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Frenkel Defects in Alkali ~ a l i d e s t  

Paul D. ~ c h u l z e *  and John R. Hardy 
Behlen Laboratory of Phys ics ,  University of Nebraska,  Lincoln,  Nebraska 68508 

(Received 31  January 1972) 

The method of lattice statics and the deformation dipole model have been applied to Frenkel 
defects in ionic crystals.  Fo r  isolated interstitials, all short-ranged repulsive and Coulomb- 
defect host-lattice ion forces were evaluated at the relaxed configuration. The zero-order 
Coulomb force was allowed to act on the remainder of the host-lattice ions past f i r s t  neighbors. 
We have calculated Frenkel-pair formation energies, ionic displacements, and ionic polariza- 
tions in the twelve Na, K, Rb halides. Our results  show over all that, in ionic crystals of 
the rocksalt structure,  Schottky defect pairs a r e  more likely to be present than Frenkel de- 
fect  pairs. 

I. INTRODUCTION 

In an  ear l ie r  paper,' we applied the method of 
lattice stat ics and the deformation dipole model to 
Schottky defects in ionic crystals. In this paper we 
shall consider the presentation of Ref. 1 a s  i t  ap- 
plies to Frenkel defects in ionic crystals. 

The Frenkel-pair formation energy i s  defined a s  
the energy necessary to move an ion, anion, or  
cation, from a normal lattice si te  into a well-re- 
moved interstitial site. The interstitial position 

considered here is located in the tetrahedral void 
formed by four anions and four cations. The for-  
mation energy can be broken into two parts: (i) 
the energy needed to remove the ion from the inte- 
r i o r  of the lattice to infinity, and (ii) the energy 
needed to bring the ion f rom infinity and place i t  a t  
an interstitial position. The f i r s t  contribution has 
already been calculated in Ref. 1. 

In this work we have determined the Frenkel for-  
mation energy, for  both anion and cation intersti- 
t i a l ~ ,  by allowing all nearest-neighbor defect host- 
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lattice ion interactions to be evaluated a t  the re-  
laxed-lattice configuration, and by considering de- 
fect interactions with farther neighbors in zero  
order with respect  to the forces. This approach is 
chosen rather than expanding the energy for nearest  
neighbors (NN) a s  for vacancies since the inter- 
actions herein a r e  additional energy contributions 
to the total energy. 

11. SHORT-RANGE INTERACTIONS 

The Huggins-Mayer short-range repulsive-po- 
tential-energy form including the attractive van de r  
Waals potential was used for the interaction of the 
interstitial with i ts  eight NN. 

The energy necessary to move an ion from infin- 
ity into the interstitial position i s  just equal to the 
work done against the short-range forces since a t  
this position the Madelung energy i s  zero. This 
follows easily from an application of the Evjen 
method2 o r  by direct  summation, i. e . ,  the neutral 
concentric shells about the interstitial position each 
give a zero  net contribution to the Madelung energy. 
In Table I, the calculated values for the interstitial 
overlap energy a r e  given for both cations and anions 
using the potential-energy function 

where G N N  includes both the Huggins-Mayer repul- 
sive and van d e r  Waals attractive interactions. 
Specifically, 

where 

X l j =  b t j ( l + ~ t / n l + z , / n j ) e ' r * ' r j " p ~ ~  

and Y '= 6 YO. Here Y ~ ,  zt,  nt, bij, and p ' are ,  
respectively, the ionic radius, the net ionic charge, 
the number of outer electrons, a constant charac- 
terizing the overlap between ions, and a screening 
parameter. The c t j  and d,, a re  the dipole-dipole 
and dipole-quadrupole van de r  Waals coefficients 
calculated by Mayer, and the parameters A' and 
p' were taken from Fumi and Tosi. 

In Ref. 1 the importance of the contribution that 
the missing deformation dipoles played in the de- 
termination of the Schottky-pair formation energy 
was shown. Similarly, for the interstitial problem 
one could consider additional deformation dipoles 
generated on the four NN anions about the inter- 
stitial ion. However, since a t  present  i t  is not 
known how to adequately describe anion-anion de- 
formation, this short-range interaction has not 
been included for either type of interstitial ion. 
Within this limitation, the short-range interactions 
can be satisfactorily described by the potential- 
energy forms given in Eq. (1). 

111. FOURIER- TRANSFORMED FORCES AND FIELDS 

The Fourier transform of any force over the 
eight NN to a cation interstitial can be written 

where V i  is to be taken a s  the magnitude of the 
radial force on the Kth-type ion about the intersti- 
tial in d i rec t  space, and a, p = 1, 2, 3 a r e  the Car- 
tesian components. This force is 

These Fourier-transformed forces a r e  complex 
a s  is the case when the defect i s  not a t  a site of 
inversion symmetry. 

Since all defect NN forces a r e  to be evaluated 
a t  the relaxed lattice configuration, the Fourier- 
transformed defect electric field E,,,(q'), must be 
modified since i t  contains the zero-order field 
contribution from nearest  neighbors. The easiest  
possible way in which to do this to modify E,,,(q') 
indirectly through the use of Eq. (2). Thus, uti- 
lizing the fact that Fourier transforms a r e  distrib- 
utive, and setting V i =  1 in Eq. (2), we write 

I 
where 

Here 5 ;  is the radial displacement of the ~ t h  nearest  
neighbor, and e ,  i s  the defect charge. 

In considering Schottky defects, Ref. 1, the po- 
tential energy of an imperfect lattice was expanded 
to te rms quadratic in the displacements. Thus, 
fo r  interstitial neighbors beyond the second shell, 
we have used the zero-order-approximation ex- 
pressions of Ref. 1. Since ions in the f i r s t  shell 
a re  to be allowed to relax, we minimize the poten- 
tial energy for the imperfect lattice, 

where x is a contraction for the lth unit cell and ~ t h  
ion, with respect  to the ionic displacements with- 
out expanding the pairwise potential energy between 
the interstitial ion and i t s  Xth NN. Thus we can 

E : ( ~ ' ) = E , , ~ ( ~ ' ) + A E ~ G [ ( ~ )  , find the dipole moments, ionic displacements, and 
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TABLE I. Calculated interstitial overlap energy W I ,  calculated energies to remove a cation and an anion to infinity, 
E ,  in approximation 11; energy to bring ion from infinity to interstitial position, E I ;  and Frenkel-pair formation energy 
E p  for cations (+) and anions (-). All energies are in eV. 

NaF NaCl NaBr NaI KF KC1 KBr KI RbF RbCl RbBr RbI 

WI 5.646 3.011 2.593 2,147 9.037 3.995 3.284 2.579 12.001 5.010 3.921 2.883 

E> 3.395 4.602 4.837 5.145 2.571 3.734 4.173 4.259 2.351 3.515 3.677 3.893 

aPaul D. Schulze and John R. Hardy, Phys. Rev. B 2, 3270 (1972). 

defect-formation energy following the same pro- 
cedures discussed in Ref. 1. 

IV. FRENKELDEFECT FORMATION ENERGY 

The Fourier-transformed total dipole moment, 
ionic displacements, and defect-formation energy, 
respectively, can thus be written in matrix form 

and 

E I  = W I  + [ @ R  - at] + U-' [aC - @ t] - ~E'C-IC~E'  

- $ E ' p + + E ' ~ - l ~ + + ? ~  ++OF[,  

where we have the matrix elements 

for the short-range overlap interactions, and 

for the Coulomb field gradient. All other matrix 
elements have been defined in Ref. 1. 

V. CALCULATIONS 

Since the forces and fields on NN a r e  evaluated 
a t  the relaxed-lattice positions, i t  is necessary to 
iterate in order to obtain the displacements a s  
well a s  the field-gradient contributions. The force- 
constant matrix M in Eq. (3) i s  the same one a s  
was used in approximation I1 for the Schottky de- 
fects obtained in Ref. 1 and includes next-nearest- 
neighbor (NNN) anion-anion interactions a s  well 
a s  the noncentral angle-bending force, 

The actual calculations were carried out on an IBM 

360/65 computer where again we have considered 
8000 distinct wave vectors q' in the f i rs t  Brillouin 
zone and have extrapolated the relaxation energies 
to the case for which N = m  by the procedure used in 
Ref. 1. The extrapolated values for the energy 
necessary to place a cation in the interstitial site 
from infinity E; and the corresponding energy 
for  the anion Ei a r e  given in Table I for each of 
the twelve alkali halides considered in this work. 
In this table a r e  also given the cation and anion 
Frenkel-pair formation energies which a re  defined 
by the equation E,* = E; + E:, where EV, i s  the energy 
necessary to remove an ion from a perfect lattice 
to infinity. In order to be consistent with the de- 
fect host-lattice ion interactions considered for 
interstitial defects, the value for E: was taken from 
Ref. 1 for vacancies in approximation I1 for the 
NNN model, i. e., EY,= E,  (NNN) and a r e  listed for 
convenience in Table I. In other words, the same 
force-constant matrix M and the same defect inter- 
actions a r e  used. All other input data used for  the 
calculation of Frenkel pair formation energies were 
identical to those used in Ref. 1. 

The displacements and total dipole moments for 
the neighbors of interstitials in NaCl a r e  given in 
Table I1 for bath cation and anion interstitials for 
8000 wave vectors. 

SUMMARY AND DISCUSSION 

The Frenkel-pair formation energies in alkali 
halides have been calculated by the method of lattice 
statics using the deformation dipole model for po- 
larizable ionic crystals. The perfect-lattice force- 
constant matrix contained second-neighbor anion- 
anion short-range interactions and a noncentral 
angle-bending force. The defect, located a t  the 
body-centered interstitial position, was allowed to 
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TABLE 11. Components of displacement 2 in percentage of yo,  and total dipole moment fi in percentage of era in NaCl 
for cation (+) and anion(-) interstitials. Components directed outward from the interstitial have the same sign as 21,. 

Neighbor (+) (-) (+) (-) 

2(li, zz,13) t i  E z 5 3 E 1 5 2  5 3 1.11 1*z 1.13 Pi 1*z 1*3 

1 7 1  8.928 - 8.928 8.928 -1.157 1.157 -1.157 0.117 -0.117 0.117 -0.357 0.357 -0.357 
3 11  2.989 -0.596 -0.596 0.504 0.795 0.795 0.266 0.023 0.023 -0.375 0.013 0.013 
3 3 i  2.328 2.328 -0.614 -0.491 -0.491 0.592 0.081 0.081 -0.013 -0.051 -0.051 0.019 
3 3 3 0.030 0.030 0.030 -0.138 -0.138 -0.138 0.028 0.028 0.028 -0.027 -0.027 -0.027 
3 5 1  0.238 0.530 0.028 0.352 0.355 0.086 0.027 0.078 0.011 -0.011 -0,091 -0.005 
5 1 1  2.130 0.539 -0.539 -0.206 -0.070 0.070 0.065 0.013 -0.013 -0,083 -0.004 0.004 
1 1 1 - 1.928 - 1.928 - 1.928 11.228 11,228 11.228 6.881 6.881 6.881 -2.112 -2.112 -2.112 
3 1 i  2.115 0.679 -0.679 1.590 0.416 -0.416 1.945 0.211 -0.211 -1.120 -0.548 0.548 
3 3 1 -1.447 -1.447 -0.632 2.728 2.728 0.449 0.467 0.467 0.155 -0.932 -0.932 -0.113 
3 5 T  0.249 0.533 -0.032 0.399 0,702 -0.132 0.167 0.557 -0,086 -0.229 -0.476 0.127 
5 11  0.441 -0.263 -0.263 1.318 0.324 0.324 0.797 0.029 0.029 -0.454 -0.052 -0.052 

interact with i t s  eight NN by relaxed Coulomb inter- 
actions, and relaxed short-range Huggins-Mayer 
repulsive overlap forces including relaxed attractive 
dipole-dipole and dipole-quadrupole van de r  Waals 
interactions. Long-range Coulomb forces were 
considered in zero  order for  all host-lattice ions 
past  the f i r s t  shell. 

A comparison of the Frenkel-pair formation 
energies given in Table I shows that for  cation inter- 
s t i t i a l ~ ,  the formation energy increases with in- 
creasing anion ionic radius, and that the opposite 
is true for  anion interstitials. Also i t  is clearly 
evident that where the rat io of the ionic radii of 
anion to cation i s  significantly la rger  than unity, 
cation energies a r e  lower than the corresponding 
anion case. Also, a comparison of E,' and E; with 
the corresponding Schottky-pair formation energies 
E,, shows that the lat ter  has a lower formation 
energy in al l  cases. Thus, our results  show that 
Schottky defect pa i rs  a r e  more likely to be present  
in crystals  than a r e  Frenkel defect pairs .  

In Ref. 1, we found that the increase in the 
Schottky-pair formation energy on going from ap- 
proximation I to approximation 11 was largely due 
to the missing dipoles. Similarly, the addition of 
deformation dipoles on the anions will cause the 
Frenkel-pair formation energy to be higher. For  
example, if the distortion moment P(r) i s  assumed 
to be proportional to the repulsive overlap s o  that 
P(Y) = P(r,)e ''o-'''~, {;hen the zero-order additional 
dipole contribution from the four NN anions about 
a cation interstitial will be nearly equal to the ze ro  
order missing dipole contribution, 2@NN, for  all 
alkali halides. This contribution will cause the 
Frenkel-pair cation formation energies for  the 
sodium family to be increased by about 0.5 eV over 
the values given in Table I (the increase will be 
l e s s  fo r  the remaining alkali halides). At present  
we do not know how to determine properly the zero- 
order contribution for  anion-anion deformation 
since i t  becomes difficult to make a good estimate 

of the distortion moment; however, we could argue 
that i t  is probably on the same order of magnitude 
a s  for  cation-anion deformation. In ei ther  case  
the calculations clearly indicate that the Schottky 
pair  should be the dominant type of defect. 

A comparison of our Frenkel-pair formation 
energies for  NaCl and KC1 with other theoretical 
calculations is given in Table 111. Since the models 
used a r e  different, we can only say  that they a r e  of 
the same order of magnitude. We have also given 
the only seemingly available experimentally derived 
Frenkel-pair formation energy for  a cation inter- 
stitial.  This value for  E,' was determined as a 
parameter  in fitting experimental data for  the ionic 
conductivity in NaCl and therefore the comparison 
should not be taken too seriously. However, the 
value does indicate an approximate range for  E i .  

The displacements of ions about interstitials 
beyond NN a r e  quite small  when compared to the 
f i r s t  neighbor displacements. This is similar  to 

TABLE 111. Comparisonof Frenkel-pair formationenergies 
in eV for cations (+) and anions (-). 

E ;  EF 
'Theory Theory Theory Theory 

Salt (present)  (other)  Expt. (present) (other) Expt. 

1.36% 4.60 a 

NaCl 2.881 2.63b 2.699' 1.602 6.3Xb 
2. gd 

KC1 3.161 3 . 4 2 '  ... 3.73: j.lAb . . .  
'Calculation using a Born-JIayer repulsive potential by 

combining the values for E, from R. Guccione, M. P. 
Tosi, and M. Asdente [J. Phys. Chem. Solids 2, 162 
(1959)l with E I  from K. Tharmalingam [J. Phys. Chem. 
Solids & 255 (1964)l. 

%ame as Ref. a above except a Born-Mayer-Venvey 
repulsive potential was used. 

'Experimentally derived value from electrical conduc- 
tivity measurements by A .  R. Allnatt and P. Pantelis, 
Solid State Comm. 5, 309 (1968). 

d ~ .  F. Mott and M. J. Littleton, Trans. Faraday Soc. 
34, 485 (1938). - 
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the situation for vacancies. Also, the largest  ab- 
solute displacement for these far  ions is usually 
less  than 3% of the equilibrium lattice spacing. 
Therefore, the correcting of defect host-lattice ion 
interactions past f i r s t  neighbors for lattice relax- 
ation will probably not al ter  the present  values sig- 
nificantly, although again, making anharmonic cor-  
rections between f i r s t  and second neighbors may 
prove to be worthwhile. 

Another possible consideration for future study 
should be that of properly describing anion-anion 
deformation dipole interactions, and then allowing 
these additional dipoles (as well a s  those from 
cation-anion deformation) to interact with the elec- 

tr ic  field a t  the NN lattice site. This field should 
include the contribution from the defect a s  well a s  
the contributions from the host-lattice ions. 

In conclusion, the method of lattice statics to- 
gether with the deformation dipole model for ionic 
crystals  has given a good description of cation and 
anion interstitial defects. Our results  give confi- 
dence that an ion in any interstitial configuration can 
be properly treated. Thus, the methods and the 
manner of treating the defect host-lattice ion inter- 
actions for both the problem considered here and 
the study of vacancies should prove tobe useful for the 
study of other defect problems, e. g., vacancy pai rs  
and vacancy migration configurations. 

hark performed in part under the auspices of the - 25, 3 1  (1964). 
U. S. AEC at the University of California Lawrence 'A more complete listing of the ionic displacements and 
Livermore Laboratory. the dipole moments can be obtained from the authors upon 

*permanent address:  Physics Dept., Abilene Chris- request. 
tian College, Abilene, Tex. 79601. ' ~ t  high temperatures Frenkel defects may become 

' ~ a u l  D. Schulze and John R. Hardy, Phys. Rev. B important in ionic conductivity for  cases where E ,  i s  
5, 3270 (1972). - relatively low, e.g. ,  E$ in NaCl, NaBr, NaI, KI, and 

'H. M. Evjen, Phys. Rev. 39, 675 (1932). RbI; E> in KF and RbF where the cation has an ionic 
3 ~ .  E. Mayer, J .  Chem. Phys. 1, 270 (1933). radius comparable to that of the anion. 
4 ~ .  G. Fumi and M. P. Tosi ,  3 .  Phys. Chem. Solids 
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