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Projected Hartree Product Wavefunctions. IV. Radial Correlation in Some Three- and
Four-Electron Atoms*

L. G. Hekest ano G. A. Garioe
Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68506
(Received 7 April 1969)

The energies of some three- and four-electron atoms including radial correlation have been determined
by a spinfree version of the projected Hartree—Fock method. The wavefunction possesses the maximum
flexibility allowable under the general restrictions of the method, and it is shown that this flexibility is
necessary to adequately account for the differences between intra- and intershell correlation. Some comments

on the AMO method are included.

1. INTRODUCTION

In articles I and 112 of this series amethod is described
for using the theory of symmetric groups in doing a
projected Hartree-Fock® (optimization after projec-
tion) treatment of an atomic or molecular system. In
general, the projection involves both spatial and
identity symmetries, and such a treatment was given
for Hy in II1.¢ However, we may study the effect on the
correlation energy of various factors in the treatment
without the added complication of spatial symmetry
projections, by looking at radial correlation in some
simple atoms.

The present methaod, a different-orbitals-for-different-
spins (DODS) calculation, is an extension of the inde-
pendent particle model, in which the wavefunction is
given as a projected Hartree product (PHP) made up of
n single-particle spatial orbitals for # electrons, that is

#= I uti). (1)

The energy for a ptre spin state of S may be obtained
from a primitive idempotent of the group algebra of
S, associated with the Young tableau [2¢»/2-8 1287]=
[1], e®. Thus, we have,

E= (¢ [ He® [¢)/{¢] ¥ [¢), (2)

for a spin-free Hamiltonian, H. As was pointed out in IT,
where the f, standard tableaux of shape [x] and if
m(=1I), ms,*++, 7y, are the permutations giving the ith
tableau from the first, we may usually improve the
energy expression by replacing Eq. (2) by

E= ([ HeW [¢)/ e [¢), (3)
where
‘l’= il Yawip. (4)

* Based in part on the thesis presented by L. G. Heikes in partial
fulfillment of the Ph.D. degree.
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3 P.-0. Lowdin, Phys. Rev. 97, 1509 (1955).
( 4 Rg.)C. Morrison and G. A. Gallup, J. Chem. Phys. 50, 1214

1969).

In our procedure the energy E is minimized with respect
to the v; in addition to the orbitals, #;. As we shall see,
the values of the v/s can have a profound effect on the
way the PHP method produces correlation.

Matsen ef al.® have used a formulation of the energy
expression very similar to Eq. (4). Goddard® and
Kaldor, Schaefer, and Harris” have given equivalent
treatments of some simple atoms which is equivalent
to the present one if a certain fixed set of v/s is used.

1 2 1 31
(a)

3 2

1 2 1 3
{b)

3 4 2 4

Fic. 1. Standard tableaux for (a) three-electron systems and
(b) four-electron systems.

Ritter, Pauncz, and Appel® have given a treatment of Li
equivalent to the present calculation with a fixed set of
vi’s different from Goddard’s choice. More recently,
Lunell® has given a calculation of Li in which the v/s
are optimized, but the orbitals are but partially
optimized.

5F. A. Matsen, Advan. Quantum Chem. 1, 59 (1964); J.
Phys. Chem. 68, 3282 (1964); 70, 1568 (1966); F. A. Matsen,
A. A, Cantu, and R. D. Poshusta, sbid. 70, 1558 (1966).

8 W. A. Goddard, Phys. Rev. 157, 73, 81, 93 (1967); J. Chem.
Phys. 48, 1008 (1968).

7 U, Kaldor, H. F. Schaefer, and F. E. Harris, Intern. J. Quan-
tum Chem. 28, 13 (1968).

8 Z. W. Ritter, R. Pauncz, and K. Appel, J. Chem. Phys. 35,
571 (1961).

¢ S. Lunell, Phys. Rev. 173, 85 (1968).
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These previous calculations on the simple atoms
include the possibility of radial correlation only, and as
was mentioned above, we shall make a similar restriction
in the present treatment. NEEBVEER
EEEEEEE
II. THREE-ELECTRON ATOMS B i I
As was pointed out in II, we seem to have fewer t ! ! ! 83 5,
computational difficulties by using N PN for ¢® than + g5gggsse 2 g5
by using /PN P and this choice is taken. There are Tle | IRRABII §_ 82272
three orbitals in these atoms, which shall be designated © eegegege L
a, b, and ¢. Thus , FERE
$=a(1)b(2)<(3), (5) E ek = §
and each of these orbitals is represented as a linear ® e I 333
combination of STO%. Table I gives the principle I I ! !
quantum number and the fully optimized ¢’s for the
three-electron atoms considered here. Figure 1(a) shows © B H s B
the two standard tableaux for doublet states of three é 3 % N 5 22 g
electrons, from which it is seen that m=1I, m=(23), g o | 8XRVTITSE
and hence E TTTTCTCT 3
[=] M~ un o0
e@ DY =@ [y10(1)5(2) ¢(3) +v2e(1)c(2)8(3)].  (6) E . % g % g ?g % g § é % g 3 ||
The choices among the several alternatives we have dl&(° ]2 Sogagaomse s 2
made in setting up Eq. (6), now forces a to be the 2s-like 4 [ o ";: I;': Lﬂq o
orbital and b and ¢ to be the two 1s-like orbitals. Table IT 8 0 1 1 Uy o N e e uf é
gives the energies, orbital coefficients, and the v’s for 8 SYERERZ S e
each of the nuclear charges considered. Roothaan, g Sl zSzZsgsss g
Sachs, and Weiss® have given restricted SCF énergies 8 [ A B Iy
for these systems, and the correlation energies are also %
shown. These results are most easily compared with -
Goddard’s,® and it is seen that his restriction (yz=0) < S228888¢8
prevents obtaining any considerable correlation energy. g s | MIBIBEES
The calculation by Pauncz ef al.® corresponds to the § TT97F°9° S o
restriction Nn=" ?nd as can be seen this is very close to 3 - 29 §
the optimal situation. ' 2. 233 '% SEEBR3Z3Ln
We have used the iterative solution outlined in I with Bl @i~ | REEIBESEZ2272
one exception: The starting orbitals for b and ¢ are e eegegege Ll
obtained from a calculation of the corresponding two- =] & &n g
electron atom first. Then, a third electron is added, and g BEELBES 27 S
all three orbitals are optimized. If arbitrary starting s s | 23 § %S % 8
orbitals are used for a concerted three-electron opti- T7°9°° g°
mization, it is possible to reach a cul de sac (but ap-
parently not a local minimum) in the iteration from
which this type of first-order iterative procedure cannot § ‘ﬁ 8 3 § § § g
oo O v 8 =
TaBrE L. ¢ for three-electron atoms. ° 2 ‘g 2 ; g z 2 S 4
R S S 5 &
Li Be* B+ CHtt SIS B e I 0 ,f 2
92553588355 |3
1s 4.56 6.01 7.61 9.10 e | EBREIB3S3EEIE || g
2s 4.13 5.50 7.01 8.10 SSS3S3S5388K3 || &
1s 2.69 3.52 4.46 5.40 R R =R -
A NN
2 0.617  0.811  1.11 1.30 EEREREE SR
2s 0.279 0.211 0.251 0.310 3] 8308 EE88 5
3s 0.099 0.111 0.136 0.160 cl c|> S cl> oo ol = 1
= L
1 C. C. J. Roothaan, L. M. Sachs, and A. W, Weiss, Rev. Mod. &
Phys. 32, 186 (1960).
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TazrE ITI, ¢ for four-electron atoms,
e388%818
Ny =~ W) \O o
Be B+ ct+ v | SEIRAEESE
SCocow-wsSoo
1s 6.00 7.60 9.00 b '
2s 5.60 7.00 8.00
1s 3.53 4.44 5.30 OISO =0 W
2s 2.81 3.60 4.20 2388838
1s 1.00 1.22 1.50 o | BXEEREBEE 3
2s 0.810 1.20 1.20 Soncsossqany
2s 0.210 0.350 0.400 [ l | I g 2 g 'g
3s 0.110 0.110 0.150 M 2T 5
© © QO I e O\ OO - < I
S8 g LI &

. . . g&%fg%go;gmg
depart in a practical length of time. The above type of e R e A R .
“building up” procedure prevents this unhappy occur- eegeeege
ance, and is very similar to that used by Pauncz ef al.?
and Lunell.? For a given set of ¢’s the above procedure SeNeLLss
for three-electron atoms requires approximately 90 sec FREREN 2 23

. 5] NNOO R0 —OO
on an IBM 360/65 computer. It may be pointed out . P O
that a full CI calculation from this basis contains 168 g b ! !
functions. ‘2
-IITI, FOUR-ELECTRON ATOMS g
. . 5 TERRSI8RE :
Figure 1(b) gives the two standard tableaux for four 2 STEXEIED &
. . . v
electrons in a singlet state. We designate the four L | gAY oe g
. =] OO0 0OO =
orbitals ¢, b, ¢, d, and thus £ T 1 h
E=
= ~
— [ o2
g=a(1)b(2)c(3)d(4), O e 2
24 58853538 g
Y=71a(1)5(2)¢(3)d(4) +7:a(1)c(2)b(3)d(4). (8) 5 .l 22888888 ~ g
5 LR T s E e} F
Tables III and IV give the results for this case. It is g TSTT°9°9 § % S e
observed that b and ¢ are the 1s-like orbitals and ¢ and d 2 A g & gl S
the 2s-like orbitals. The time here is of the order of 270 e N R
. . o mmm‘o"‘—u\oow” ol n
sec for one { set, and the corresponding full CT contains E . | B § 82 z % § § & ERN mg
112 functions. ‘g S
E oo CcoocCoC
IV. DISCUSSION g oot
If the results given here are compared with various %’ V2RI D
previous calculations, it is seen that there are a number & SS53Y8RIES
. . . . . . . 3 SO N —-NOO
of interesting points to be investigated. The situations . Co oo s oo
are somewhat different for the cases of three and four = Lottt n
electrons, and we take up the smaller case first. é
It should be pointed ont that the primitive idempo- 3
tent e@V contains a factor [7— (12) ], and in any term 2LexLeY i ® =
of our wavefunction, the or.bitals occ.upied by elec'trons ~ § = § lg. & 2 § '§
1 and 2 may be orthogonalized to give a term with at Sodcosss S
most a different numerical factor. : ! =
In order to make the analysis it is convenient to Iagnreee o
: . N i e B I T RS ] . a
introduce two new orbitals, o T5825888 g E
ScomocOoS oo 28
x=}%(a+bd), ) 1T T sgg%g 3
: 3
y=%(a—1), (10) E: 222839882 8%5 || §
B2 AR I o2 B BN o
where woRLeISE-c s I3
I R I e A T e
(x| y)=0, (11) ooolocl;ocrosgmg 5
if 2 and b are normalized. Using Eq. (6) it is seen that =g
=4
P=eCDY= @D | (yy+o) [a(1)2(2)(3) R ¢
e | REBR5S23883 by
—e(1)y(2Dy(3) ]+ (m—r2)[a(1)%(2) y(3) 2Z2c22szss £
(. | |
—e(Dy(D=(3)1}. (12) )
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TaBLE V. Radial correlation energy for three- and four-electron atoms.
Energy (a.u.)
Type of —
calculation Li Be* B+ Cr++ Be B* Ct+

PHP= —0.0146 —0.0138 —0.0134 —0.0136 —0.0170 —0.0161 —0.0159
CIb —0.0444 —0.0465 —0.0471 —0.0477 —0.0879 —0.1037 —0.1177
Exacte® —0.0453 —0.0475 —0.0489 —0.0498 —0.0944 —0.1123 —0.1268

8 This work.
b A, W. Weiss, Phys. Rev. 122, 1826 (1961). This calculation includes

The terms of Eq. (12) can be given the following
interpretations: The first term is essentially the SCF
wavefunction, the second is a doubly excited configura-
tion, and the third and fourth are singly excited func-
tions. We define T' so that z=4/T is normalized, and
using the property of ¢ pointed out above, Eq. (12)
may be rewritten as

&= (vitm)e® P {a'(1)2(2)x(3) —I%a(1)2(2)2(3)
+oT[a (1)2(2)2(3) —a' (1)2(2)%(3) ]
—(a[x)/ (x]x))oTx(1)2(2)x(3)}

=& —T' 2P, 8T (B3—Bs) — ({a | )/ (x| x)) TP,

(13)
where

8= (vi—v2)/(v1t72)

a'=a—({a|x)/{x]x))x.

It is seen that

and

(81| B3)=(®1| D4)=0,

and hence these functions satisfy the orthogonality
requirements of Brillouin’s theorem with respect to the
SCF function ®;. If we set vo=0, =1, and in order to
have a sizable contribution of &, in ®, the contributions
of ®; and ¥, must be even larger. The term ®; is the one
which decreases the electronic repulsion in the correla-
tion within the 1s shell. If, however, ®, is the correct
SCF function, terms ®; and ¥, satisfy

(1| H | D)= (D1 | H| ®4)=0, (14)

and the presence of these functions can only raise the
calculated energy. The only way ®; and &, could help
would be to have Eq. (14) not apply, which means
that ®; cannot be the SCF function. However, this
possibility is also very unsatisfactory since the SCF
energy is very good. Thus the restriction vy,= 0 requires
T to be very small and hence I'? even smaller, and such a
function produces essentially no correlation. If v, and v,
are allowed to have their optimum values & is very small
~0.01 and this fact eliminates any major contribution
from the undesirable terms ®; and &, while allowing T
to be larger and the desirable ®, to have a larger con-
tribution.

The simplest type of DODS calculation of Li is that
given by Nesbet and Watson,!! usually called spin-

1L R, K. Nesbet and R. E. Watson, Ann. Phys. 9, 260 (1960).

angular correlatjon.
¢ E, Clementi, J. Chem. Phys. 38, 2248 (1963).

polarized Hartree-Fock, using a single Slater deter-
minant. Léwdin® has suggested that the reason the spin-
polarized calculations provide very little correlation is
the fact that a DODS, single determinant, #-particle
function is not a pure spin state. However, a very
similar analysis to that of Eq. (13) can be made for a
spin-polarized determinant, and it is seen that it has the
same defects with respect to Brillouin’s theorem as
Eq. (13) does for §=1. Goddard’s function is exactly
equivalent to the result of applying the spin projection
operator Oy to Nesbet’s function. Therefore, the com-
parison of the correlation energy for Li of Nesbet and
Watson, 0.00002 a.u., with that of Goddard, 0.00009
a.u., shows that removeal of the quartet state cannot
alone guarantee a sizable increase in the correlation
energy. It is necessary for the function to possess the
flexibility to have the single excitation terms of the type
of &3 and &, multiplied by small coefficients.

It is interesting to make a conjecture concerning the
result of removing the single excitation terms from the
spin-polarized determinant without projecting a single
spin state. It may be shown that this can be accom-
plished by replacing the single Slater determinant by the
sum of two. Thus, in general, if the spatial orbitals
%y, Ua,* * -, #y are associated with a spin functions and the
spatial orbitals vy, 95, - -, v;, (I<k) are associated with 8
spin functions we may write

b4

| e o8+ + v, |

+ ‘ B UiBUL 0+ U0 T i (15)

The first term of ¥ is just the spin-polarized determinant
while the second term has the a’s and 8’s interchanged
for the paired orbitals. This function has no single
excitation. So far as the authors are aware, this type of
function has not been investigated, in general, however,
the special case for doublet Li is equivalent to the
function of Pauncz et al. and to that of Eq. (13) with
v1="2. In this one case, removing the single excitation
also removes the quartet component so that here one
cannot distinguish between the two effects. In general,
the function of Eq. (15) contains several different
multiplicity components, Comparison of the results of
Nesbet and Watson to Goddard and the present article
suggests, however, that removal of the single excitations
is at least as important as the removal of the extraneous
spin components,

Downloaded 29 Nov 2006 to 129.93.16.206. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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The primitive idempotent e®? has a factor [I—
(12)q[7—(34)] in it similar to the one in ¢@®, In
addition, however, it has a factor [+ (14) (23) ] which
automatically removes the single excitations in an
expansion such as that of Eq. (13). Therefore, we get
from Eq. (8)

D=2y
= (11tv2) e P {u(1)2(2) 2(3) u(4)
—T0(1)x(2)(3) (4) —T2u(1) y(2)y(3) u(4)
oy Ta0(1) y(2)2(3) (4) +u(1) x(2) y(3) 2(4)
—u(1)y(2)x(3)v(4) —v(1)x(2) y(3)u(4) M-+ - -}
= &y — 28— I' 2Byt STy eyt + -+, (16)

where
o= (11—v2)/(n1+72)
as before, and

u=3(a+d),
x=%(b+0),
v={_(a—d)/2Ty, {v| v)=1,
y=(b—c)/2Ts, (y| y)=1,

and we have omitted terms which can be interpreted as
triple and quadruple excitations. Again ®, is close to the
restricted SCF function, and &, and ®; are the terms
giving the intrashell correlations. The four individual
terms in &, are each of a type giving intershell correla-
tion. From Table IV it is seen that y,=¢v, so that & is
small and intershell correlation in these four-electron
atoms is much smaller than intrashell correlation. This
is physically reasonable since the 1s-like electrons move
much more rapidly than the 2s-like electrons, resulting
in a tendency to average out interactions in their
motions. If the restriction v,=0 is applied, Eq. (16)
gives a situation wherein the intershell and intrashell
correlations must be more or less of the same importance.
Goddard has given this case, and although his method
gives the correlation energy of Be as 0.0142 a.u., which
is considerably greater than for Li, this is less than the
value for Be* +, 0.0145 a.u. Table IV shows that when v,
and v, have their optimum values, the correlation
energy in Be is greater than that in Be* +,

The presence ofa factor in e® which will annihilate the
single excitation terms depends on the shape of tableaux,
and such a factor occurs only for [ 2#/2] tableaux, that is,
in the singlet case. If, however, 8 PN P were used for

L. G. HEIKES AND G. A. GALLUP

¢, the single excitation terms would be annihilated for
all cases (except S=#/2 where there is no pairing at
all). In spite of this, the relative simplicity of gNPN
makes us prefer to use this operator. Thus, the sum over
the standard tableaux in Eq. (4) gives the wavefunction
the flexibility to (a) contain very little single excitation
type component and (b) at the same time allows Inter-
and intrashell correlations to take on differing im-
portances.

The AMO procedure for alternant systems suggested
by Lowdin? (see also Ref. 12) is an approximate form of
the projected Hartree-Fock procedure. In II it was
shown that the projection of a single DODS deter-
minant for the principle case (Ms=S) is equivalent to
the present treatment for

Yoe="yg=-c** =7f=0

The 7 system of the benzene molecule has been treated
quite successfully with the AMO technique, but in
benzene the electrons in the various shells have a much
smaller spread in velocities than in Be, therefore, the
single tableaux with more or less equal inter- and intra-
shell correlations is much more appropriate. The
standard AMO prescription calls for the projection not
of the principle case but of the DODS determinant for
Mg=0. Except for singlet cases this yields a result
different from our e®. In fact, such a procedure
annihilates all single excitations for all odd multiplicity
systems, and hence is expected to be considerably more
successful than the projection of the principle deter-
minant.!?

We have collected together in Table V the values of
the correlation energies obtained in this study along
with values from a more general treatment and the
“exact” values. In the three-electron systems it is seen
that radial correlation accounts for approximately one
third of the total, and in the four-electron systems
approximately one fifth of the total. Work is underway
to include angular correlation into this treatment by the
use of spatial projections.
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