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The Monty Hall Problem 

 
 
 

In the game show "Let's Make a Deal", host Monty Hall would present a contestant with three 
doors.  Behind one door is a car and behind the other two doors are goats.  The contestant picks 
one door, after which Monty opens one of the other doors, showing a goat.  Monty then offers the 
contestant the opportunity to keep the same door or switch to the other unopened door; the 
contestant will get to keep whatever is behind that door.  Should the contestant switch? 
 
 There are several published probability problems that are in essence of the Monty Hall 
problem, but it wasn't until September of 1990 that this problem really became popular.  Marilyn 
vos Savant was known from 1986 to 1989 for having the highest IQ in the world, according to 
the Guinness Book of World Records (since then, Guinness does not recognize this category, as 
it is difficult to quantify).  Marilyn writes a column for Parade Magazine called Ask Marilyn in 
which she solves puzzles and answers questions from readers.  In the September 9th, 1990, issue 
of Parade magazine, the Monty Hall problem became mainstream.  In her answer to the Monty 
Hall problem, she argued that the contestant should switch doors, because in switching, the 
contestant has moved from a 1/3 chance of winning the car to  a 2/3 chance of winning the car.   
 Her answer sparked a national debate regarding this problem.  Experienced 
mathematicians wrote letters to vos Savant arguing against her initial answer, and these letters 
invited a second column from vos Savant, causing more of a stir and leading to a front page 
article in The New York Times.  In this follow-up, she further explained her assumptions and 
reasoning.  She also called on school teachers to present this problem to their classrooms and 
write back to her with the results.  Vos Savant’s final column on the Monty Hall problem showed 
the results of these classroom experiments.  Nearly 100% of them concluded that she was right 
and that the contestant should switch doors. 
 The column Marilyn vos Savant originally wrote is now 19 years old, but this has not 
stopped the attention it still receives today.  More recently, this problem was addressed in a 
lecture setting during a 2005 episode of the CBS drama NUMB3RS.  The problem also made a 
Hollywood appearance in the 2008 film 21.   
 The Monty Hall problem lends itself to analysis by probability.  Since the contestant in 
the game show has been shown one of the doors, the possible outcomes have changed.  Initially 
the contestant had a 1 in 3 chance of picking where the car was located.  Now that the host has 
shown one of the goats, the probability of the door the contestant has not picked has changed.  
This is called conditional probability.  Conditional probability is the probability that some event 
happens, given the occurrence of some other event that already has happened.  An example of 
conditional probability is given in the simple problem below. 
 
 
Your neighbor has 2 children.  You meet one of the children, and it is a daughter.  What is the 
probability that the other child is also a girl? 
 
 In this case, as in the definition, there are two events to consider.  We want to know if our 
neighbor has two daughters, given that we met one of his children and it was a girl.  The typical, 



but wrong, answer is ½--this conclusion might be reached by reasoning that there are only two 
possible sexes for the other child.  However, having two children, there are actually four possible 
combinations for our neighbor:  {Boy, Boy | Boy, Girl | Girl, Boy | Girl, Girl}, with the older 
child listed first.  Note, here, that we are counting the terms {Boy, Girl} and {Girl, Boy} as two 
separate terms.  The girl we met may have an older or younger brother, and so we must count a 
girl and boy pair as two possibilities.  Looking at the list of options, we can see there is only one 
out of four cases in which our neighbor has two daughters.  This is where conditional probability 
comes in.  We already know he has a daughter, so we can throw out the possibility that he has 
two sons.  Now, we only have three possible outcomes for our neighbors: {Boy, Girl | Girl, Boy | 
Girl, Girl}.  They might have a younger son, an older son or another daughter.  Since we already 
have met one of the children, the probability that our neighbor has two girls is 1 out of 3.  This 
problem takes a different turn if our neighbor tells us that the daughter we met is the oldest or 
youngest of their two children.  With conditional probability, we have to make sure we're 
looking at all of the possible outcomes for the situation. 
 Above, we made an important assumption about the neighbors two children; we assumed 
that the neighbor does not reveal whether the girl we met is the youngest or oldest of the two 
siblings.  If the neighbor had said, "I'd like you to meet my youngest child", the probabilities 
would be changed.  We could then take out the term {Girl, Boy} as a possible outcome, and we 
would be left with possible outcomes of  {Boy, Girl} and {Girl, Girl}.  We would now have a 1 
in 2 chance that the other child is also a girl.  The same reasoning can be used, of course, if the 
neighbor says that we are meeting his youngest child. 
 A similar problem with which someone could really trick their friends has to do with 
three different colored cards: 
 
 
Suppose you have three cards: one that is blue on both sides, one that is red on both sides, and 
one that is red on one side and blue on the other.  Suppose that the three cards are put in a hat, 
and one card is randomly drawn and put on a table.  If the top of the drawn card is blue, what is 
the probability that the other side is also blue? 
 
 In this problem, we know that the card on the table shows blue.  Someone who does not 
know conditional probability might think this has a simple solution.  They might reason that 
there are only two cards with the color blue on them; one of those cards has another blue side 
and the other card has a red side, thus giving a 50-50 chance of having blue on the other side.  
Such reasoning is wrong, however, and as in the previous question about the neighbor, we need 
to look at all of the outcomes. 
 First, let's count how many sides have blue—there are a total of three sides with the color 
blue (we have to count the card with both sides blue as two).   

                                           
Now, we can count the outcomes.  If card 1 was picked out of the hat, there are two possible 
sides that it could be showing.  If card 2 was picked out of the hat, there is only 1 possible side it 
could be showing.  There are three total possibilities in which the card is already showing blue.  
There are two out of three cases in which the card is also blue on the other side.  This is a great 
trick for friends.  I would show them the cards and explain the rules.  If the same color is on the 



other side I win, and if the opposite color is on the other side they win. The probability of the 
card hiding a blue side is 2 out of 3. 
 
 

Monty Hall 
 

 Now that we have looked at how conditional probability applies to simple situations, let's 
take a closer look at the Monty Hall problem.  We want to find the probability of a contestant 
winning a car if she switches doors after Monty has opened a door revealing a goat.  Before we 
jump into this problem, we first have to understand what Monty Hall is trying to do.  If I were 
Monty, I would make sure I knew exactly where the car and the two goats were before playing 
the game.  With this in mind, no matter which door we initially pick, Monty is always going to 
reveal a goat to us.  Later, we'll look at a case in which Monty does not know where the car is 
located.   
 I will label the doors X, Y and Z, and suppose that Monty knows that the car is behind 
door X and that the goats are behind doors Y and Z.  If I choose door X and switch I will lose, no 
matter which door Monty opens (I have already picked the car, and if I switch I will have a goat).  
If I choose door Y, Monty must open door Z, because he knows the car is behind door X.  
Similarly, if I choose door Z, Monty will open door Y in this case.  Here there are two cases in 
which switching doors results in my winning the car.  I have found out that I will win 2 out of 3 
times if I switch after Monty has shown me a goat.  This example is illustrated below. 

 
 



 In this problem, we have made the assumption that Monty knows where the car is.  From 
the illustration above, there is the case in which I pick the door with the car initially.  In that 
case, Monty actually has two doors he could pick revealing a goat.  If Monty were unsure of 
which one to pick, I would have to consider those two doors as different outcomes.  Now, we 
have four outcomes that could happen.  In this case, the contestant now has 2 out of 4 chances of 
winning the car, if they switch after Monty reveals a goat. 
 This question specifically looks at the contestant’s chances of winning if the contestant 
switches doors.  I did not count the other two possible outcomes that could occur if Monty does 
not know where the car is.  In the illustration of step two and three above, Monty, if he did not 
know which door concealed a car, could have actually revealed the car instead of a goat on his 
turn..  Now, there are a total of six possible solutions.  In these two new outcomes, the contestant 
loses.  Since we have added two more outcomes, the chance of the contestant winning is now 
1/2.   
 This door-switching problem doesn't have to be so simple.  What if the contestant had 
1,000 doors to choose from, with only one door concealing a car and all others concealing goats?  
Initially, the contestant has a one in a thousand chance of picking the car.  From here, the host 
knows where the car is and reveals 998 goats, leaving only two doors closed.  If the contestant 
knew nothing of the Monty Hall Problem, he might feel that the odds of the car sitting behind his 
initially chosen door improved to one out of two.  This a great increase in probability from the 
time when all of the doors were closed.  In fact the contestant should switch doors every time.  If 
the contestant happened to have to pick the car initially, he will lose if he switches, but this is 
only a one out of a thousand chance that he will lose.  It is far more likely (999 out of 1,000) that 
the contestant picked a goat initially.  When the host reveals 998 goats, the contestant should 
definitely switch from his original door. 
 If the host decides to only open one door out of the 999 that are left, the contestant does 
not significantly increase the odds of winning a car by switching.  In this case, the contestant will 
be losing roughly 99% of the time either way. 
 In 1991, a New York Times journalist named John Tierney went to Monty Hall to discuss 
this new found phenomenon that resulted from the column written by Marilyn vos Savant.  
Monty knew of the attention it was getting and was happy to show Mr. Tierny exactly how the 
problem works by playing the game in the dining room.  "Sitting at the dining room table, Mr. 
Hall quickly conducted 10 rounds of the game as this contestant tried the non-switching strategy.  
The result was four cars and six goats.  Then for the next 10 rounds the contestant tried switching 
doors, and there was a dramatic improvement: eight cars and two goats.  A pattern was 
emerging." (Tierney, 1991)  By simple trial and error, Mr. Hall was able to show the journalist 
that a contestant should switch their original pick if Monty knew where the car was before hand.   
 In my research, I was able to find an interview with Mr. Hall on an early morning talk 
show in which he said he always knew what was behind the doors or inside the boxes on his 
game show.  The point of knowing what is behind the curtains or in the boxes was so that he 
could offer them something bigger or less than what they had already won. 
 The New York Times article continued with Monty explaining how none of these 
assumptions or statistics really had much to do with the game show anyway, how it works out 
much differently in actuality.  Monty read Ms. vos Savant's article and noticed that she did not 
take human emotion into account, unlike in the actual game show.  Monty then asked the 
reporter to play a few more rounds, but this time, they would play the game like the actual show.  
The contestant picked door number one and Monty opened one of the remaining two doors to 



reveal a goat.  Just before the contestant was going to switch doors— knowing he has a two-
thirds chance of winning if he switches—Monty pulled out a roll of money.  This time, Mr. Hall 
used a little psychology on the contestant and offered him three thousand dollars not to switch 
doors.  The journalist tried to stick with the odds of him winning the car by switching and 
wanted to switch the door and not take the money.  The two gentlemen negotiated back and forth 
until Monty finished by offering him five thousand dollars not to switch.  The journalist declined 
the offer and switched doors, only to see Monty reveal a goat behind the door he had just 
switched to.   
 Monty explained that by increasing the dollar amount and trying to get the contestant not 
to switch, he made the contestant believe even more that the car would be behind the door he 
initially wanted to switch to.  Monty and Mr. Tierney continued to play the game as it was 
intended to be played, with this psychological aspect:  "He [Monty] proceeded to prove his case 
by winning the next eight rounds.  Whenever the contestant began with the wrong door, Mr. Hall 
promptly opened it and awarded the goat; whenever the contestant started out with the correct 
door, Mr. Hall allowed him to switch doors and get another goat.  The only way to win a car 
would have been to disregard Ms. vos Savant's advice and stick with the original door." (Tierney, 
1991) 
 In conclusion, we have seen how the famous Monty Hall problem works and what a 
contestant’s best option is, given the conditions of the game.  If the host has no extra cash prize 
with which to entice the contestant, it is no advantage for the host to know the position of the car, 
but if the host does have such a cash enticement for the contestant, then knowing the position of 
the car allows him to use psychological knowledge about people to direct the contestant toward a 
smaller prize.   
 

Bayes' Theorem 
 
 Bayes' Theorem, named after Rev. Thomas Bayes, can be used when solving conditional 
probability problems using algebra.  In the previous examples, we looked at how such problems 
can be solved by talking through the problem and looking at possible outcomes.  However, we 
can also use Bayes' Theorem to analyze these situations.  This is Bayes' Theorem: 
 

 
 
 The left-hand-side of this the formula is read, "The probability of event A given event B”, 
and gives us a way to talk about conditional probability: The probability of some event A 
happening given the occurrence of some other event B already having happened.  Let's take a 
look at the application of Bayes' Theorem to the Neighbor Problem, stated previously but 
repeated here: 
 
 

Your neighbor has 2 children.  You meet one of the children, and it is a daughter.  What 
is the probability that the other child is also a girl? 

 
  We begin by looking at the following counting chart: 
 



 
 
 Here, we can see all of the possibilities.  The question considered here is, “what is the 
probability that our neighbor has two daughters, given that he has two children, and one of them 
is a daughter”. This is a conditional probability, so we can define variables for Bayes' Theorem.  
Let "A" be the event that our neighbor has two girls and "B" be the event, or fact, that one of 
them is a girl.  An interesting thing happens with the top portion of our picture.  If our neighbor 
has two girls and we happen to meet one of our neighbor’s children, there is a 100% chance it 
will be a girl and a 0% chance that we will meet a boy.  Now, we'll use Bayes' Theorem to solve 
our problem. 
 

 

 

 

 
               
 Our conclusion using Bayes' Theorem agrees with our previous conclusion based on just 
totaling up the outcomes.  Though I would not use this theorem on a simple type of problem as 
such as this, there are more difficult situations where Bayes' Theorem would be most useful. 
 
 Now that we have an example of a use of Bayes' Theorem, we can use this formula for 
the Blue and Red Card Problem and The Monty Hall Problem.  First, let's look at the Blue and 
Red Card problem.  Recall that one of the three double-sided cards is pulled out of a hat and 
placed on a table.  Let "A" be the event that the color on the bottom side of the card is blue, and 
let "B" be the event that the color showing is blue.  I will show that in this case, using Bayes' 
Theorem does not help much.  In the first line below, we see P(B|A) is equal to 2/3.  This is the 
probability that we had a blue side on top given there is a blue side on the bottom.  Finding this 
probability is symmetric to our original question.  

 



 

 

 
 
 A two-thirds chance of having blue on the bottom of the drawn card was our original 
answer for the card problem.  Here, finding P(B|A) was just as difficult as finding P(B|A), so 
Bayes Formula was not so useful. This problem was very similar to the two daughters problem.  
 
 With the Monty Hall problem, there are three doors, and the car could be behind any one 
of them.  Clearly, there is a one-third possibility that the car is behind door #1.  After the 
contestant opens a door, Monty will then open a different door, revealing a goat.  Using the 
diagram below, we can see what the probability is, given different assumptions.  First, let's 
assume the car is behind door #1.  Since we're assuming the car is behind door #1, we know that 
if the contestant opens either door #2 or door #3, Monty has only one other option to open a goat 
door..  Let's take a look at the probability that the car is behind #1 and Monty opens door #2. 
  

 
 

Here, we can name our variables A and B.  Let A be the event that the contestant picked door #1 
and B the event that Monty opens door #2. 
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 One-third is what we expected to find—we have a one-third chance of winning the car 
given that Monty opens door number 2 to reveal a goat.  Let's look at what happens if we do 
switch doors after he shows the contestant a goat.  In this case, we just figure out the exhaustive 
event. 
 The probability that we pick door #2 and Monty opens door #2 is zero.  This is our 
second case.  Our third case is simply one minus the previous two cases.   

 
 
 This shows us that, given the car is behind door #1, if the contestant initially picks door 
#3 and Monty opens door #2, we have a two-thirds chance of winning the car by switching 
doors.  If we were to continue this analysis and consider the case where the car is behind door 
#2, for example, we would find results nearly identical to those above.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
Classroom 

 
For my classroom project, I will have the class test and research the Monty Hall problem.   
 
Day 1 
Introduce:  On the first day, I will play the blue/red card game with a student a few times as a 
demonstration.  I will take the same color that is shown, and the student will always take the 
opposite color.  After this, I will have the Monty Hall problem set up on the computer and we'll 
play it a few times.  I will not call it the Monty Hall problem, however, for research reasons. 
 
Test: After we have played the two games enough to get the idea—but not enough to see the 
pattern—I will have them split up into groups of 2 or 3 to test these games at least 20 times.  Half 
of the class will play the card game, while the other half will play the Monty Hall game. 
 
Results:  I will have the students display their results on the two whiteboards in my room.   
 
Discuss: With this many students playing the game a total of over 100 times, we should be able 
to see a pattern.  I'll lead the discussion and ask students what their guess is about the actual 
probability of switching doors or picking a certain color.  After the discussion, I'll have them 
work on probability homework. 
 
Day 2 
Research:  Because most students use the internet quite frequently, I have only shown them two 
interesting problems.  They do not know the name Monty Hall problem, but I would like them to 
figure this out on their own by using the internet.  During their research time in the computer lab, 
the students will be asked to write down any notes they feel are interesting.  I will also ask them 
to copy down websites that they found interesting.  They will be asked to find information about 
the history of the Monty Hall problem, especially any regarding Ms. vos Savant.  I will also put 
some questions on their research guide, such as: 
What recent movie used this problem in one of their scenes? 
 
What magazine was this problem published in that made it famous? 
 
What TV show is this problem based off of? 
 
The questions I create will all be easy enough to find, once they figure out that the common 
name for the problem is The Monty Hall Problem. 
 
This test and research process is to be used at the beginning of a study of conditional probability.  
In my curriculum, we go through basic probability and a small amount of conditional probability.  
Adding these two days prior to the more difficult problems should help more students understand 
the material.  Prior to the Monty Hall problem, I didn't have something that I could use to spark 
interest in probability.  Now, with my understanding of these more difficult problems, I should 
be better prepared. 
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Websites of Interest 
http://www.letsmakeadeal.com/problem.htm 
 
Monty Hall interview - http://www.youtube.com/watch?v=GFrZ24H23Lg 
 
NUMB3RS & 21 - http://www.youtube.com/watch?v=5e_NKJD7msg 
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