311(k)}.
\bibitem{124} See \textit{Foster, supra} note 45, at *WL 25 n.125 (discussing expert opinions regarding ship board versus on shore treatment).
\bibitem{125} See \textit{Reeves, supra} note 8, at 66 (indicating that 98\% exchange may be a "reasonably high standard"); \textit{63 Fed. Reg. 17782, 17785-89 (1998)} (proposed Coast Guard regulations would require 90\% a "reasonably complete exchange").
\bibitem{126} See \textit{63 Fed. Reg. at 17785, 17789}.
\bibitem{127} See \textit{Reeves, White Paper, supra} note 2, at 47-50 (assessing relative merits and costs of improved ballast exchange, filtering, UV light, biocides, heat, and shoreside treatment); \textit{Foster, supra} note 45, at *WL 25 n.125 (discussing application and success of various alternatives in experimental efforts).
\bibitem{129} See \textit{Reeves, White Paper, supra} note 2, at 117.
\bibitem{130} See \textit{id}. The ALGONORTH, however, filters only 1,500 gallons per minute; 1,000-foot United States lakers, carrying as much as 14 million gallons of ballast water when "light" on cargo, could require filtration up to 18,000 gallons per minute. See \textit{Lake Carrier's Association, supra} note 128; \textit{Allegta Cangelosi, The Algonorth Experiment, SEAWAY REV.} at 29-33 (Jan. - Mar., 1997).
\end{thebibliography}
ALGONORTH project, the BAT standard would not be set this high until the filtration system is better established and more widely available. However, if EPA were to simply set BAT at NISA levels, it could be challenged for failing to consider better control technologies. Although EPA need not be "fully cognizant of every innovation, wherever employed...," it is arbitrary and capricious to consider only those technologies that are widely available. For example, EPA has been required to consider zero discharges for the organic chemicals, plastics and synthetics fibers industries where thirty-six plants had already eliminated their discharges through recycling.

The CWA's effluent limitations would also apply to NOBOB's. The vessel itself is the regulated point source, regardless of the quantity of ballast water; therefore, BAT would be set for NOBOB's just as it would for other vessels. In other words, treatment or exchange would be required prior to discharge into U.S. waters, regardless of whether a vessel entered fully loaded or not. Possible options include requiring NOBOB vessels to lighten their load of cargo by an amount that would allow an influx of enough water to pump out the residues (an operation called "swish and spit"). Other suggested treatment methods for sediment and slop in a NOBOB tank include chemical biocides and heat.

C. Water Quality Standards

In addition to effluent limitations, permit requirements must be ratcheted up if necessary to meet water quality standards. The States generally adopt water quality standards based on EPA guidelines and subject to EPA approval. Section 303(c) requires that state water quality standards "protect the public health or welfare, enhance the quality of water and serve the purposes of this [Act]... taking into consideration their use and value for propagation of fish and wildlife, recreational purposes, and agricultural, industrial, and other purposes." The enhancement of water quality for the protection of the propagation of fish and other aquatic life is a key concern of section 303.

Under section 303(c), a water quality standard for a specific waterbody consists of two components: designated uses for which a waterbody is to be
protected (such as recreation in and on the water, protection and propagation of fish and wildlife, or agricultural uses) and the water quality criteria which support those designated uses. Each state must identify those waters for which existing technology-based pollution controls are not stringent enough to attain or maintain state water quality standards. Section 303(d)(2) requires that states submit and EPA approve or disapprove lists of waters for which existing technology-based pollution controls are not stringent enough to attain or maintain state water quality standards. For those waters identified, states are required to establish total maximum daily loads (TMDLs) for identified pollutants as necessary to implement applicable water quality standards with an adequate margin of safety.

California, for example, has listed several water bodies as impaired due to the presence of exotic species. Theoretically, any permitted discharge into an impaired water would have to attain zero discharge of exotics to protect designated uses and avoid further degradation of those waters. Disparate standards among the states could result in a patchwork-quilt of regulatory requirements, varying among jurisdictions. To ensure compliance, vessels could be required to meet the most stringent restrictions of all states they pass through. Ship owners and operators would resist individual state efforts as confusing and inefficient. Some uniformity may be necessary to address these concerns.

D. Public involvement and enforcement

The CWA permit program is all the more effective because it provides both opportunities for public involvement and straightforward enforcement provisions. Before a permit may issue, EPA must allow for public comment and determine that the discharge will comply with the applicable requirements of the CWA. Input received during the public comment period is included as part of the administrative record. At the close of the comment period, the Regional Administrator decides whether to issue or deny a permit application. Any interested person may request a formal hearing within thirty days of the Administrator's determination.

Once a permit is in place, the CWA provides for enforcement through citizen suits as well as administrative, civil and criminal penalties. Thus, bringing ballast water discharges into the CWA program would result in almost immediate improvement: the CWA's significant civil and criminal penalties, along with

139. See 40 C.F.R. part 131.
143. See Foster, supra note 45, at 23-24.
144. See Section IV.B infra.
147. 40 C.F.R. § 124.15.
148. 40 C.F.R. § 124.74(a).
provisions for citizen suits with attorneys' fee awards, provide powerful incentives for dischargers to improve operations as quickly as possible.149

This straightforward and effective enforcement scheme, in which the permit holder must report on and be held accountable for its compliance with its permit and which provides multiple opportunities for enforcement, including by citizens, did not come about by accident. Congress consciously mandated an aggressive, effective enforcement system when it drafted the Clean Water Act, providing, for example, for citizen suits. During Senate consideration of the conference report in 1972, Sen. Birch Bayh (D-Ind.) said: 'We have learned by disappointing experience, Mr. President, that without strict enforcement and meaningful deterrents, water pollution control laws will have no real effect. The bill before us provides the enforcement and deterrents we need.'150

The opportunity for both industry and environmental interest groups to challenge EPA decisions in court provides a tremendous incentive for the agency to equitably and reasonably balance competing interests and embrace effective, yet practical, solutions. "Judicial review is one reason American environmental law works, and the quite similar laws of other countries do not."151

CWA section 505 authorizes any citizen to commence a civil action "against any person... who is alleged to be in violation of... an effluent standard or limitation under this chapter."152 In enacting CWA section 505, Congress recognized, at least implicitly, citizens would be especially effective advocates.153 "One of the greatest elements of the U.S. system of environmental law, itself arguably the greatest in the world, is the citizen lawsuit."154 The list of citizen suits which have impacted the way business is done in the United States is impressive, ranging from ConEdison's thwarted plan to build a huge hydroelectric facility on Storm King Mountain, to the Tennessee Valley Authority's confrontation with the snail darter, to Disney's attempts to build a ski

149 See Rodgers, \textit{supra} note 89, at 1012 (noting that one of the reasons for the CWA's successes in reducing water pollution is its effective system of monitoring, underscored by a highly effective citizen-suit mechanism).
151 Houck, \textit{supra} note 79, at 467.
152 CWA § 505(a)(1), 33 U.S.C. § 1365(a)(1). An "effluent standard or limitation" is defined as, among other things, an unlawful act under CWA § 301(a). \textit{Id.} at § 1365(f).
resort in an isolated valley of the Sequoia National Forest. In no other political and social movement has litigation played such an important and dominant role.

Citizen suits provide an opportunity to achieve enforcement where the EPA has been unwilling or unable to achieve it due to lack of resources or, sometimes, lack of political fortitude. They are especially important to ensure the implementation and enforcement of politically charged programs like water quality standards and allocations for non-point sources, many of which would require changes in local land use planning. For example, the TMDL requirement for addressing water quality-impaired water-bodies was virtually ignored until a series of citizen suits forced compliance.

Without citizen enforcement, most environmental programs "would probably have continued to languish under the political constraints of the marketplace." If not checked by aggressive enforcement, particularly by citizens, industry is likely to bow to the economic pressure to pollute: "noncompliance results in economic benefits (the free use of public waterways for waste disposal), while compliance exacts a financial cost (the construction and operation of expensive pollution removal facilities)."

In comparison, federal economic initiatives, whether in the form of subsidies or taxation, generally inhibit citizen involvement. Citizens, as taxpayers, often have difficulty establishing standing to challenge federal spending programs in court. In Frothingham v. Mellon, a taxpayer alleged that Congress, in enacting the Maternity Act of 1921, had deprived her of property without due process in violation of the Fifth Amendment and had invaded the legislative powers reserved to the States by the Tenth Amendment, thereby exceeding the spending

155. See Tenn. Valley Auth. v. Hill, 437 U.S. 153 (1978) (enjoining construction of dam); Scenic Hudson Preservation Conference v. Fed. Power Comm'n, 354 F.2d 608 (2d Cir. 1965) (remanding FPC license to construct pumped storage hydroelectric project), cert. denied, 384 U.S. 941 (1966). See also Sierra Club v. Morton, 405 U.S. 727 (1972) (holding that Sierra Club did not have standing because it failed to allege that corporation or its members would be affected by the proposed ski resort; however, the resort was never actually built). See Rodgers, supra note 89, at 209 n.12.

156. Polsky & Turner, supra note 154.

158. See Oliver A. Houck, TMDLS, Are We There Yet?: The Long Road Toward Water Quality-Based Regulation Under the Clean Water Act, 27 ELR 10391 (1997).

160. CRONIN & KENNEDY, supra note 159, at 178.

161. See U.S. Const. art. III (providing federal courts with jurisdiction to hear only concrete cases or controversies).
power of Article I, Section 8. The Supreme Court held that the taxpayer had no standing to bring these general grievances about the conduct of government or the balance of power in the federal system. Thus, unless a taxpayer alleges a violation of a specific constitutional limitation on the spending power, such as the Establishment Clause of the First Amendment, the suit will be dismissed. The most plausible challenge to economic programs applicable to ballast water discharges would be on the grounds of arbitrary and capricious action under the APA; as such, plaintiffs would likely lack standing.

E. The Efficacy of the CWA's Technology-Based Controls

1. The Virtues of Regulatory Programs over Economic Initiatives

Although there is still work to be done, the first round of technology-based controls under the Federal Water Pollution Control Amendments of 1972 resulted in significant process changes. For the first time in years of federal involvement in water quality, pollution loadings dropped and measurable abatement occurred. "Technology-based regulation is concededly imperfect... but this 'academic failure' has been an enormous success in the real world." Professor Oliver Houck describes this phenomenon as the "convergent evolution" of successful environmental law: "Over time, the job will select the tool." In the context of discharges into water, the successful tool has been the NPDES program. Technology-based standards, requiring the best available controls on the source of the pollutant, won "their primacy because other approaches simply couldn't hold their terrain."

163. See id.
164. See Flast v. Cohen, 392 U.S. 83, 103 (1968) (noting that "one of the specific evils feared by those who drafted the Establishment Clause... was that the taxing and spending power would be used to favor one religion over another or to support religion in general").
166. See ADLER, LANDMAN & CAMERON, THE CLEAN WATER ACT 20 YEARS LATER 150-70 (1993). For example, the five-year review required by CWA, which views BAT development as a continuing, dynamic process, has bogged down under the weight of industry resistance and judicial challenges from both sides. See Houck, supra note 79, at 456, n.240-41.
168. Shapiro & McGarity, supra note 99, at 743. As Professor Houck aptly notes, "The success of technology-based standards in abating toxic water pollution depends largely on one's predisposition to enjoy the donut or regret the hole." Houck, supra note 1, at 310.
170. Id. at 427. See Plater, supra note 159, at 366, 374-78, 379-82 (generally discussing historic failure of market economics to address environmental problems).
The predominant technology-based force in the CWA, BAT, provides the necessary pressure of outside-in regulation. In spite of its limitations, BAT "has probably been the most effective pollution control program in the world in terms of producing identifiable abatement—short of outright bans—if only because alternative programs have proven equally burdensome and so much less effective. At the very least, the BAT process has proven, against vigorous opposition and the most dire predictions, that pollution could in fact be reduced without significant losses in employment, competitiveness, control, or industrial growth."\(^{171}\)

Even the Coast Guard has recognized that performance standards will work better than NISA's salinity test. As noted above, the Coast Guard employs a 30 ppt salinity standard, which theoretically results in nominal exchange of 83-85%.\(^{172}\) Under new regulations proposed in 1998, a requirement for 90% exchange would have replaced the salinity test; salinity, among other things, would merely provide evidence exchange occurred.\(^{173}\) However, these changes were not adopted when the interim rule issued in May 1999 "[b]ecause of strong opposition by the shipping industry."\(^{174}\)

Although regulatory approaches may not necessarily result in a perfect cost-benefit balance,\(^{175}\) to the extent that excess costs occur under existing regulatory programs, they are justifiable for a variety of reasons. First and foremost, economic efficiency is not and should not be the only objective of environmental programs. Instead, the strongest arguments for regulation may well sound in democracy, sustainability, quality of life and environmental equity rather than economic efficiency.\(^{176}\) Moreover, over time, history has proven regulation to be more effective in addressing and controlling pollution externalities than pure market-based mechanisms. When federal funding initiatives failed to address discharges from, e.g., sewage treatment plants, the CWA was amended to specifically require secondary treatment, as well as the regulation of combined

\(^{172}\) See Section I supra, discussing effects and current control methods.

\(^{173}\) 63 Fed. Reg. 17782, 17785, 17789 (April 10, 1998) (stating that "90 percent is a reasonable standard to set, which is of minimal cost to the industry in that it does not require any changes to current ship designs, subject to the clearly stated exemption for vessels that cannot safely conduct an exchange").

\(^{174}\) Reeves, White Paper, supra note 2, at 67. See 64 Fed. Reg. 26672 (1999). Yet, the Coast Guard's stated goal remains "for owners and operators to exchange 100 percent of the original water in the ballast tank" if possible given "operating systems and physical limitations of the vessel." 64 Fed. Reg. at 26677.

\(^{175}\) See Reeves, White Paper, supra note 2, at 109-11.

stormwater overflows. Finally, significant progress occurred.177

Of course, programs based on either technology-based controls or economic incentives involve a substantial governmental role of some kind and result in economic impacts.178 However, in comparison, economic initiatives generally suffer a variety of deficiencies, even though economic approaches like that suggested by the \textit{White Paper}, in keeping with the recent hue and cry for regulatory reform,179 have found favor in both academia180 and federal executive and legislative initiatives.181

Proponents of economic approaches themselves understate the difficulties of estimating costs and benefits. In particular, the marketplace generally underestimates ecological benefits or values.182 In \textit{Ohio v. Department of Interior},183 regulations for the assessment of natural resource damages were invalidated because the assessment methodology relied too heavily on market or "use" value of the lost or damaged resource. There, the D.C. Circuit noted that

182 See Plater, \textit{supra} note 159, at 374-77, 379.

183 \textit{Ohio v. Dep't of Interior}, 880 F.2d 432 (D.C. Cir. 1989).
Interior had "made no claim" that "use value" would in fact pay for restoration, replacement or acquisition of equivalent resources, as required by the Comprehensive Environmental Response, Compensation and Recovery Act (CERCLA),\(^\text{184}\) indeed, "Interior could not possibly maintain that recovering $15 per pelt for the fur seals killed by a hazardous substance release would enable the purchase of an 'equivalent' number of fur seals."\(^\text{185}\)

As for implementation costs, economic incentive programs, be they tax-based or otherwise, could be equally, or even more, expensive than a technology-based regulatory program. Regulatory strategies are generally less expensive to monitor and enforce because inspectors need only determine whether the required technology has been installed and is being properly operated.\(^\text{186}\) Conversely, economic approaches provide incentives to hide emissions or discharges to avoid the taxes or maximize subsidies.\(^\text{187}\) Inspectors would be required to monitor the amount of pollution emitted from all possible discharge points on a continuous basis under a pollution tax or subsidy scheme, an expensive and labor-intensive endeavor.\(^\text{188}\)

Because there is virtually no way to calculate exactly how much abatement will result from any given pollution tax-rate at the front-end of the taxation program, the rate will have to be adjusted over time to meet abatement goals. Yet, legislatures are historically unwilling to revise tax rates after they are initially set.\(^\text{189}\) During the time it takes for the system to reach "steady state," unless society is willing to tolerate high exposure levels, proceedings to set a tax rate will be highly contentious. Because industry tends to resist any change to status quo, especially if immediate outlays are required, implementation of an economic incentive program is likely to be slow.\(^\text{190}\) Given the existing uncertainties about the presence, potential for entry and severity of effects of the next aquatic invader, the added uncertainty as to the appropriate level of taxes, along with the attendant delays of shifting to a new program, may well be intolerable.\(^\text{191}\)

Critics of regulatory programs argue that industry can manipulate the rulemaking process, and the ultimate standards chosen, by withholding data on

\(^\text{185}\) Dep't of Interior, 880 F.2d at 445.
\(^\text{189}\) Shapiro & McGarity, *supra* note 99, at 748.
\(^\text{190}\) *id.* at 745.
\(^\text{191}\) See Shapiro and McGarity, *supra* note 99, at 743. The *Exotics Policy White Paper* itself acknowledges that its conclusions raise "some highly complex questions about the synergistic interaction of taxes, subsidies, and regulatory costs in various competing segments of industry which are beyond the analysis I can present here." Reeves, *Exotic Politics*, *supra* note 2, at 202-05.
costly but effective abatement technologies. However, EPA's authority, under the CWA, to impose record-keeping, sampling and reporting requirements, and to inspect and gather data on the premises helps counteract this behavior.

Similarly, critics believe the establishment of emission levels based on current assessments of technology can minimize incentives for further innovation, as industry may be reluctant to invest in researching new control methods, knowing costs will increase as the BAT standard is ratcheted up. However, economic initiatives, like subsidies and taxes, do not necessarily stimulate continuous environmental improvement and may even result in less technological innovation than comparable regulation. Taxation, for example, could have the same "chilling" effect unless it is strictly monitored, adjusted and enforced: "The current income tax system, with its monument to the ingenuity of tax avoidance, does not inspire optimism on this point."

Along the same lines, regulatory programs are often accused of having the undesirable effect of rewarding older, dirtier plants through "grandfather" provisions, providing them with a perverse incentive to continue relatively cheap operations while placing new facilities at a disadvantage. If necessary, however, CWA sections 301 and 402 do provide authority to force some of the oldest, dirtiest ships to retire if they cannot meet technology-based effluent limitations, which are to be made more stringent over time.

Moreover, it is possible to design a technology-based regulatory regime that does not reward old, dirty facilities or vessels. For example, the Oil Pollution

194. See Dudek & Palmisano, Emissions Trading: Why is this Thoroughbred Hobbled?, 13 COLUM. J. ENVTL. L. 217, 234-36 (1988); POSNER, supra note 192, at 279. See also Reeves, White Paper, supra note 2, at 114 (quoting a vice president of Chrysler, discussing achievable technology for reducing emissions, "We're all worried that if we sound hopeful, what will the damned standards be tomorrow?").

197. See Reeves, White Paper, supra note 2, at 116-17; Richard B. Stewart, Controlling Environmental Risks Through Economic Incentives, 13 COLUM. J. ENVTL. L. 153, 158 (1988) (arguing that the more stringent treatment of new sources "encourages existing sources to prolong their design lives and discourages new sources, with state-of-the-art water pollution technology, from entering the market"). Perhaps in recognition of the potential for stringent BADT standards to create incentives to keep older, dirtier facilities operating, EPA has, at least on occasion, attempted to set BADT for new sources no higher than BAT. See Houck, supra note 171, at WL*32 (discussing litigation and reversal of petrochemical industrial standards, in Chem. Mfrs. Ass'n v. EPA, 883 F.2d 253 (5th Cir. 1989)).

Act (OPA) of 1990 phases in a double hull requirement for existing vessels over a period of twenty years, starting with the oldest, largest vessels, and requires double hulls for all new vessels built for oil transportation when they operate in U.S. waters or the U.S. exclusive economic zone. The OPA has spurred active competition among naval architects to build a safer supertanker, and the world's first double hull supertanker was completed in Denmark in 1992. In addition, significant declines in oil spills, both in number of incidents and amounts spilled, have occurred. Meanwhile, although freight rates increased by approximately 10%, the flow of oil being shipped to the United States has continued with no interruptions. Attesting to OPA's efficacy, the International Maritime Organization (IMO) has followed suit by adopting regulations that will require double hulls or equivalent safety features for all new oil tankers.

The final attack alleges that regulatory programs put "clean" facilities at a competitive disadvantage. But the best performers will not necessarily be disadvantaged under technology-based effluent limitations. Forcing the adoption of improved technology through regulation can result not only in emission reduction, but also, in some cases, greater efficiency and lower costs. Implementation of the Clean Air Act (CAA) has demonstrated industry routinely overestimates compliance costs but subsequently achieves legislative goals without losing their competitive edge. For example, the oil industry claimed

199. See 46 U.S.C. § 3703(a); 57 Fed. Reg. 36,222 (1992). For existing vessels, the double hull requirement is phased in over several years, depending upon the size and age of the vessel, beginning in 1995 and proceeding in stages until 2010, when all vessels over 5000 gross tons must be equipped with double hulls. See Jeffery D. Morgan, The Oil Pollution Act of 1990: A Look at Its Impact on the Oil Industry, 6 FORDHAM ENVTL. L.J. 1, 7 (1994).

200. PERCIVAL, ET AL., supra note 192, at 145 (citing Hudson, Tanker Safety Plans are Mulled as Oil Spill Threatens Shetlands, WALL ST. J., Jan. 8, 1993 at A7B).

201. The Coast Guard reported the following data for U.S. waters: 1991 – three spills totaling 55,000 gallons (the lowest level in 14 years); 1992 – 1 spill at 98,700 gallons; 1993 – 1 spill releasing 33,500 gallons; 1994 – 1 spill at 35,700 gallons. See PERCIVAL, ET AL., supra note 192, at 144.

202. See id. at 143.

203. See id. at 145 (citing Reuters, Oil Supplies Unaffected by Tanker Rules, N.Y. TIMES, Dec. 29, 1994 at D4). See 57 Fed. Reg. 1855 (1992). In fact, up until late 1999-early 2000, oil prices were the lowest seen in decades. See Continuing Decline in Oil Prices Benefits Consumers and a Wide Range of Industries, WALL ST. J., Dec. 2, 1998 at A2; Jeffrey Ball, Gasoline Price Rise Worries Auto Makers, WALL ST. J., Dec. 8, 1999 at A2 (reporting that, although oil prices rose somewhat during fall 1999, "[r]etail prices, adjusted for inflation, fell to their lowest level last year since pump prices began to be tracked in 1918, according to the American Petroleum Institute").

204. See PERCIVAL, ET AL., supra note 192, at 145.

205. See Houck, supra note 79, at 430 n.107 (requirements for alternative technology, including even outright bans of harmful substances, e.g., leaded gasoline and DDT, can force industry to find alternative means of production or alternative, less destructive, products and, in doing so, save money as well).
phasing out lead in gasoline would cost 95% more than it actually did.206 Pessimistic estimates of the costs of the 1990 CAA acid rain program were also overstated by almost 50%, as emissions trading, along with CAA Title IV restrictions, encouraged the use of low-sulfur western coal and scrubbers, and utilities responded favorably to rewards for conservation and renewable energy.207 Also as a result of the 1990 CAA amendments, ozone-depleting CFC's were phased-out, and ozone friendly substitutes became more widely available.208

The CWA's NPDES program can actually level the playing field for companies implementing technological controls because all facilities within an industrial class are required to meet a minimum threshold of "cleanliness."209 Facilities that improve their environmental image by affirmatively adopting innovations in technology could gain competitive advantage if their "green" reputation is touted through effective marketing campaigns and public relations efforts.210 Meanwhile, uniform standards decrease the likelihood of social dislocation and "forum shopping" that can otherwise result from competitive disadvantages between geographical regions or between firms in regulated industries.211

2. Using Market-Based Tools to Supplement Regulatory Requirements

Once the regulatory stage is set, technological improvement could perhaps be encouraged through supplemental market-based incentives.212 For example, the 1990 CAA amendments' emissions trading program shows potential because it does not replace national air quality standards; rather, it simply provides flexibility in reaching the predetermined goals, \textit{i.e.}, the permissible levels of exposure already set by the CAA.213

206 See Alan S. Miller, \textit{Environmental Regulation, Technological Innovation, and Technology-Forcing}, 10 NAT. RESOURCES & ENV'T 64, 66-67 (1995); PERCIVAL, ET AL., \textit{supra} note 192, at 168-70. Ironically, although Nixon's proposal for a stiff tax on lead additives in 1971 to encourage their phase-out was given short-shrift by Congress at the time, the subsequent inclusion of mandatory lead phase-out in the CAA is now touted as "the singular success story in air pollution control." \textit{Id.} at 168.

207 See \textit{id.}

208 \textit{Id.}

209 See Reeves, \textit{White Paper, supra} note 2, at 111-12, and Reeves, \textit{Exotic Politics, supra} note 2, at 192 (noting that the shipping industry asked the Vancouver Harbour Master to issue a standing order making a voluntary ballast exchange initiative into a mandatory program).

211 See Latin, \textit{supra} note 186, at 1270-71. See also Costle, 568 F.2d at 1369 (effluent limitations imposed by NPDES permits impose minimum, uniform floors below which neither individual nor jurisdictional efforts may sink, thereby avoiding the "race to the bottom" that would otherwise result among jurisdictions with different requirements).

212 See Houck, \textit{supra} note 79, at 428, 454 n.226-28.

Trading initiatives in general are cost effective only in situations where regulated facilities experience different marginal control costs, and reductions can be made more cheaply by some than by others.\(^{214}\) Although these factors may be present among facilities and vessels subject to the CWA, it is not clear that a trading program could be used as a supplement to the NPDES program, or that it would make sense with respect to vessels engaged in commercial shipping.

Unlike the CAA, effluent trading programs are not explicitly authorized by the CWA.\(^{215}\) EPA, however, construes the CWA to allow dischargers to trade wasteload allocations as a means to implement the TMDL program for meeting water quality standards.\(^{216}\) The Clinton Administration's 1994 "Clean Water Initiative" indicates support for trading programs, and it recommends EPA study trading opportunities and publish additional guidance regarding possible pollutant trades.\(^{217}\)

While trading may be a viable option for meeting water quality objectives through TMDLs, it may not be so with respect to the NPDES program. Notably, the TMDL requirement provides a relatively close parallel to the CAA's approach; both focus on the achievement of ambient levels of "clean" water and air, respectively.\(^{218}\) In contrast, point sources must meet technology-based

214. Alexandra Teitz, Assessing Point Source Discharge Permit Trading: Case Study in Controlling Selenium Discharges to the San Francisco Bay Estuary, 21 ECOLOGY L.Q. 79, 81-82 (1994) (noting that these factors allow a market to develop but that transaction costs can "impose trading barriers and reduce realizable cost savings").

215. See Elise M. Fulstone, Effluent Trading: Legal Constraints on the Implementation of Market-Based Effluent Trading Programs Under the Clean Water Act, 1 ENVTL. LAW. 459, 480-89 (1995) (concluding that CWA amendment might be necessary before such trading would be allowed, citing, e.g., the anti-backsliding provisions of 33 U.S.C. § 1342(o)). See also Teitz, supra note 215, at 108, 152 (concluding that CWA § 302(a)-(b), which require NPDES permits to specify effluent limitations unless elaborate modification procedures are met, "may significantly constrain the trading options currently available"). Fulstone recommends that Congress enact a variance from the CWA's technology-based requirements for "qualified" participants in "qualified" point source trading programs. Fulstone, supra, at 489.

217. See President Clinton, Clean Water Initiative: Restoring and Protecting America's Waters (visited Jan. 25, 2000) <http://www.epa.gov/owowwtp1/cleanwater/progress/index.html>. The Clean Water Initiative provides that EPA guidance: (1) "establish criteria to allow for prior approval of trades by" the permitting and administering authorities; (2) "specify that trades shall not violate water quality standards"; (3) "specify that where water quality standards are not met, trades based on TMDLs may still take place"; (4) identify settings, based on models, that may complement trading programs when on-site monitoring would be otherwise prohibitively expensive; (5) "clarify that the anti-backsliding provision of the (Clean Water Act) . . . does not prohibit trading"; and (6) authorize pretreatment trading programs. Fulstone, supra note 215, at 462 n.8. For a comparison of the costs of a German effluent trading system with the CWA's technology-based requirements, see Thompson, supra note 112, at 538-39 (concluding that, depending on certain variables, including how much industry spends to lobby Congress and the regulators, effluent trading may be more cost-effective).

218. See CWA § 303(d)(1)(C), 33 U.S.C. § 1313(d)(1)(C) (TMDLs shall be allocated to meet water quality standards) with 42 U.S.C. §§ 7409, 7502(c)(2) (state implementation plans must make "reasonable further progress" toward meeting National Ambient Air Quality Standards).
effluent limitations under the NPDES program regardless of the quality of the receiving water body. Further, trading programs are not particularly useful when the goal is to achieve zero discharge, because there is nothing left to trade.

As a practical matter, a ballast water effluent trading program would be difficult to implement. While trading has worked relatively well for reducing air emissions from stationary sources like power plants, one wonders how such a program would apply in the context of mobile ships, flying the flags of various nations and utilizing multiple trade routes in and through the Great Lakes. For instance, how could a trading program be designed to assure that exotic species "hot spots" are avoided?

This is not to say that alternative economic tools, such as providing rebates for clean ballast or taxing dirty ballast, must be universally rejected. The use of these and other types of economic initiatives should be explored to determine their potential for enhancing the regulatory program.

IV. THE PRACTICAL IMPLICATIONS OF NPDES PERMITTING FOR VESSELS

The regulation of ballast water discharges through NPDES permits will, no doubt, present a challenge to EPA, in part because EPA does not have the expertise regulating ships that it does regulating industrial dischargers. As a result, shipping companies and trade groups, accustomed to dealing with national coast guards and port authorities, will be resistant when EPA jumps into the existing regulatory fray.

More significantly, the challenge to ballast water regulation stems from the fact that commercial ships transporting cargo are, by their very nature, mobile, and not only originate from various nations but also frequently cross jurisdictional lines. EPA typically delegates the permitting responsibilities of

219. See CWA §§ 301(b), 304(b), 402(a)(1), 33 U.S.C. §§ 1311(b), 1314(b), 1342(a)(1).
221. See Reeves, Exotic Politics, supra note 2, at 204-06. The potential implications of any form of subsidy for "clean" ballast would require detailed economic consideration, given that the construction and maintenance of the St. Lawrence Seaway is already subsidized. See id. at 205. Moreover, in general, federal expenditures aimed at supporting the position of particular industries should be used sparingly, only in those instances where private markets have failed, as in mass transit, or where public needs would otherwise go unmet, as in parks and the arts, and "should be constantly reevaluated in light of changing circumstances." CHARLES F. WILKINSON, CROSSING THE NEXT MERIDIAN: LAND, WATER, AND THE FUTURE OF THE WEST 19 (1992), citing U.S. Congress, Joint Economic Committee, Subsidy and Subsidy-Effect Programs of the U.S. Government, 89th Congress, 1st Sess., 1 (U.S. Gov't Printing Office 1965).
222. Of course, mobility in and of itself does not prevent a discharger from being classified as a point source. Courts have consistently held that dump trucks and bulldozers, such as those used for depositing and spreading fill, qualify as "point sources." See United States v. Pozsgai, 999 F.2d 719 (3d Cir. 1993); Avoyelles Sportsmen's League, Inc. v. Marsh, 715 F.2d 897, 922 (5th Cir.1983); Matter of Alameda County Assessor's Parcel, 672 F. Supp. 1278, 1284-85 (N.D.Cal.1987); United States v. Tull, 615 F. Supp. 610, 622 (E.D.Va.1983), aff'd, 769 F.2d 182 (4th Cir.1985), rev'd on other grounds, 481 U.S. 412 (1987). See also Concerned Area Residents for Env't v. Southview Farm, 34 F.3d 114, 119 (2d Cir. 1994) (finding that vehicles used to spread manure are point sources), cert. denied, 514 U.S. 1082 (1995).
the NPDES program to the states, each of which may exercise its authority over a vessel "point source" crossing through its waters. Although states cannot dip below the federal thresholds, each individual state can impose more stringent controls than the effluent limitations established by EPA, so disparities in standards are quite possible.223 Effective implementation of the NPDES program for ballast water discharges will depend on cooperative efforts between Great Lakes states, between EPA and the states, and between EPA and the Coast Guard.

A. Administrative difficulties

The logistical difficulties inherent in regulating vessels and their ballast water discharges do not provide EPA with an excuse to avoid regulating altogether. Courts have flatly rejected the notion that "administrative impossibility" justifies a refusal to require or issue NPDES permits for categories of point source dischargers.224 Instead, the CWA "gives EPA considerable flexibility in framing the permit to achieve a desired reduction in pollutant discharges. The permit may prescribe industry practices that aggravate the problem of point source pollution."225 Accordingly, if necessary, EPA might opt for gross reductions in pollutant discharges from a category of facilities or vessels, rather than engage in the fine-tuning necessitated by individualized effluent limitations. "But this ambitious statute is not hospitable to the concept that the appropriate response to a difficult pollution problem is not to try at all."226

Even if EPA initially addressed the problem of ballast water discharges by using a general or area-wide permit approach,227 performance would improve. General permits, addressed to a class of point source discharges, at least allow for public participation, and require EPA to focus on the problem of a region or class of activities and to revisit the issue every five years or less.228 In comparison, an exemption like section 122.3 "tends to become indefinite: the problem drops out of sight, into a pool of inertia, unlikely to be recalled in the absence of crisis or a strong political protagonist."229

223. CWA § 510, 33 U.S.C. § 1370; 40 C.F.R. § 122.1(f). See O'Toole, supra note 55, at 45 (discussing the Navy's difficulties in complying with disparate state standards, and noting that "no state has yet required the permitting of a U.S. Navy ship, though individual discharges are being increasingly challenged").
224. See Costle, 568 F.2d at 1369.
225. Id. at 1380.
226. Id. at 1380.
228. Costle, 568 F.2d at 1382. See, e.g., 57 Fed. Reg. 41236 (1992) (providing for general permits for storm water discharges, requiring facilities to "implement a site-specific storm water pollution prevention plan"); however, if storm water discharges in a particular watershed or from particular facilities or industries are found to cause water quality problems, watershed-specific or other individualized permits may be required.
229. Id.
B. Inter-Agency and Inter-Governmental Cooperation

The CWA encourages and even requires coordination between the EPA and other federal entities, including the military and the Coast Guard, with respect to the regulation of vessels. For example, EPA must include a condition within permits issued to facilities that occasionally operate as transportation vessels, requiring that their discharges comply with any applicable Coast Guard regulations "that establish specifications for safe transportation, handling, carriage, and storage of pollutants." 230

More specifically, the approach in CWA section 312 for discharges of sewage from vessels through marine sanitation devices (MSDs) and incidental discharges from vessels of the armed forces through marine pollution control devices (MPCDs) provides a cooperative model for EPA and the Coast Guard. Under section 312, EPA establishes general prohibitions and performance standards, while the Coast Guard has enforcement authority, allowing it to board and inspect vessels on navigable waters of the United States and execute warrants issued by officers or courts of competent jurisdiction. 231 However, because section 312 is not implemented through the NPDES permit program, it is not a complete analogy for EPA in regulating ballast water discharges from commercial vessels, but should be looked to merely for guidance.

With respect to MSDs, EPA, in consultation with the Coast Guard, must establish standards of performance to prevent the discharge of inadequately treated sewage from vessels 232 and a testing and certification regime to regulate the sale of MSDS. 233 The standards, which are phased in over time for existing vessels, 234 must be consistent with maritime safety and other marine and navigation laws and coordinated with Coast Guard standards. 235 Commercial vessels operating in the Great Lakes must install MSDs that at least meet secondary treatment quality. 236

MPCD performance standards are to be issued by EPA and the Department of Defense (DOD), in consultation with the Coast Guard and the Secretaries of State and Commerce. 237 The standards should mitigate adverse impacts on the marine environment, considering the nature and environmental effects of the discharge, the practicability and costs of the installation and use of the MPCDs, effects on the vessel's operational capability, and applicable United States and international

230. 40 C.F.R. § 122.44(p).
231. See CWA § 312(k)-(I), 33 U.S.C. § 1322(k)-(l). Section 312 may also be enforced by a State. Id. at (k).
233. See CWA § 312(g)-(h), 33 U.S.C. § 1322(g)-(h).
Standards may reflect distinctions between classes, types and sizes of vessels and may even be waived "as necessary or appropriate" for classes, types or sizes of vessels, as well as for individual vessels.

Performance standards for vessels have been issued pursuant to a joint effort by EPA, the Coast Guard, and the Departments of Defense, State, and Commerce. EPA and DOD determined that it is reasonable and practicable to regulate discharges of ballast water through MPCDs, and current management practices for open-ocean exchange, based on the IMO's guidelines, "demonstrate the availability of controls to mitigate the potential adverse environmental impacts from this discharge."

Congress expressly preempted most state laws and regulations regarding the design, manufacture, installation or use of MSDs or MPCDs. Upon petition to EPA, however, states may prohibit discharges in some or all of the waters within the state as required for the protection and enhancement of water quality, if EPA determines, inter alia, that adequate facilities for the safe and sanitary removal and treatment of sewage or ballast water from vessels are reasonably available.

Looking to section 312, EPA, with Coast Guard cooperation and input, could issue national effluent limitations for ballast water discharges from commercial vessels, reflecting BAT through MPCDs or alternative treatment methods. EPA, again with the Coast Guard as a consulting partner, could then issue general or

238. See CWA § 312(n)(2)-(3), 33 U.S.C. § 1322(n)(2)-(3). Section 312(n) applies unless the Secretary of Defense finds that compliance "would not be in the national security interests of the United States." Id. at (n)(1).

239. CWA § 312(c)(2), 33 U.S.C. § 1322(c)(2).

241. See id. at 45308 (defining MPCD, as used in the proposed rule, as "a control technology or a management practice that can reasonably and practicably be installed or otherwise used on a vessel of the Armed Forces to receive, retain, treat, control or discharge a discharge incidental to the normal operation of the vessel.").

242. Id. at 45310-11. The Navy and Coast Guard either currently implement or are in the process of approving a ballast water management policy requiring open-ocean ballast water exchange, based on IMO Guidelines for Preventing the Introduction of Unwanted Aquatic Organisms and Pathogens from Ships' Ballast Water and Sediment Discharge (May 10, 1995). See 63 Fed. Reg. at 45306. In the final rule, the agencies noted that a more detailed assessment of the MPCD control options and performance standards for each class of vessels would be performed in a subsequent phase of rulemaking. See 64 Fed. Reg. at 25130.

243. See CWA § 312(f)(1), 33 U.S.C. § 1322(f)(1). States are allowed to impose more stringent requirements for MSDs on houseboats. Id.

regional permits incorporating the effluent limitations.245 With a unified body of standards in place, vessel owners and operators get the benefits of certainty, and ships could be modified or designed to meet the standards, phased in to require state-of-the-art technologies within a reasonable period of time.246

Meanwhile, states would retain a role in enforcing the limitations contained within the permits.247 However, to avoid inconsistencies from port to port, the MSD and MPCA approach should be followed such that states could not impose more stringent requirements or establish "no discharge" zones absent appropriate determinations by EPA. Although states with delegated CWA enforcement authority may be reluctant to relinquish some of that authority back to the federal agencies, in the context of ballast water discharges, it would seem that states have more to gain than to lose under a program of uniform national effluent limitations.248

Existing statutory provisions may limit EPA's ability to approve or withdraw only that part of a state NPDES program dealing with vessels. The gist of section 402 is that states with "adequate authority" to carry out the permit program take over the entire program.249 To that end, state permit programs generally must be approved or disapproved in their entirety.250 The CWA does, however, explicitly

245. See, e.g., Seafood General Permit, 60 Fed. Reg. 34991 (1995) (authorizing discharges from offshore, nearshore and shore-based vessels and onshore facilities engaged in the processing of fresh, frozen, canned, smoked, salted, and pickled seafoods; permitted discharges include processing wastes, process disinfectants, sanitary wastewater, and other wastewaters, cooling water, boiler water, gray water, freshwater pressure relief water, refrigeration condense, water used to transfer seafood to a facility, and live tank water "to waters of the United States in and contiguous to the State of Alaska, except for receiving waters excluded from coverage as protected, special, at-risk, degraded or adjacent to a designated 'seafood processing center'; discharges of petroleum hydrocarbons, toxic pollutants, or other pollutants not specified in the permit are not authorized).

246. See O'Toole, supra note 55, at 48. O'Toole concludes that "[t]he best way to ensure Navy ship compliance is to develop a coherent body of effluent standards for application to all Navy ships in all waters of the U.S. and on the high seas." Id. at 46. Instead of EPA enforcement, however, he recommends that the standards be implemented through the existing command and control structure of the Navy. Id.

248. See O'Toole, supra note 55, at 48-49.

249. See CWA § 402(b), (c), 33 U.S.C. § 1342(b), (c). To establish "adequate" permit authority, states must insure, among other things, that their permits will (1) comply with CWA provisions governing effluent limitations, new sources, toxic pollutants, MSDs, and ocean discharge criteria; (2) be limited to fixed terms not exceeding five years; (3) be terminated or modified for cause; (4) require reporting and inspection; and (5) be enforceable through civil and criminal penalties. See id. at (b)(1)-(9). States must also insure that EPA will receive notice of permit applications, Id. (b)(4), and that no permit will issue if the Army Corps of Engineers, after consulting with the Coast Guard, determines that "anchorage and navigation" of navigable waters would be "substantially impaired." Id. at (b)(5).

allow for partial delegation, so long as the state's partial permit program covers major categories of point sources and is, in and of itself, a complete permit program covering a "significant and identifiable part of the State program."251

Once a state program is approved, EPA can withdraw its approval if the state fails to administer it in accordance with federal requirements.252 Again, Congress intended that state programs not be piecemealed.253 In fact, Congress rejected an EPA proposal that section 402 be revised to permit withdrawal for categories or classes of sources, reflecting its concern states be given maximum responsibility for the NPDES program and EPA's review authority be restricted as much as was consistent with its overall responsibility for assuring the CWA's national goals are met in a timely fashion.254 In any event, EPA withdrawal is a drastic measure, and there are significant obstacles to taking back authority: "The procedures for withdrawal of state programs would be suitable for the Nuremburg trials, and will be invoked only upon epochal occasions."255 Because of its disruptive nature and the resulting ill-will, EPA and state governments generally strive to avoid withdrawal.256

Instead of withdrawing state NPDES programs that attempt to impose more stringent or contradictory requirements on ballast water discharges, EPA could take either of two less drastic steps. Assuming EPA rescinds its regulation excluding ballast water discharges, states would have to submit to EPA for approval of new or additional components of their programs. EPA could then simply refuse to approve the portion of a state program dealing with vessels as a category of discharger.257

Alternatively, if a state had an approved program, EPA could veto individual ballast water discharge permits issued by the state on the grounds that any non-uniform requirements are "outside the guidelines and requirements" of the CWA.258 In practice, EPA's veto power is wielded with a light touch: "oversight is an essentially state-friendly process involving a great deal more jawboning and negotiation than adamant intrusion."259 However, individual permit supervision is less offensive to state sovereignty than withdrawal, and EPA should not be

\begin{footnotesize}
\begin{enumerate}
\item See CWA § 402(n)(3)-(4), 33 U.S.C. § 1342(n)(3)-(4).
\item See CWA § 402(c)(3)-(4), (n), 33 U.S.C. § 1342(c)(3)-(4), (n).
\item See CWA § 402(c)(3), (d), 33 U.S.C. § 1342(c)(3), (d). These provisions have been described as giving "all-or-nothing authority to withdraw approval of a state NPDES program." Cal. Water Resources Bd., 426 U.S. at 226 n.39.
\item RODGERS, supra note 153, at 367-68 (footnote omitted).
\item Disapproval would likely be on the grounds that inconsistent state programs fail to comply with CWA provisions allowing effluent limitations. See CWA § 402(b)(1), 33 U.S.C. § 1342(b)(1).
\item See CWA § 402(d)(2), 33 U.S.C. § 1342(d)(2); 40 C.F.R. § 123.44(c).
\item Oliver Houck & Michael Rolland, Federalism in Wetlands Regulation: A Consideration of Delegation of CWA § 404 and Related Programs to the States, 54 MD. L. REV. 1242, 1293.
\end{enumerate}
\end{footnotesize}
afraid to invoke its veto power in appropriate circumstances.260 Although Congress intended states to play a significant role in the NPDES program, it also wanted EPA to assure uniformity and consistency by engaging in a vigorous overview of state programs.261

C. Coordination Between United States and Canada

Cooperation between U.S. and Canadian authorities is at least as important as it is among U.S. federal and state agencies. EPA's regulation of exotic species discharged in ballast water would advance the goals and policies of the U.S.-Canadian Great Lakes Water Quality Agreement of 1978, as amended in 1987 (GLWQA). Like the CWA, the GLWQA is intended "to restore and maintain the chemical, physical, and \textit{biological} integrity of waters of the Great Lakes Basin Ecosystem."262 The focus of the GLWQA has been, however, the control of chemical contaminants, particularly toxic pollutants.263 Although the GLWQA imposes no specific requirements with respect to exotics, Annex 6 of the Agreement, dealing with pollution from shipping sources, calls for studies to determine if exotics in ballast water discharges constitute a threat to the Great Lakes ecosystem.264

Under the GLWQA, the IJC is to monitor water quality and Great Lakes ecosystems as a whole, and provide recommendations to the governments of the United States and Canada.265 In this capacity, the IJC could provide a key coordinating role in synthesizing the efforts of the EPA and the Coast Guard under the CWA and NISA and Canadian programs under the Canadian Shipping Act and other relevant acts.

CONCLUSION

The CWA's NPDES program is clearly applicable to ballast water discharges from vessels. This regulatory approach advances all the advantages of a economic incentive program listed in the \textit{White Paper}.266 The NPDES program could be implemented quickly and would result in emission reduction, and perhaps even elimination, of contaminated ballast water discharges through

260 See RODGERS, supra note 153, § 4.26, at 385 ("Individual permit supervision is a form of counsel quieter than a strident takeback of approved state authority . . . and should be invoked more often.").

263 Representatives of some environmental groups expressed concern that using the GLWQA to envelop exotic species would diminish the effectiveness of the toxics program. See Reeves, \textit{Exotic Politics, supra} note 2, at 134, 194-97.

264 GLWQA, \textit{supra} note 262, at Annex 6. See also, GLWQA, \textit{supra} note 262, at art. IV.

265 See id. art. III, § 1(c).

266 See Reeves, \textit{White Paper, supra} note 2, at 122. See also Reeves, \textit{Exotic Politics, supra} note 2, at 202-06.
improved technology. Moreover, BAT could serve to motivate vessel owners and operators to achieve a higher level of effectiveness by eliminating uncertainties and preventing jurisdictional disparities.

In comparison, economic approaches, whether in the form of taxes, subsidies or effluent trading programs, are not explicitly authorized by the CWA. Even if implicitly allowed by law, none of these tools provides an adequate replacement for the uniform limitations, public involvement and rigorous enforcement of the CWA's provisions on point source discharges.